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Abstract— Voltage sag is defined as a temporary rms reduction in voltage typically lasting from a half cycle to several 
seconds. Voltage sag may produce unfavorable consequence in production processes if the process-control equipment 
trips. Therefore, analysis of voltage sags at a location of interest provides useful information for assessing the 
compatibility between equipment and the electrical supply. As the primary cause of voltage sag is due to faults that may 
occur anywhere in distribution systems, a Monte Carlo simulation method is proposed as the main tool for voltage sag 
prediction in this paper. The Monte Carlo simulation method is employed to capture stochastic behavior of fault 
consisting of fault location, initial time of fault, fault duration and fault type. PSCAD/EMTDC, which is a software 
package developed to simulate electric-magnetic transient phenomena, calculates voltage sag magnitude and duration. 
Power flow solution is obtained from the software PSS/E and used by the E-TRAN program to directly initialize the 
circuit in PSCAD/EMTDC. A distribution system of Metropolitan Electricity Authority (MEA) is tested in a case study. 
With the proposed methodology, the expected value of voltage sag magnitude and their probability distribution can be 
obtained. This information is useful for the utility and customers for voltage sag prevention. 
 
Keywords— Monte Carlo simulation, PSCAD/EMTDC, sag duration, sag magnitude, voltage sag. 
 

1.     INTRODUCTION 

A variety of power quality problems exists in distribution 
systems but voltage sag is probably the most prominent 
one due to the fact that temporary faults are most often 
seen. Voltage sag is a temporary root mean square (rms) 
drop in voltage magnitude ranging from 0.1 per unit and 
0.9 per unit of the nominal voltage and sag duration is 
one half cycle to one minute [1].  

The problem of voltage sags is gaining importance 
because they affect industrial and large commercial 
customers whose production processes can be disrupted 
as a result of tripping of their sensitivity equipment such 
as adjustable speed drive, computers and computer-
controlled equipment. The consequence of voltage sags 
may produce high economic loss of productivity. 

The primary cause of voltage sag is due to faults that 
may occur anywhere in a system and cannot be 
eliminated completely. There are a number of factors 
associated with voltage sag such as location, the 
characteristics of utility's distribution system 
(underground, overhead, lengths of the distribution 
feeder circuits, and number of feeders), number of trees 
adjacent to the power lines, and several other factors [2]. 

This paper presents a methodology for predicting 
voltage sags characteristics caused by faults in a 
distribution system. Predicting voltage sag requires a tool 
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that can provide information for the utility to identify the 
weak points or locations and to assist the utility’ 
customers to select appropriate equipment specifications 
to assure the optimum operation of their production 
facilities [3]. 

A Monte Carlo simulation is proposed for voltage sag 
prediction in which time domain analysis is carried out 
using the PSCAD/EMTDC software package interfaced 
with PSS/E and MATLAB programs. The advantage of 
the proposed method is that the stochastic nature of faults 
can be statically captured with minor mathematical 
calculation involved. With our method, prefault voltage, 
a variety of fault types, sag magnitude, and sag duration 
can be taken into account. The developed tool is tested 
with a distribution system of Metropolitan Electricity 
Authority (MEA). 

2. STOCHASTIC VOLTAGE SAG PREDICTION  

There are basically two major methods for voltages sag 
assessment: analytical and simulation methods. Analytical 
methods, such as fault position [4], represent the system by 
analytical model and evaluate system indices using 
mathematical solutions. The Monte Carlo simulation 
method, on the other hand, estimates the system indices by 
simulating the actual process and random behavior of the 
system [5]. The analytical method is superior to the Monte 
Carlo simulation method in computation time because the 
Monte Carlo simulation method is normally 
computationally expensive to arrive at results with sufficient 
confidence. However, for systems with complex operating 
conditions or those in which parameters cannot be explicitly 
modeled, Monte Carlo methods are preferable. 

Monte Carlo simulation mimics system behaviors and 
estimates system parameters by simulating the actual 
process. It does not solve the equations describing the 
model; instead the stochastic behavior of the model is 
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simulated and observed for several iterations [6]. The 
simulation process is repeated until the solutions converge. 
The convergence can be confirmed when no significant 
variation in the solution is observed or the prespecified 
number of iterations has been reached. Monte Carlo 
simulation generally requires considerable computation 
time in order to obtain sufficient confidence in the results 
[7]. Alternatively, for the sake of computation time 
reduction without losing confidence in the accuracy of the 
results, a number of techniques based on variance 
reduction were developed and often employed, such as 
importance sampling, stratification, control variates and 
antithetic variates.      

Every time the system is run, several quantities are 
randomly generated to represent fault characteristics 
whose probability distributions are normally predefined 
based on statistical behavior of fault. Two factors that 
describe voltage sag characteristic are sag magnitude and 
sag duration. Figure 1 shows a sag produced by a single 
line to ground fault at phase C in the test system detailed 
in Section 5. With this waveform, the sag occurs at phase 
C, while the voltages at phases A and B remain 
unchanged. The sag magnitude is 0.193 pu. with a 
duration of 71.2 milliseconds.  

 

 

Fig.1. Voltage Sag Waveform. 
 
In the process of Monte Carlo simulation, four 

parameters need to be randomly generated as follows. 

a) Fault locations can be modeled by the method of fault 
position [8]. The main concept behind this method is 
that a fault can be originated from every single 
position on a distribution line (sending and receiving 
end buses are considered as points on the line). 
However, taking into consideration of all the points 
on the line, although possible, is time-consuming. 
Thus, a distribution line with equally divided 
intervals, say four segments as shown in Fig. 2, would 
be reasonably approximated. This approximation 
introduces three dummy buses between bus 1 and bus 
2. Therefore, there are five possible locations exposed 
to faults. 

The parameters associated with a probability 
distribution of fault position can be determined from past 
experience. However, without historical data, a density 
function for fault location can be based on the uniform 

density function. A fault location is mathematically 
expressed by (1). 

 

Fig.2. Method of Fault Position. 
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where i = bus index 
 n  = total bus number 
 

 

1
U  = uniform random number under [0,1] 

 

b) The initial time of a fault is represented by a random 
number that is uniformly distributed within 1 cycle    
(50 Hz or 20 milliseconds). 
 

0200
22

.  if     , ≤<= UUFI  (2) 

 
where FI = initial time of the fault 
 

2
U = uniform random number under 

[0,0.02] 
 

c) The fault duration of voltage sag is assumed to be 
normally distributed with a mean and a standard 
deviation. For a given uniform random number 
under [0, 1], it can be converted to a normally 
distributed random number by an approximate 
inverse transform method [7].  
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where z  = random variable calculated using the 
equations given in the appendix 

 
 

U3 = uniform random number under [0,1] 
 X = normally distributed random variants 
 

 

µ  = mean of fault duration 

 σ  = standard deviation of fault duration 
 FD  = fault duration 
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d) Fault types are classified as three-phase fault, double 
line-to-ground fault, line-to-line fault and single-
line-ground fault. A probability distribution of fault 
type can be modeled by a discrete distribution 
derived in (5). 
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where j  = fault index 
 

 

jFT  = fault type 
 

 

4
U  = uniform random number under [0, 1]

 
 

LLL
P  = probability of occurrence of a three-

phase fault 
 

 

LLG
P = probability of occurrence of a 

double line-to-ground  fault 
 

 

LL
P  = probability of occurrence of a line-

to-line fault 
 

 

LG
P  = probability of occurrence of a line-

to-ground fault 
   

In practice, the values of the four probabilities can be 
determined from statistical collected data. 

After bus voltages have been calculated, the expected 
bus voltage magnitude is given by the following 
equation: 

 

∑
=

=
N

k
kj V

N
V

1

1  (5) 

 
where 

jV = expected value of sag magnitude at 
bus j  

 
k

V = sag magnitude of iteration k  

 N = number of samples 
 

The unbiased sample standard deviation for bus 
voltage magnitude is calculated from: 
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N 11

1σ  (7) 

 
where 

 

jσ  = sample standard deviation 

Note that according to IEEE Std 493-1997 [9], 
k

V in 

(6) is considered from the lowest of three phase voltages 
for each sag event. 

3. DEVELOPED SIMULATION TOOL  

Power System Computer Aided Design (PSCAD)/ 
Electromagnetic Transients including DC (EMTDC) [9] 
is a fast, accurate, and user-friendly power system 
simulation software. The software is suitable for time 
domain simulation, particularly in transient periods. It 
contains extensive libraries of power and control system 
models organized in forms of circuit schematic. A user 

can construct a circuit, run a simulation, analyze the 
results, and manage data in graphical environment.  

Although PSCAD/EMTDC offers a convenient way 
for voltage sag simulation, it still needs an interface with 
external subroutines that is able to perform special tasks. 
The proposed simulation tool links the multiple run 
option in PSCAD/EMTDC with PSS/E for calculating 
power flow solutions and with a module developed on 
MATLAB for data recording and post processing of 
output results. Figure 3 shows a flowchart of proposed 
stochastic simulation tool for voltage sag prediction. The 
duration of each run performed by PSCAD/EMTDC is 
0.5 second with a time step of 0.1 milliseconds.  

  

Fig.3. Developed Simulation Tool for Voltage Sag 
Prediction. 
 

4. METHODOLOGY FOR VOLTAGE SAG 
ASSESSMENT 

The proposed methodology consists of following steps. 

Step 1: Input data of loads, branches, buses, network 
equivalent of supply point and maximum 
number of iterations. 

Step 2: Perform power flow by a subroutine in the 
PSS/E program to obtain pre-fault bus voltages 
(including those at dummy buses). The PSS/E 
program gives a case file that contains all the 
input data and the power flow solution. 
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Step 3: Convert the case file by the E-TRAN program,  
which directly initializes the circuit in 
PSCAD/EMTDC. 

Step 4: Interface PSCAD/EMTDC with MATLAB by 
a custom-made module for a Monte Carlo 
simulation and for data recording.  

Step 5: Generate random numbers by a subrountine in 
MATLAB to represent fault characteristics 
(fault location, initial time of fault, fault 
duration, fault type). These random number 
will be used in PSCAD. 

Step 6: Perform an electromagnetic transient 
simulation by PSCAD/EMTDC to obtain sag 
magnitude and sag duration of all the buses 
until the maximum iteration has been reached. 
These two parameters as well as the fault 
characteristics will be passed to MATLAB for 
recording. 

Step 7: Manipulate the recorded data to obtain the 
expected voltage sag magnitude and its density 
function of each bus. 

5. CASE STUDY: BANG–PU INDUSTRIAL 
ESTATE 

Description of test system 

The 115/24kV Praekasa (PR) distribution substation of 
MEA is selected for demonstrating a practical case study. 
The substation is located in the Bang–Pu Industrial 
Estate of Samutprakan province and supplies 3 power 
transformers, serving 33 load points with a total demand 
of 28.5 MW. There are 4 outgoing 24 kV feeders from 
power transformer No.3, namely PR432 with 2.46 
circuit-km, PR434 with 39.4 circuit-km, PR435 with 
8.90 circuit-km, and PR433 with 1.45 circuit-km. This 
system is of interest because it has experienced a number 
of sags that caused interruption to customers’ production 
processes. The single line diagram of the system is 
shown in Figure 4. As described in Section 2 for the 
modeling for fault position, this system has 129 dummy 
buses in total for the Monte Carlo simulation. The mean 
and standard deviation for fault duration are 0.06 second 
and 0.01second [11], [12]. The values used in fault type 
simulation are 80.0=LGP , 17.0=LLGP , 02.0=LLP , 

01.0=LLLP  and  [11]. It is assumed that fault resistance 

is neglected.  

Simulation Results 

The test system is simulated by a multiple run of 500 
iterations. The frequency distribution with 10 bins of 
fault location and initial time of fault is shown in Figures 
5 and 6. It is seen that both figures follow the 
prespecified uniform distribution. As shown in Figure 7, 
the distribution of fault duration has a mean value of 
0.0610 second and a standard deviation of 0.0108 
second. These values follow the predefined statistical 
property of fault duration. As expected from Figure 8, 
the probability of simulated fault type has a good 
agreement with the given assumption of fault type; that is 

744.0=LGP , 20.0=LLGP , 038.0=LLP , 018.0=LLLP . 

 

 
Fig.4. 115/24kV Praekasa Distribution System. 

 

 

Fig. 5. Density Functions of Fault Location. 
 
Figure 9 shows the density functions of 4 selected 

buses of interest: bus 9, bus 8, bus 21 and bus 30. It is 
obviously seen from the figure that bus 9 has the highest 
average bus voltage while that of bus 21 is lowest. This 
is not surprising because bus 9 is close to the substation, 
while bus 21 is at the end of feeder PR434, which is the 
longest feeder. Downstream customers, of course, tend to 
suffer more from voltage sags than those upstream. The 
reason is that a downstream fault may not create a sag 
seen by upstream customers but downstream customers 
will certainly be affected by an upstream fault. 

Figure 10 illustrates a convergence report of the bus 
voltages. It is observed that the simulation converges 
after 300 iterations. The cumulative voltage sag density 
function of bus 9 is depicted in Figure 11, indicating for 
example that if a device can ride-through short duration 
sag, say above 70% of the nominal voltage within 0.1 
second, there is a 80% chance that the device will be 
tripped.  
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Fig.6. Density Function of Initial Time of Fault 
 

 

Fig.7. Density Function of Fault Duration. 
 

 

Fig.8. Density Functions of Fault Type. 
 
The developed program takes 36 hours on PC Pentium 

M 1.6 GHz with 1GB of RAM. The major contribution 
to the computation time is the number of nodes (or 
buses) and sampling period (solution time step) being 
considered. To be specific, the more nodes (buses) or 
smaller sampling periods, the more computation time. 
Our problem has in total 129 nodes with a sampling 
period of 0.0001 sec. It was recommended in [13] that a 
time step size be equal to or greater than 100 µs (0.0001 
sec). The computation time is greatly reduced if we do an 
analysis only at a bus of interest. As an illustration, it 
takes only 1.5 hours if only bus 21 is selected in our 
calculation. Alternatively, if a sampling period is 
changed from 0.0001 sec to 0.0004 sec with the same 
129 nodes, the computation time is only about 9.5 hours, 
scarifying very small amount of accuracy. Figure 12 
emphasizes our confirmation. Nonetheless, computation 
time does not matter as voltage sag assessment is not for 
real-time application but rather for planning objective. 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig.9. Density Functions of Voltage Sag Magnitudes at 4 
Buses. 
 

 

Fig.10. Convergence of Expected Voltage Sag Magnitudes 
at 4 Buses with sampling period of 0.0001 sec. 

 

 

Fig.11. Voltage Sag Distribution Function at Bus 9. 
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Fig.12.  Convergence of Expected Voltage Sag  Magnitudes 
at 4 Buses with sampling period of 0.0004 sec. 

 

 

Fig.13. Scatter Diagram of 4 Buses with ITIC Curve. 

Figure 13 shows a scatter diagram of sag magnitude 
versus semi-logarithmic duration for the 4 buses, plotted 
on a part of the so called ITIC (Information Technology 
Institute Council) curve [14]. This curve is a loci drawn 
that establishes a criterion of the tolerance voltages of 
variations. Any point above the line has a ride-through 
capability for voltage sags. It is very interesting to note 
that although the expected voltage at buses 8, 9, 21 and 
30 is below 70%, some sag events do not cause problems 
on the equipment connected to these buses. 

6. CONCLUSION 

A Monte Carlo based simulation of voltage sags has been 
presented in this paper. A time-domain simulation tool 
that integrates the PSCAD/EMTDC software package 
with PSS/E and MATLAB was developed to estimate 
voltage sag characteristics quantified by their magnitude 
and duration. The proposed methodology is 
demonstrated by a distribution system of MEA. The 
obtained results are statistically analyzed to give average 
bus voltages and  their density functions. The case study 
reveals that voltage sag problems are location-specific. 
Downstream customers are more subject to voltage sag 
than those upstream because the distribution system 
under study is radially operated. Scatter diagrams on the 
ITIC curve is also presented which provides a useful 
indicator for voltage sag problems. From the utility point 

of view, voltage sags can be mitigated by fault 
prevention activities and modification of fault clearing 
practices, while from the customers’ point of view, 
installing mitigating equipment such as uninterruptible 
power supply and voltage source converter could be a 
good option for improving the immunity of sensitive 
equipment. 
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APPENDIX 

Generating Normally Distributed Random Variates 

A normally distributed random variate can be generated 
the normal culmulatime probability distribution function 
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( )xF . The inverse function of ( )xF  has the following 
approximate expression [7]: 
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The implications of z  and Q  are shown in Figure A1, 

where ( )zf  is the standard normal probability density 
function. 

 

( ) 










−

= 2

2

2

1
z

ezf
π

 (A2) 

  

 
Fig.A1.  Area Under Normal Density Function ( )zQ  

 

Table A1. Load Data of 33-Bus Distribution System 

Bus 
No. 

PL 
(MW) 

QL 
(MVAR)  

Bus 
No. 

PL 
(MW) 

QL 
(MVAR)  

3 1.785 0.988 15 1.478 0.818 
4 2.783 1.540 16 1.740 0.963 
5 2.168 1.200 18 0.420 0.232 
6 1.050 0.581 20 0.533 0.295 
7 1.628 0.901 21 1.050 0.581 
8 1.313 0.726 22 0.656 0.363 
10 0.656 0.363 25 1.050 0.581 
12 0.822 0.455 26 1.575 0.871 
13 0.559 0.309 29 1.313 0.726 
14 1.890 1.046 30 2.562 1.418 
31 0.525 0.291 33 0.525 0.291 
32 0.473 0.261    

 
Table A2. Equivalent Source Impedance 

Source Impedance (pu.) 
R1,2 X1,2 R0 X0 

PR. Substation 
Transformer 

No.3 
0.13114 0.42173 0.09547 0.37962 

 

Table A3. Branch Data of 33-Bus Distribution System 

From
Bus 

To 
Bus 

R1,2 

(pu.) 
X1,2 

(pu.) 
R0 

(pu.) 
X0 

(pu.) 
Length 

(km) 

1 2 0.0233 0.0349 0.1727 0.1754 1.00 

1 4 0.0116 0.0174 0.0860 0.0873 0.50 

1 9 0.0105 0.0157 0.0778 0.0873 0.45 

1 22 0.0022 0.0033 0.0165 0.0873 0.10 

2 3 0.0042 0.0062 0.0251 0.0342 0.12 

2 31 0.0017 0.0025 0.0101 0.0137 0.05 

4 5 0.0069 0.0102 0.0419 0.0570 0.20 

5 6 0.1042 0.1537 0.6281 0.8547 3.00 

6 7 0.0556 0.0819 0.3350 0.4558 1.60 

6 8 0.1250 0.0369 0.0445 0.0730 3.60 

9 10 0.0764 0.0225 0.0272 0.0446 2.20 

9 13 0.1181 0.0348 0.0420 0.0689 3.40 

10 11 0.0972 0.0287 0.0346 0.0568 2.80 

11 12 0.1677 0.0492 0.0593 0.0973 4.80 

13 14 0.0694 0.0205 0.0247 0.0405 2.00 

14 15 0.0972 0.0287 0.0346 0.0568 2.80 

15 16 0.1250 0.0369 0.0445 0.0730 3.60 

16 17 0.1250 0.0369 0.0445 0.0730 3.60 

17 18 0.1250 0.0369 0.0445 0.0730 3.60 

17 19 0.1736 0.0512 0.0618 0.1014 5.00 

19 20 0.0972 0.0287 0.0346 0.0568 2.80 

19 21 0.0972 0.0287 0.0346 0.0568 2.80 

22 23 0.0049 0.0014 0.0017 0.0028 0.14 

23 24 0.0035 0.0010 0.0012 0.0020 0.10 

23 27 0.0174 0.0051 0.0062 0.0101 0.50 

24 25 0.0097 0.0029 0.0035 0.0057 0.28 

24 26 0.0090 0.0027 0.0032 0.0053 0.26 

27 28 0.0028 0.0008 0.0010 0.0016 0.08 

28 29 0.0174 0.0051 0.0062 0.0101 0.50 

28 30 0.0174 0.0051 0.0062 0.0101 0.50 

31 32 0.0035 0.0010 0.0012 0.0020 0.10 

32 33 0.0035 0.0010 0.0012 0.0020 0.10 
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