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Abstract— This paper proposes a fuzzy multi-attribute decision making approach for solving multi-objective thermal 
power dispatch problem.  The fuzzy multi-attribute decision considering the maximum of minimum membership function 
value of each non-dominated solution could well trade-off the contradicting objective functions consisting of fuel cost, 
NOX, SO2 and CO2 emission. The weighting aggregation method is employed to generate the non-dominated Newton-
Raphson based solutions. Test results on 3 and 6 generating systems indicate that the obtained best optimal solution 
having more compromise characteristics than the ones derived from fuzzy cardinal priority ranking normalized 
approach (FCPRN) and technique for order preference by similarity to ideal solution (TOPSIS) when taking account of 
percentage total deviation from the ideal solution as well as fulfilling preferred zones condition. 
 
Keywords— Best Compromise Solution, Fuzzy Multi Attribute Decision Making, Membership Function, Non-Dominated 
Solutions. 
 

1.     INTRODUCTION 

The optimal economic load dispatch in electric power 
systems has currently gained increasing importance since 
not only the generation cost keeps on increasing but also 
pollutant emission level caused by thermal power plants 
is not allowed to exceed the quantities imposed by 
environmental laws. In generating electricity, 
combustion of fossil fuel emits several gaseous pollutant 
into atmosphere such as nitrogen oxides (NOx) , sulfur 
dioxide (SO2) and carbon dioxide (CO2). As a result, the 
allocation of power generation to different thermal power 
units is to minimize both operating cost and pollutant 
emission level subject to diverse equality and inequality 
constraints of the system such as covering power load 
demand and loss, generating capacities, etc [1]-[5]. 
Multi-objectives formulation is then implemented to 
solve for the optimal strategy for electric power 
generation. The main problem of multi-objective 
optimization, however, is that such objectives are mostly 
contradicting one another, where improvements in one 
objective may lead to an exacerbation in another 
objective. Trade-off, therefore, exists between such 
conflicting objectives. Consequently, there are more than 
one optimal solution for multi-objective problem which 
is different to the single objective one. Identifying a set 
of feasible solutions is therefore important for the 
decision maker to select a compromise solution 
satisfying the objectives as best possible. Such solutions 
are referred to as non-dominated solutions [6]-[7]. 
 

Traditional techniques which are used for solving 
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multi-objective problem, for example, are goal 
programming, the, the ε-constraint method, and 
weighting method, etc [7].  

For goal programming, the decision maker has to 
assign targets or goals that wish to achieve for each 
objective. These values are included in the problem as 
additional constraints. The objective function then tries 
to minimize the absolute deviation from the targets to the 
objectives  

The ε-constraint method is based on optimization of 
the most preferred objective while considering the other 
objectives as constraint bounded by some allowable 
levels (ε). Such levels are altered to generate the non-
dominated solutions. 

The weighting method uses the concept of combing 
different objectives through the weighted sum method to 
convert the multi-objective problem into single objective 
one. This method generates the non-dominated solution 
by varying the weight combination. 

In addition, the meta-heuristic approaches, such as, 
evolutionary algorithms and swarm intelligence, is an 
alternative to aforementioned techniques. A non-
dominated sorting genetic algorithm (NSGA) is used to 
solve for environmental/economic power dispatch 
(EED). Likewise, a modified multi-objective particle 
swarm optimization algorithm (MOPSO) and multi-
objective evolutionary algorithm (MOEA) is also 
presented to handle the EED problem [2]-[5]. 
Importantly, whatever optimization methods are applied 
to produce the feasible solutions, finally, there is simply 
one solution chosen as the best that maximizes the 
satisfaction of all objectives to decision maker [7].  

A way that is widely used to extract the best optimal 
solution in several papers pertaining to electric power 
generation planning  is a fuzzy cardinal priority ranking 
normalized approach (FCPRN) [2], [3], [5], [8]-[9]. 

In this paper, a fuzzy multi-attribute decision making 
(FMADM) approach is proposed to be an alternative 
decision process for extracting the best compromise 
solution of multi-objective thermal power dispatch 
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problem. The Newton-Raphson algorithm is utilized, in 
optimization process, to produce the non-dominated 
solutions through weighting aggregation method. Test 
results are demonstrated on 3 and 6 generating systems. 
The best compromise solution obtained is compared to 
the ones derived from FCPRN approach as well as an 
approach that use the technique for order preference by 
similarity to ideal solution (TOPSIS) [4] in terms of 
percentage total deviation from the ideal (minimum) 
solution including checking preferred zones conditions. 

2. PROBLEM FORMULATION 

In this section, the multi-objective problem of thermal 
power dispatch with equality and inequality constraints 
are described. The important objectives considered here 
are operating fuel cost, NOX emission, SO2 emission and 
CO2 emission. These objectives are competing one 
another owing to contradiction characteristics. 

2.1 Fuel Cost  

The first objective function to be minimized is the total 
fuel cost for thermal generating units in the system which 
can be approximately modeled by a quadratic function of 
generator power output iP [10], [11] 
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where 

 ia , ib , ic  are the fuel cost coefficients. 

 NG is the total number of generating units. 

2.2 Gaseous Pollutant Emission  

As thermal power plant uses fossil fuel for power 
generation, it therefore releases the polluting gases into 
atmosphere. The most important emission considered in 
gernerating electric power that effects on the 
environment are NOx, SO2 and CO2. These emissions can 
be approximately modeled through a quadratic function 
in terms of active power generation [10]. 

The NOx emission objective can be defined as 
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where 

 id1 , ie1 , if 1  are the NOx emission coefficients. 

 NG is the total number of generating units. 

In a similar fashion, SO2 and CO2 emission objectives 
can be defined below: 
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where id2 , ie2 , if 2  are the SO2 emission coefficients. 
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where id3 , ie3 , if 3  are the CO2 emission coefficients. 

2.3 Equality and Inequality Constraints 

The total power generation must cover the total load 
demand and real power loss in the transmission system. 
For the fixed network configuration, the equality 
constraint is represented by the power balance equation 
stated as: 
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where PD and PL is total load demand and transmission 
loss, respectively. 

The power output limit are imposed as  
 

maxmin
iii PPP ≤≤ , i = 1, 2, 3,…, NG (6) 

 

2.4 Transmission Loss 

One common practice for calculating the effect of 
transmission losses is to express the total transmission 
loss as a quadratic function of the generator power 
outputs. The simplest quadratic form is [11]: 
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The coefficients ijB  are called loss coefficients or B- 

coefficients and assumed constant. 
Thus, the problem formulation is to minimize all 

objective functions simultaneously, while satisfying both 
equality and inequality constraints which can be 
expressed as follows: 

 
Minimize [ ]TFFFF 4321 ,,,  (8) 

 
subject to 
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where F1, F2, F3, and F4 are the objective functions to be 
minimized over the set of admissible decision variables 
Pi. 

3. METHODOLOGY 

3.1 Optimization Method. 

The weighting aggregation method is employed to 
generate the non-dominated solutions through Newton-
Raphson algorithm. This method defines an aggregate 
objective function as a weighted sum of the objectives. 
Hence, the multi-objective optimization problem is 
redefined as [6], [7]: 
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where wj are the weighting coefficients. In this study, the 
value of weighting coefficients vary in the range of 0 to 1 
in steps of 0.1 and the weight of fuel cost, w1, is not 
allowed to be zero except in the case of determining the 
minimum value of other objectives i.e. F2, F3, and F4; m 
is the total number of objectives.  

To solve the scalar optimization problem, the 
Lagrangian function is defined as  
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where  λ is Lagrangian multiplier and m is the number of 
objective functions. 

The necessary conditions to minimize the 
unconstrained Lagrangian function are: 
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To implement the Newton-Raphson method, the 

following equation is solved iteratively until having no 
further improvement in decision variables. 
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The steps for Newton-Raphson algorithm to produce 

the admissible solutions can be explained below [10]. 

Newton-Raphson Algorithm 

1. Read data, viz. cost coefficients, emission 
coefficients and B-coefficients, demand, Error 
(convergence tolerance) and ITMAX (maximum 
allowed iterations), M (number of objectives), NG 
(number of generators) and K (number of non-
dominated solutions). 

2. Set iteration for non-dominated solutions, k = 1. 

3. If (k ≥ K) GOTO step 15 

4. Feed weights combination, wj : j = 1, 2, …, m 

5. Compute the initial value of iP ( i = 1, 2, …, NG) 

and λ by assuming that LP  = 0.  The value of λ 

and iP  can be calculated using the Eq. (18) and 

(19). 
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Assume that no generator has been fixed either at 
lower limit or at upper limit at this step. 

6. Set iteration counter, IT = 1. 

7. Compute Hessian and Jacobian matrix elements 
in Eq.(17).  Deactivate row and column of 
Hessian matrix and row of Jacobian matrix 
representing the generator whose generation is 
fixed either at lower limit or upper limit in order 
that those fixed generators cannot participate in 
allocation. 

8.  Find iP∆  (i = 1, 2, …, R) and λ∆  using Gauss 

elimination method. Here, R is the number of 
generators that can participate in allocation. 

9.   Modify control variables, 
    
   ii

new
i PPP ∆+=  (i = 1, 2, …, R) 

   λλλ ∆+=new  

10. Update old control variable values with new 
values. 

 
   new

ii PP =  (i = 1, 2, …, R),   

   newλλ =  and GOTO Step 8 and repeat. 

11. Check the inequality constraint of generators 
from the following conditions. 

If  iP  <  min
iP  then iP  =  min

iP  

If iP  >  max
iP  then iP  =  max

iP  

12. Check convergence tolerance condition from 

ελ ≤∆+∆∑
=

R

i
iP

1

22 )()(  

If convergence condition is satisfied or IT ≥ ITMAX 
then GOTO Step 13 otherwise update iteration 
counter, IT = IT+1 and GOTO Step 7. 

13. Record the obtained non-dominated solution. 
Compute jF  (j=1, 2, …, m) and transmission 

loss. 

14. Increment count of non-dominated solutions, k = 
k+1 and GOTO step 3. 

15.  Stop. 

3.2 Membership Function 

Optimization of multi-objective problem yields a set of 
non-dominated solutions. However, only one solution 
would finally be selected as the best that well trades-off 
the all conflicting objectives.   
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Typically, it is natural to assume that decision maker 
may have fuzzy or imprecise goals for each objective 
function. The membership function based upon fuzzy 
sets theory, therefore, are introduced to represent the 
goals of  each objective function. The membership 
function value describes the degree of minimum value 
attainment of each objective function using values from 
0 to 1. The membership value of zero indicates 
incompatibility with the sets, while one means complete 
compatibility. Thus, the membership function is a strictly 
momotonic decreasing and continuous function which is 
defined as [12]:  
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Where jµ is membership function of objective jF and 
maxmin , jj FF  are minimum and maximum values of the    j-

th objective, respectively. 

3.3 Evaluation of Optimal Solution using the Proposed 
Fuzzy Multi-attribute Decision Making Approach 

The proposed FMADM approach is utilized to elicit the 
best compromise solution out of a set of non-dominated 
ones. The concept of FMADM approach can be 
described as follows. [13]-[16]. 

Let X={x1,…, xn} be a set of optimal solutions. The 
importance (weight) of the j-th objective is expressed by 
wj. The attainment of objective jF  with respect to min

jF  

by solution xi is expressed by the degree of 

membership jw
ij x )(µ . 

The procedure for determining the objective weights 
and the best optimal solution can be described below: 

1. Establish by pair-wise comparison the relative 
importance, jα , of the fuzzy objectives amongst 

themselves. Arrange the jα in a matrix M. 
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2. Determine consistent weights wj for each 

objective through approximated Saaty’s 
eigenvector method by normalizing the 
geometric mean in each row. Thus, the 
summation of all weights is equal to m, 
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3. Weight the degrees of objective attainment, 

)( ij xµ exponentially by the respective wj. The 

resulting fuzzy sets are jw
ij x )(µ  

4. Determine the value of attainment in all 
objectives of solution ix  via intersection of all 

jw
ij x )(µ : 
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5. The best optimal solution, )(
~ *xD , is defined as 

that achieving the largest degree of membership 

in )(
~

ixD . 
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3.4 Evaluation of Optimal Solution using Fuzzy 
Cardinal Priority Ranking Normalized Approach 

For this approach, the accomplishment of each non-
dominated solution is considered with respect to all the n 
non-dominated solutions by normalizing its 
accomplishment in all objectives over the sum of the 
accomplishments of n non-dominated solutions as 
follows [2], [3], [5], [8]-[9]: 
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where )(~ iD xµ  represents the normalized fuzzy 

membership function of the the i-th solution. The 
solution that attains the maximum membership 

constitutes the best one, )( *~ xDµ , owing to having 

highest cardinal priority ranking. Hence, the best optimal 
solution is obtained from 

},...,2,1|)( max{)( ~*~ nixx iDD == µµ  (25) 

3.5 Evaluation of Optimal Solution through Technique 
for Order Preference by Similarity to Ideal Solution 
(TOPSIS)  

The concept of TOPSIS is that the most preferred 
solution should have the shortest distance from the 
positive ideal solution and, in the meantime, also have 
the longest distance from the negative ideal solution 
[4],[17].   

The entropy measure of importance is used to score 
the contrast intensity of the j-th objective. Specifically, 
the larger entropy is, the less information is transmitted 
by the j-th objective leading to being removed from 
further consideration. 

Let R={Rij| i=1, …, n; j=1, …, m} be performance 
rating matrix of the i-th solution with respect to the j-th 
objective where each element represents the degrees of 

closeness of ijF  to min
jF . 
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Then, normalizing the performance rating matrix in 

Eq.(26) for each objective as  
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The contrast intensity of the j-th objective can now be 

measured to consider the amount of decision information 
contained in and transmitted by the objective by means 
of Shannon’s entropy measure (je ) which is defined as.  
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Thus, a total entropy is  
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The objective weight ( jλ~ ), therefore, is given by 
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The normalized performance rating element in Eq.(27) 

is now weighted as 
 

ijjij pλν ~
=  ,  j = 1, 2,…, m: i=1, 2,…, n (31) 

 
The next step is to find the set of positive ideal 

solution ( +A ) and negative ideal solution (−A ) which 
are defined by  
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Hence, the distance of each solution from the positive 

ideal solution is given as 
 

∑
=

++ −=
m

j
ijiji vvd

1

2)(  (34) 

 
Likewise, the distance of each solution from the 

negative ideal solution is given as  
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The relative closeness to the positive ideal solution of 

the i-th solution is defined as  
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The most preferred solution is the solution having the 

highest ic value. 

3.6 Comparing FMADM Approach to FCPRN 
Approach and TOPSIS Approach 

The objective of comparing the proposed FMADM 
approach to FCPRN approach and TOPSIS approach is 
to demonstrate that the best optimal solution obtained 
from the proposed FMADM approach having more 
compromise characteristics than both FCPRN and 
TOPSIS approach in terms of both percentage total 
deviation from the ideal solution and fulfilling the 
preferred zones condition. 

As the ideal solution that one wishes to attain in multi-
objective problem is the solution consisting of minimum 
value in all objectives, therefore, it can be represented as 

{ }minmin
2

min
1 ,...,, m

ideal FFFF =  when let idealF  be a set of 

the ideal solution. Such a solution, however, is 
impossible one due to all objectives having conflicting 
characteristics one another. Nonetheless, there is an 
attempt to elicit the best optimal solution which has the 
values in the vicinity of the minimum in all objectives as 
best possible 

Accordingly, two measures below are utilized to 
compare the solution qualities obtained from FMADM, 
FCPRN and TOPSIS approach. 

3.6.1 Percentage Total Deviation from the Ideal 
Solution )( iε . This measure uses the concept of 

Euclidean distance between two points in n-
dimensions. Hence, the percentage total 
deviation between the chosen optimal solution 
and the ideal solution can be defined as. 
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where 
*
jF  is the optimal value of objective Fj of the chosen 

solution. 
min
jF is the minimum value of objective Fj  

m  is the number of objectives. 

3.6.2 Preferred Zones Condition ( jPZ ) Here is the 

condition to check whether the objective values 
of the obtained solution is in the preferred zones 
by vetting from 
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Specifically, this condition help check whether the 
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chosen solution has a well-balanced characteristics in all 
objectives. Only the criterion of percentage total 
deviation from the ideal solution )( iε is not enough to 

indicate that the solution with lower value of iε  is the 

better one since certain objectives may have the 
dominant tendency towards the minimum value whereas 
the others  probably rather away from the their respective 
minimum. As a result, it would be more favorable should 
all objectives of the chosen solution is in the preferred 
zones. In other words, they all have a good tendency 
towards the minimum value. The term in the bracket of 
Eq.(38) is referred to as threshold value. 

4. NUMERICAL RESULTS 

In this section, two numerical examples are provided to 
demonstrate the main features of the proposed approach.  
The simulation program of the proposed approach is 
written in MATLAB and run on 1.6 GHz Pentium M 
processor with 512 MB of RAM. 

In this study, all objective functions are assumed to 
have an equal importance. That means all wj of Eq.(22) 
having the value of one in order that the obtained results 
are compared basing upon the same underlying 
hypotheses as above-mentioned FCPRN and TOPSIS 
approach. Also, it should be noted that such weight 
combinations do not involve the weight used in Eq.(11) 
since those weight combinations are simply employed to 
produce the different non-dominated solutions. They, 
therefore, do not involve in decision making for 
extracting the best optimal solution. The input 
information for the first test system is given below. 

Test System 1: Three Generators with Four Objectives 

Fuel Cost Characteristics of Thermal Plants($/h) 

125.3286625.81025.5 1
2

1
3

11 ++= − PPxF    

9125.1360403.1010085.6 2
2

2
3

12 ++= − PPxF   

155.597606.9109155.5 3
2

3
3

13 ++= − PPxF  

NOX Emission Characteristics of Thermal Plants (kg/h) 

9019.8038128.0006323.0 1
2
121 +−= gg PPF  

8249.2879027.0006483.0 2
2
222 +−= gg PPF  

1775.32436061.1003174.0 3
2
323 +−= gg PPF  

SO2 Emission Characteristics of Thermal Plants (kg/h) 

3778.5105928.5001206.0 1
2
131 ++= gg PPF  

2605.18284624.3002320.0 2
2
232 ++= gg PPF  

5207.50845647.4001284.0 3
2
333 ++= gg PPF  

CO2 Emission Characteristics of Thermal Plants (kg/h) 

148.508001945.61265110.0 1
2
141 +−= gg PPF  

770.382495221.29140053.0 2
2
242 +−= gg PPF  

851.1342552794.9105929.0 3
2
343 +−= gg PPF  

The B-Coefficients (MW-1) 




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


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





=
−−−

−−−

−−−

344

445

454

106147.11082765.2108394.1

1082765.2105448.110754.1

108394.110753.11036255.1

xxx

xxx

xxx

Bij

Power output constraint 

25050 1 ≤≤ P MW 

1505 2 ≤≤ P MW 

10015 3 ≤≤ P MW 

The load demand is 190 MW 
 
Table 1.  Comparison of the Best Compromise Solution 

derived from FMADM , FCPRN and TOPSIS Approach (3 
Generators, 4 Objectives) 

Approach F1 F2 F3 F4 

FCPRN 

Value 2,450.84 392.09 1,637.92 5,286.81 

PZ + - + + 

Weight 0.3 0.3 0.4 0.0 

TOPSIS 

Value 2,657.82 302.26 1,706.41 6,637.65 

PZ - + - - 

Weight 0.0 1.0 0.0 0.0 

FMADM 

Value 2,487.43 369.18 1,635.50 5,556.68 

PZ + + + + 

Weight 0.2 0.4 0.4 0.0 

MDS 

Value 2,509.35 343.46 1,674.95 5,642.26 

PZ + + - + 

Weight 0.3 0.7 0.0 0.0 

Minimum Value 2,393.91 302.26 1,604.01 5,183.75 

Maximum Value 2,657.82 475.01 1,706.73 6,637.76 

Threshold Value 2,525.87 388.64 1,655.37 5,910.76 

 
The 224 non-dominated solutions are produced 

considering all the objectives concurrently through 224 
different weight combinations using Newton-Raphson 
algorithm. The running time for eliciting the best 
compromise solution from the proposed FMADM 
approach takes 872.30 s.  

Table 1 illustrates the comparison of the best 
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compromise solutions obtained from the FMADM, 
FCPRN and TOPSIS approach in terms of objective 
value including checking the preferred zones condition. 
The percentage total deviation from the minimum of the 
solution obtained from FMADM, FCPRN and TOPSIS 
approach are shown in Table 2. 

As seen from Table 1, the FMADM approach is the 
only one approach which is satisfied with preferred 
zones condition since all jPZ  have positive sign. That 

means the obtained solution having a good balance 
towards the minimum in all objectives.  

Minimum deviation solution (MDS) shown in Table 1 
is the solution yielding the lowest percentage total 
deviation from the ideal solution which can be seen in 
Table 2. It is noted that despite MDS having the lowest 
percentage total deviation, it still have certain objectives 
having the value higher than the threshold value. In other 
words, some objectives of MDS have the values further 
away from the ideal solution than the best optimal 
solution derived from FMADM approach. 
 

Table 2.  Percentage Total Deviation from the Ideal 
Solution (3 Generators, 4 Objectives) 

Approach Deviation from the Ideal 
Value (%) 

Total 
Deviation 

(%) 
F1 F2 F3 F4 

FCPRN 2.38 29.72 2.11 1.99 29.96 

TOPSIS 11.02 0.00 6.38 28.05 30.80 

FMADM 3.91 22.14 1.96 7.19 23.69 

MDS 4.82 13.63 4.42 8.85 17.52 

 
As seen from Table 2, the FMADM approach yields 

the solution having percentage total deviation from the 
ideal solution lower than both FCPRN and TOPSIS 
approach. Also, it should be noted that TOPSIS approach 
does not yield the lowest percentage total deviation 
despite the fact that it uses the concept of selecting the 
solution which has the shortest distance from the positive 
ideal solution, meanwhile, also has the longest distance 
from the negative ideal solution. This is because the 

weight of second objective (2
~λ ), for decision making 

according to Eq.(30), has the value much higher than the 

others especially when compared to 1
~λ and 3

~λ  as shown 

below 

0.035891
~
1 =λ   0.636456

~
2 =λ  

0.011373
~

3 =λ   0.316280
~

4 =λ  

This is resulted from objective F2 having high contrast 
intensity when compared to the objective F1 and F3 

TOPSIS’s mechanism for selecting the most preferred 
solution, therefore, boils down to attempting to elicit the 
solution which has the value of objective F2 approaching 

its minimum as nearest as possible. From calculating the 
value of relative closeness to the positive ideal solution 
( ic ) using Eq.(36), the solution that produces the highest 

ic  is the solution yielding the minimum value of 

objective F2 thereby making the percentage total 
deviation of objective F2 zero. 

Importantly, it should be noticed that the best optimal 
solution obtained from TOPSIS approach is the one 
which also provides the maximum value of objective F1, 
in the meantime, the value of both objective F3 and F4 is 
approaching their respective maximum. Hence, it is 
considered as an extreme solution thereby making it 
rather difficult to be chosen in real-world application.  

Test System 2: Six Generators with Three Objectives 

The information for the second test system is given 
below. 

Fuel Cost Characteristics of Thermal Plants($/h) 

6348.8543205.8002035.0 1
2
111 ++= gg PPF  

7780.30341031.6003866.0 2
2
212 ++= gg PPF  

1484.84742890.7002182.0 3
2
313 ++= gg PPF  

2241.27430154.8001345.0 4
2
414 ++= gg PPF  

1484.84742890.7002182.0 5
2
515 ++= gg PPF  

0258.20291559.6005963.0 6
2
616 ++= gg PPF  

NOX Emission Characteristics of Thermal Plants (kg/h) 

9019.8038128.0006323.0 1
2
121 +−= gg PPF  

8249.2879027.0006483.0 2
2
222 +−= gg PPF  

1775.32436061.1003174.0 3
2
323 +−= gg PPF  

2535.61039928.2006732.0 4
2
424 +−= gg PPF  

1775.32436061.1003174.0 5
2
525 +−= gg PPF  

3808.5039077.0006181.0 6
2
626 +−= gg PPF  

SO2 Emission Characteristics of Thermal Plants (kg/h) 

3778.5105928.5001206.0 1
2
131 ++= gg PPF  

2605.18284624.3002320.0 2
2
232 ++= gg PPF  

5207.50845647.4001284.0 3
2
333 ++= gg PPF  

3433.16597641.4000813.0 4
2
434 ++= gg PPF  

5207.50845647.4001284.0 5
2
535 ++= gg PPF  

2133.12114938.4003578.0 6
2
636 ++= gg PPF  
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The B-Coefficients (MW-1) 



























−

−
−−

−
−

=

21258.013

2256.012.10

56.01511.05.0

8.0111025.1

12.11.02301

305.05.1120

ijB x10-5 

Power output constraint 
35090 1 ≤≤ P MW 

500100 2 ≤≤ P MW 

800200 3 ≤≤ P MW 

500100 4 ≤≤ P MW 

600150 5 ≤≤ P MW 

500100 6 ≤≤ P MW 

The load demand is 1800 MW.   

The different 58 weight combinations are used to 
generate the 58 non-dominated solutions. The running 
time for this test system takes 676.52 s to derive the best 
compromise solution from the proposed approach. 

 
Table 3.  Comparison of the Best Compromise Solution 

obtained from FMADM, FCPRN and TOPSIS Approach            
(6 Generators, 3 Objectives) 

Approach F1 F2 F3 

FCPRN 

Value 18,745.90 2,165.21 11,236.45 

PZ + + + 

Weight 0.4 0.3 0.3 

TOPSIS 

Value 18,950.86 2,070.13 11,356.50 

PZ - + - 

Weight 0.0 1.0 0.0 

FMADM 

Value 18,778.75 2,122.26 11,255.47 

PZ + + + 

Weight 0.4 0.5 0.1 

MDS 

Value 18,862.17 2,079.83 11,304.31 

PZ - + - 

Weight 0.2 0.8 0.0 

Minimum Value 18,721.38 2,070.13 11,222.94 

Maximum Value 18,950.86 2,282.97 11,356.50 

Threshold Value 18,836.12 2,176.55 11,289.72 

The comparison of objective value and checking the 
preferred zones condition of the best optimal solution 
obtained from the FMADM, FCPRN and TOPSIS 
approach are given in Table 3. Percentage total deviation 
from the ideal solution is shown in Table 4. It can be 
seen in Table 3 that both the FMADM and FCPRN 
approach yields all objective values satisfied with 
preferred zones condition due to all PZj having positive 
sign. On the contrary, TOPSIS and MDS approach has 
certain objectives unsatisfied with the preferred zones 
condition which is likewise the above result in test 
system 1. 

 
Table 4.  Percentage Total Deviation from the Ideal 

Solution (6 Generators, 3 Objectives) 

Approach 

Deviation from the Ideal 
Value (%) 

Total 
Deviation 

(%) F1 F2 F3 

FCPRN 0.13 4.59 0.12 4.60 

TOPSIS 1.23 0.00 1.19 1.71 

FMADM 0.31 2.52 0.29 2.55 

MDS 0.75 0.47 0.73 1.14 

 
Given the percentage total deviation, FCPRN approach 

still has the value higher than the proposed approach 
which is similar to the results of test system 1. The 
percentage deviation value of objective F2 derived from 

TOPSIS approach is zero since the objectives weight 2
~λ  

is much more dominant than the others, namely 2
~λ = 

0.985941 whereas 1
~λ and 3

~λ  is 0.007258 and 0.006801 

respectively. Thus, both 1
~λ and 3

~λ  hardly effects 

decision making. Consequently, the mechanism for 
selecting the most preferred solution of TOPSIS 
approach is an attempt to choose the solution 
approaching F2 as closet as possible. 

Incidentally, the percentage total deviation of TOPSIS 
approach becomes lower than the FMADM approach in 
this test system as the obtained solution yields the 
minimum value to the objective which has high contrast 
intensity, F2, meanwhile the rest of objectives having 
low contrast intensity have been decreased.  

In addition, it should also be observed that the best 
optimal solution obtained from the TOPSIS approach 
gives the minimum value of objective F2, meanwhile, it 
also provides the maximum value for objective F1 and 
F3. It is obvious that the consequence is likewise the 
result in test system 1. Therefore, the solution obtained 
from TOPSIS approach is regarded as an extreme 
solution and is less compromise than the one derived 
from the FMADM approach. In practical way, despite 
the fact that the objectives for reducing environmental 
effects is increasingly concerned, the operating fuel cost 
objective (F1), however, is still the important one that 
always have to be considered and can not be neglected. 
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Thus, it is unfavorable to choose the best optimal 
solution yielding the maximum operating fuel cost or so 
since it is a key factor that determines viability of a 
utility. Consequently, it would be more favorable should 
the best optimal solution of multi-objective problem have 
well-balanced characteristics in all objectives towards 
their respective minimum. 

5. CONCLUSION 

The proposed fuzzy multi-attribute decision making 
approach was applied to help system operators extract 
the best compromise solution out of a set of non-
dominated solutions of multi-objective thermal power 
dispatch problem. The obtained best compromise 
solution is compared to the ones derived from fuzzy 
cardinal priority ranking normalized approach (FCPRN) 
and the technique for order preference by similarity to 
ideal solution (TOPSIS) by means of two measures viz. 
percentage total deviation from the ideal solution and 
preferred zones condition 
 

Given the percentage total deviation from the ideal 
solution, it is evident that the solution obtained from the 
FMADM approach is superior to the one derived form 
FCPRN approach. For TOPSIS approach, when the 
number of objectives has been increased, the value of 
percentage total deviation becomes larger, in the 
meantime, also higher than the value obtained from the 
proposed approach. Moreover, the solution obtained 
from TOPSIS approach is considered an extreme 
solution since it has an inclination to produce the 
minimum in an objective, meanwhile, they also yields 
the maximum or so for others.  
 

For preferred zones condition, it helps check the 
quality of balance in all objectives towards the minimum. 
The simulation results demonstrate that the proposed 
FMADM approach is superior to TOPSIS approach. For 
the FCPRN approach, even it has fulfilled the condition 
in the case of the reducing the number of objective 
functions from four to three, however, its percentage 
total deviation still has the value higher than the 
proposed approach.  
 

Thus, taking these two measures into account 
concurrently, the FMADM approach demonstrates that it 
can elicit the best optimal solution which has 
characteristics more compromise and favorable than its 
counterparts. The further research will be focused on the 
effects of the best compromise solution obtained from 
FMADM, FCPRN and TOPSIS approach when each 
objective has different important degree. 
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