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& 3 Multi-objective Optimal Placement of Distributed
5 5 % Generation Using Bee Colony Optimization
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Abstract— In this paper, the proposed bee colony optimization (BCO) is used to determine optimal placement and
number of the distributed generation (DG) to simultaneously minimize the real power loss and violation function of
contingency analysis subject to power balance constrains, and power generation limits. The simulation results on the
|EEE 30 bus system show that BCO can obtain the optimal solution with less computing time than simulated annealing
(SA), genetic algorithm (GA) and tabu search algorithm (TSA). The average computing time of BCO is 82.62%, 74.40%
and 83.83% lessthan GA, SA and TSA, respectively.
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transmission capacity in 2008 and another 1,578 MW
1. INTRODUCTION 2010, will build upon earlier linkef 75 MW in 1972, 45
. . _— MW and 214 MW in 1998 and 126 MW in 1999 [1].
Electric power grids have brought substantial besie Particular support has been evident for componefts

the Southeast Asia Region as well as Greater Mekonqhe ASEAN Power Grid to be located in the Greater
Subregion (GMS) and hold thpotential to provide \exong Subregion that includes Cambodia, Laos,

further benefits if strengthened and extended. TheMyanmar Thailand and Vietnam as well as Yunnan
benefits include morereliable power supply, lower proyince in southern China. A Greater Mekong

elegtr|C|ty costs to — consumers, and reducedSubregion transmission study was performed by the
enwronment_al ImpactsPower g_rld enhan_cemen_ts ¢aN Mekong River Commission in 1996. Finally, an Inter-

m"%"fe electric su_pply more re_llable by improving t_h_e Governmental Agreement (IGA) on Regional Power

ability of economies to cope with the outage of SPecific 1ra4e in the Greater Mekong Subregion was signed by
generating units or types of generating units, @8 8  inisters of the subregion’s six economies in Nobem

by limiting the scope of power outagdéshanced power 54592 The IGA set up a Regional Power Trade

grids can lower electricity costs by reducing ne@ms  cq5 gination Committee to establish rules governing
electric generatingapacity and allowing cheaper fuel 10 oqinnal power trade. It is anticipated that powede

be substituted for more expensive fuel. Grids lower pursuant to the agreement will allow members to
_needs forgenerating capacity by allowing peak Qemand coordinate and cooperate in the planning and oiperat
In one area to be served in part _by spare capatity o tpeir systems to minimize costs while maintagnin
neighbouring area where ‘?'ema”d Is not at its PBeks satisfactory reliability; fully recover their costsid share
lower fuel costs by allowing generatidnrom nuclear, equitably in the resulting benefits; and promotéabie

hydro and_coal-flred power plants to displace gatien and economical electric service to the customeresagh
from gas-fired plants. country

A plan for power grid interconnections in Southeast Conversely, a few proposed new power links in the

Asia has been elaborated under thespices of the  Greqier Mekong Subregion, see Figure 2, go beyond
Association of South East Asian Nations (ASEAN)ETh \ya¢ a5 heen proposed in the broader ASEAN context.
plan initially included fourteen cross-border projects, The 500 kV lines in northeastern Thailand would be
supported by national power utilitieBhese are shown as reinforced by 2015 to accommodate greater powsvsflo

14 projects in the Figure 1 below. The power grster g5 yhyyard, A 230 kine would be built by 2019 from
plan is extremely ambitious relative to transmissio | qver Sre Pok to Sambor and Phnom Penh in

capacity in placegven though several elements of the Cambodia, as well as from Sambor to Tan Dinh in

plan build upon existing intgrconnections. The Pm‘ Vietham. A 500 kV HVDC transmission line would link
700 MW link between Singapore and Peninsular y . Jinghong and Nuozhadu hydro projects in the

Mgla_ysia, to be co_mpleted by 2010'_ will add 0 an yynnan province of China to Thailand by 2013, wile
existing 500 MW link. The planned interconnections 534 v/ Jine would link the Malutang hydro plant in
between Thailand and Laos, to add 2,048V of Yunnan with Vietnam by 2019 [2].

In this paper, integrated electricity system plagnis
reviewed in section 2. The metaheuristic optimati
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objective optimal placement of DG is demonstraidie
validity of the solution algorithm is verified by

comparing the searching results with those by tG®©B
Lastly, conclusion is given in sectigh
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Source: ASEAN Centre for Energy. Key: Existing 8rsolid, proposed
lines dashed.

Fig. 1. Southeast Asian Power Grid Endorsed by ASEAN
Leaders.

2. INTEGRATED ELECTRICITY SYSTEM
PLANNING

International power grid interconnections provideks
between the electricityransmission systems of two or
more adjoining countries and thus allow those coemt
to share power generation resources. As different
countries are differently endowed with naturaources,
energy trade among countries for centuries hasebetp

the sameenergy services. As technologyogresses, the
number of other means of providing those energy
services is growing rapidly,including not only
construction of new large power plants, but alsesite
renewable or fossil-fueleddistributed generation for
businesses and homes, energy efficiency improvement
fuel switching, and evealternative social organizations.
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Source: Doorman et al. Note: Existing substatialesshown as filled
circles, planned substations as empty circles. dipthnts are shown as
squares with a diagonal slash, fossil-fuelled [glzat squares with a
horizontal slash.

Fig. 2. Extended Power Cooperation Scenario for Geger
Mekong Subregion.

Distributed generation (DG) is a small generator
spotted throughout a power system network, progidin

reduce energy prices and increase energy supply inthe electricity locally to load customers. DG is an

importing countries, while providing a meansintome
for exporting countries.

International grid interconnections can be as mbdegs
the one-way transfer of a smamount of electricity
from one country to another, or as ambitious asfulie
integration of thepower systems and markets of all of
the countries in a region. Whatever
international power grid interconnections can help to
contribute toward the process of
development. Grid interconnections can help togase
the supply and/or reliability alectricity [3].

the scale,

alternative for industrial and commercial custom&6
makes use of the latest modern technology which is
efficient, reliable, and simple enough so that @nc
compete with traditional large generators in someas
Placement of DG is an interesting research areatalue
economical reason. Appropriate size and optimal
location are the keys to achieve it.

Recently, the need for more flexible electric syste

sustainable changing in the regulatory and economic scenatos i

providing impetus to the development of DG. Various
kinds of DG are becoming available and it is expéct

The need to embed the consideration of powerthat will grow in future years [4-7].

interconnection and generation projects into theader
consideration of electricity system planning, ancre

The local DG has some merits from the viewpoint of
location limitations as well as transient and wgdta

overall energy sector planning but deserves speciaptability in power system. The exact solution a¢ DG

additional mention. All costs and benefits of agdarm

allocation can be obtained by a complete enumeratio

project like the power interconnection and generation all feasible combinations of placement and capacity
must bemeasured relative to other means of providing rating of DG, which could be very large number and
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various sizes, while the load flow is run for edehsible been applied to DG placement, such as geneticitdigor
combination to evaluate the quality of solution. (GA) [8], [10], [14], [21], [22], [27], tabu search
However, the high dimension of the feasible sohuti® algorithm (TSA) [11], [24-26], simulated anneali(§A)
the real difficulty in solving the problem. This e [28], heuristic algorithms [12], [16] and analytidzsed
presents methodology for optimal placement and mumb methods [9], [15], [17]. This paper presents a rhade
of DG in distribution systems by solving an optiatinn determine optimal location of DG in a distribution
problem of system contingencies and real power loss  system in order to minimize the electrical losses a
violation of system contingency, i.e. line overloadd

3. REVIEW METAHEURISTIC OPTIMIZATION bus overvoltage, which they is solved using beergpl

METHODS optimization (BCO) [23], [29-30] as the optimizatio
tool by comparing with GA, SA and TSA. In this
algorithm, DG is considered as constant power &surc
The methods proposed are applied to the IEEE 30-bus
Otest system to demonstrate their effectiveness.

Recently, the metaheuristic optimization methods ar
being successfully applied to combinatorial optetian
problems in power systems. Methods and procedures
the DG placement are varied according to objective
the prqblem solutl(_)n viewpoints. In [8], a GA bas[é@ 4. PROBLEM EORMULATION
allocation method is presented where the poweekss

an existing network is minimized. In [9], Rau andaV  The problems of the system in the future are sherts
employ gradient and second order methods to datermi reactive power support, undervoltage at variousesus
the optimal DG location for the minimization lodme increased system losses and the tendency of voltage
loading and reactive power requirement in the ndtwo collapse initiation. Addition of proper DG in thgstem

Kim et al in [10] suggest a combination of fuzzynno can overcome these problems. The contingency is
linear goal programming and genetic algorithm analyzed to assess the ability of the network tavipe
techniques to locate DG and minimize overall power electric power of sufficient quality to connected
losses. In [11], Nara et al apply tabu search ntetbdhe  customers. DG optimization to alleviate the problein
same problem. Griffin et al in [12] demonstrate an the system is determined.

iterative method that provides an approximation tfor The main objective here is to minimize the real pow
optimal placement of DG for loss minimization. 3], loss along with violation of system contingency Mhi
Kim et al apply Hereford ranch algorithm to optimal subjected to power balance constraints and power
placement of fixed capacity DG in order to minimthe generation limit. This is a case of nonlinear
losses of network. Celli et al in [14] propose altmu combinatorial problem with multiple objectives. $hi
objective formulation for the sizing and sitting BiG multi-objective optimization problem is convertea &
units into distribution feeders for simultaneous single objective problem with the help of suitable
minimization of cost of network upgrading, losses, weights, and the mathematical formulation of the

energy not supplied and customer energy. Willi§Li] problem is expressed as equation (1).

offers a "2/3 rule" to place DG on a radial feedgth

uniformly distributed load, where it is suggested t Minimize P (S) + w\Vf_ . (S) (1)

install DG of approximately 2/3 capacity of theanaing )

generation at approximately 2/3 of the length néliEl-  Subject to:

Khattam et al in [16] use a heuristic approach to N

determine the optimal DG size and location in R =MZ‘Y” ‘MCOS@ -6,-9) ©
j=1

distribution feeders from an investment point oéwi
Wang and Nehrir in [17] present analytical appraach N
for determining optimal location of DG units withnity Q =M%V [sin@ -6, -3)) ®3)
power factor in power system to minimize the power =1

losses. In [18], Harrison and Wallace employ annogit

. . . . 4
power flow technique to maximize DG capacity with Fot.min < Pt < ot o 0 NG @)
respect to voltage and thermal constraints. Popelvil Qu i < Qg < Qs o ING (5)

in [19] use a sensitivity analysis to maximize DG

capacity in the network without violation of seduri  \here

constraints. Keane and O'Malley in [20] present a

method based on linear programming to determine the  Vfinin(S) =Wl (S) + Olf i (S) (6)

optimal allocation of DG with respect to technical

constraints. In [21] Carpenellis et al propose a Weights considered in Equation (1) reflect thetreta

methodology based on multi-objective programmind an priority of each term present in the objective fim. In

decision theory which to find the best developmgan the present work, the weight is used to converttimul

for the system by using the DG as a developmembrept  objective optimization problem to a single objeetiv

In [22], Borges and Falcao propose a methodology fo problem. Since the main objective is to achievenals

optimal DG allocation and sizing in order to mina&i  quantity of power loss and violation of system

the network losses and to guaranteeing acceptableontingency (voltage violation and line overloading

reliability level and voltage profile. penalty is imposed to the both terms. Varying these
In the literatures, several optimization technighase  weights can lead to alternative solutions. The
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experimental results of the optimal values of weiigin Bee Colony Optimization Meta-heuristic

the IEEE 30 bus system are shown in section 6. The BCO is a relatively new member of swarm

intelligence. Within the BCO, agents called - &t
5. BEE COLONY OPTIMIZATION bees collaborate in order to solve difficult condtorial
A great number of traditional engineering modelsl an optimization problem. All artificial bees are loedtin
algorithms used to solve complex problems are based the hive at the beginning of the search processinBu
control and centralization. Various natural mechari  the search process, artificial bees communicaectiyr
(social insect colonies) show that very simple vidlial Each artificial bee makes a series of local moses, in
organisms can create systems able to perform highlyhis way incrementally constructs the solution bé t
complex tasks by dynamically interacting with each problem. Bees are adding components to the current
other. Bee swarm behavior in nature is, first and partial solution until they create one or more iglas
foremost, characterized by autonomy and distributedsolutions. The search process is composed ofitesat
functioning and self-organizing [23]. In the lasuple of The first iteration is finished when bees createtfe
years, the researchers started studying the behafio first time one or more feasible solutions. The best
social insects in an attempt to use the swarmligegice  discovered solution during the first iteration &ved, and
concept in order to develop various artificial syss. then the second iteration begins. Within the second
iteration, bees again incrementally construct gmhst of
the problem, etc. There are one or more partiaitieols
Self-organization of bees is based on a few raiftiv  at the end of each iteration. The analyst-decisnaker
simple rules of individual insect's behavior. Iritspof prescribes the total number of iterations.
the existence of a large number of different soiciagct When flying through the space our artificial bees
species, and variation in their behavioral patteinss perform forward pass or backward pass. During forwa
possible to describe individual insects' as capaifle pass, bees create various partial solutions. éxéeuted
performing a variety of complex tasks [31]. Thetbes via a combination of individual exploration and
example is the collection and processing of nedtsr, collective experience from the past. After thaickveard
practice of which is highly organized. Each beeidles  pass is performed of returning to the hive. Intihes, all
to reach the nectar source by following a nestmdte bees participate in a decision-making process.\Ebee
has already discovered a patch of flowers. Each has  can obtain the information about solutions' quality
a so-called dance floor area in which the beestthae  generated by all other bees. In this way, beesangsh
discovered nectar sources dance, in that way trtgng information about quality of the partial solutiocrated.
convince their nestmates to follow them. If a beeides = Bees compare all generated partial solutions. Based
to leave the hive to get nectar, she follows onthefoee  the quality of the partial solutions generated,rgueee
dancers to one of the nectar areas. Upon arrital, t decides whether to abandon the created partiaticolu
foraging bee takes a load of nectar and returtisetdive and become again uncommitted follower, continue to
relinquishing the nectar to a food storer bee. Aftiee expand the same partial solution without recruitihg
relinquishes the food, the bee can (a) abandorfotbe nestmates, or dance and thus recruit the nestrnafese
source and become again uncommitted follower, (b)returning to the created partial solution. Depegdam
continue to forage at the food source without rigiciy the quality of the partial solutions generated,rgJgee
the nestmates, or (c) dance and thus recruit thenages  possesses certain level of loyalty to the pathifepatb
before the return to the food source. The beefoptsne  the previously discovered partial solutions. Durithg
of the above alternatives with a certain probabilit second forward pass, bees expand previously created
Within the dance area, the bee dancers "advertisepartial solutions, and after that perform again the
different food areas. The mechanisms by which e b backward pass and return to the hive. In the hizesb
decides to follow a specific dancer are not well again participate in a decision-making processfoper
understood, but it is considered that "the recreitm third forward pass, etc. The iteration ends whea on
among bees is always a function of the qualityhef t more feasible solutions are created.
food source" [31]. It is also noted that not alebestart The advantage of BCO in solving optimization
foraging simultaneously. The experiments confirmed, problems is that bee colony is as dynamical system
"new bees begin foraging at a rate proportionatne®  gathering information from an environment and
difference between the eventual total and the numbeadjusting its behavior in accordance to it. They
presently foraging". established a robotic idea on the foraging behawgior
The basic principles of collective bee intelligerine  bees. Usually, all these robots are physically and
solving combinatorial optimization problems were o functionally identical, so that any robot can bedamly
first time used in [29] and [30]. The authors imlueed  replaced by the others. The swarm possesses icaghi
the Bee System and tested it in the case of Trayeli tolerance; the failure in a single agent does tuy the
Salesman Problem. The Bee Colony Optimization Meta-performance of the whole system. They also devel@pe
heuristic that has been proposed in this papeesemts  minimal model of forage selection that leads to the
further implementing it to solve combinatorial emergence of collective intelligence which consists
optimization problems of optimal placement of three essential components: food sources, employed
distributed generation. foragers and unemployed foragers. The model defines
two leading modes of the behavior: recruitment to a

Beein the Nature
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nectar source and abandonment of a source.

Initial placement and number of DG

\ 4

Calculate the real power loss and violation functio of
contingency analysis

»
Lad

Determine the new placement and
number of DG

Calculate the real power loss and violation functin Determine objective value of partial
of contingency analysis solution

A

Generate placement and number of DG
for partial solution

If max. number of
bees i reached”

Memorize the best placement and
number of DG

\ 4

Find the abandoned placement and
number of DG

A4

Produce new placement and number of DG for
next iteration

If max. number of
iteration is reached".

No

Yes

Optimal placement
and number of DG

Fig. 3. Flow chart of the BCO algorithm.
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Comparison with the other algorithms such as GA andis of bus 19 and 20, which the system loss is reduc
SA suggests that BCO works more efficiently du¢h®  27% comparing with system without DG. Meanwhile,
parallelism of the multiple independent bees. FBAT  when considering single objective of minimizing
BCO algorithms work more efficiently due to TSA violation function of contingency analysis, the ioml
records the closest results to the best known isolit placement of DG is of bus 19 & 21, which violation
and have the most number of best solutions. Fyrther function of contingency analysis is reduced 43.75%
also manages to achieve best results in the shortexomparing with system without DG.
execution time. These spectacular results ardattd to

the efficient critical block neighborhoods. Moreove Table 2. Weight factor and normalization for finding
tabu list that keeps track  of the most recabtitmoves multi-objective optimization

prevents the search algorithm to be locked in locat

minimums. min | min | P. | Vfconin| OPL | g o

) W@ | oss | Cont. S)| (8) |Eq.(0)
Algorithm
Like Dynamic Programming, the BCO also solves 03/0.7| 3.74 | 4.14| 0.7 0.56 | 0.63| 19,21
combinatorial optimization problems in stages. Ea€h
the defined stages involves one optimizing variablee 4/06| 3.74 | 414 078 0.56 | 0.65| 19,21
flowchart of the artificial BCO algorithm is giveim
Figure 3.

0.5/0.5| 3.74 | 4.14| 0.7 0.56 | 0.67| 19,21

6. SIMULATION RESULTS 0.6{0.4| 3.48 | 468 0.73 0.64 | 0.69| 19,20
The test system is the 30-bus system, which had tot 0.7/ 0.3| 3.48 | 4.68| 0.73 0.64 | 0.70| 19,20
load 232.3 MW and 77.3 MVar. The total active power
loss and reactive power loss without DG is 4.77 did
0.60 MVar, respectively. The maximum number of DG
is 2.

The parameters of BCO are set as follow; number of
bees = 20, maximum of iteration = 50, number ofighar
solution = S, a':]d maximum generation (run) = 1000. Table 3. The simulation results of the single objeate

The simulation results on the IEEE 30-bus system optimal placement of minimizing real power loss
show that BCO can obtain the optimal solution vifta

The effect of location and number of DG to each
single objective optimal placement of minimizingalre
power loss and violation function of contingency
analysis are presented in Figure 4 and 5, resggtiv

least computing time comparing with GA, SA and TS. System with Min. Power Loss
The average computing time of BCO is 82.62%, 74.40% 2 DG n. Fow Max. Power Loss
and 83.83% less than GA, SA and TS respectivelpleTa
g . Loss DG Loss DG
1 compares the results of BCO and other heuristic DG Size . .
(MW) | Location| (MW) | Location
methods. (MW)
(Bus) (Bus)
Table 1. Comparison results of BCO with other heurisc 2x10 3.48 19&20 481] 2&27
search methods based on 1,000 Comparing System loss
with system System loss increased 1.26%
Heuristic Approaches Avera_ge Total CPU without DG reduced 27%
Time (sec) (4.77 MW)
GA 7.0293
SA 4.7729 Table 4. The simulation results of the single objeate
optimal placement of minimizing violation function of
TSA 7.5553 contingency analysis
BCO 1.2219
Sys;eDné;wnh Min. Contingency | Max. Contingency

w and @, as well as normalization of (S) and
Vf ..in(S) to the same based for calculation of multi- System DG System DG

objective optimization has been concluded and ptege D(?\BAVS\;)ze Cont. | Location| Cont. | Location
in Table 2. The results show that the optimal vaifiey (p.u.) (Bus) (pu) (Bus)

and ¢, for the IEEE 30 bus system is 0.3 and 0.7,
2x10 414 | 19&21 8.16 | 23 & 27

respectively.

The results of each single objective optimal plageim Comparing
of minimizing system loss and ylolat_|0n function of system System System contingency
contingency analysis are sumrr_]arl_zed in Taple_ 3_4_and without DG contlngencyo increased 10.87%
respectively. When single objective of minimizing (7.36 MW) reduced 43.75%
system loss is considered, the optimal placemem@®f
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In Table 5, the optimal placement of DG to achieve best against GA, SA and TSA in terms of computing
multi-objective of minimizing real power loss topet time and number of iteration, which average conmupti
with violation function of contingency analysisaé Bus time of BCO is 82.62%, 74.40% and 83.83% less than
19 and 21, which it can significantly reduce thsteyn GA, SA and TSA, respectively.

loss from 4.77 MW to 3.74 MW or 22% reduction, vehil

violation function of contingency analysis can be contingency

reduced from 7.36 p.u. to 4.14 p.u. or 43% redugtio
when comparing to the system without DG. The efédct

(pu.) |
TR

9.00 7 ﬁ'k(,{(

8.00 Z \'"I'i

A
IORIN \‘ AR
HERK i A

DG allocation to the multi-objectives optimal plazent .A\Q.\ i \,Vﬂ
. R i J Nl
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Fig. 4. Effect of allocation of DG to the single gbctive
optimal placement of minimizing real powerloss.

7. CONCLUSION P
In this paper, the efficiency and success of BCO QI
approach implemented to determine the multi-objecti '
optimal placement of DG to simultaneously minimilze Gi
real power loss and violation function of continggn Qg
analysis has been demonstrated. The effectiverigbg o ||
BCO to solve the DG allocation problem has beenlv_|
illustrated through the IEEE 30-bus system, whicks i !
executed with the BCO comparing to other heuristic 1Y
search methods of GA, SA and TSA. Comparison with
the other algorithms such as GA suggests that BCQg;
algorithms work more efficiently due to the parkdiem

of the multi-bees. The result proves that the BE@he 4

NOMENCLATURE

active power at bus

reactive power at bus

active power generation at generator numper
reactive power generation at generator number
voltage magnitude at bus

voltage magnitude at bys

magnitude of the thiejth element of the bus
admittance matrix,

angle of tha-jth element of the bus admittance
matrix,

phase angle of the voltayg
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phase angle of the voltayg

set of generation bus indices,

set of bus indices,

real power loss of solutid,

solution of number and location of the DG,
weight factor of the real power loss,

weight factor of the violation function of
contingency analysis,

(12]

(13]

(14]

Vionin(S) Violation function of contingency analysis of

solutionS,

Wieonin(S) voltage violation function of contingency

Olfonin(S) overloaded line function of contingency

(1]

(2]

(3]

(4]

(5]

(6]

[7]
(8]

9]

(10]

(11]

62

analysis of solutior$,
[15]

analysis of solutior®.
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