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Abstract— There are several possibilities to improve the small-signal stability in a power system. One adeguate option
is to make use of available power system components that possess high controllability properties such as, for instance,
high voltage direct current (HVDC) systems. This paper presents results from a study aimed at the investigation of
small-signal stability enhancement achieved by proper coordinated control of multiple HVDC links. Modal analysis
was used as the main tool for the theoretical investigation. The obtained results indicate that the coordinated control of
several HVDC links in a power system may assist achieving in an essential increase of damping in the power system.
Another important conclusion from the paper is that the possibilities of the coordination of the HVDCs to a certain
extent depend on the structure of the grid, which can be investigated by examining the controllable subspace of the
linearzied model of the power system.
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links in the system, there is also a possibility of
1. INTRODUCTION coordinating the HVDC links to enhance the operatid
the system [by, for example, altering the load-flow

Mhodern .'m%rcl;) nTected di electrlc povgerh. shystems a_repatterns] and to improve the system stability exaean
characterized by large Imensions and nig cormyie_m The power systems are known to be operated most of
of the structure and the dynamic phenomena assdciat a time in the so-called ‘quasi-steady state't Thao

with the power system operation an_d control. POV‘{ersay, the power systems are always subject to &#ou
system deregulation that took place in many coesitri o small—disturbances [2]. A change in the logdi

Worldwi_d_e was one of the driving force_s th_at stitetia g6 o capacitor switching is typical examplessoth
ru”?jr ut|I|zat(|jon O; povl\j/)e_,\l_r systems, Wh'chh IN SOM&SES  small disturbances that sometimes give rise to
ead to a reduced stability margin, as the POWSLESYS  ,qgjjiations in the power system. The oscillaticare
became more stressed. Under these circumstances en positively damped and their magnitudes deerea
becomes quite important to seek new pqssmll.més O after a while thus the system remains stable.
enhancement of both transient and small-signalilgyab In case of negative damping of the oscillations the
of the power systems. situation is opposite and may result in loss of

There are several obvious ways of improving POWer gy chronism unless preventive measures are taken.
system stability, namely1) building new transmission

Imgs, _Q) installing new generation gapaC|t|e§) better > CASE STUDY

utilization of the existing equipment in the povegstem,

or (4) a combination of the above. This paper is pritpari The aim of this paper is to perform modal analysisgg
concerned with third option, since compared todtrer  coordinated control of two conventional HVDC links
options it is less costly and can be easily impletee in a benchmark power system. This paper also exptbees
a real power system. The central idea of the studypossibilites brought by the controllability and
presented in this paper is the utilization of salvetvDC coordination of the HVDC links to enhance the rotor
links for small-signal stability enhancement. angle stability upset by a disturbance.

The central purpose of conventional HVDC In the benchmark power system, as is in all réalist
transmission is to transfer a certain amount oftatel cases, the turbine action is very slow comparethéo
power from one node to another and to provide #s¢ f fast controllability of the HVDC. The theory in #hi
controllability of real power transfer. If the HVDIDIK is paper is based on small-signal analysis by lingayithe
operated in parallel with a critical ac line thedieflow system around the stable or unstable equilibriumntpo
of the ac line can be controlled directly. The pree of  The modal analysis provides valuable informationuib
an HVDC can assist in improving the stability mar the inherent dynamic characteristics of the systBsn.
the power system [1]. In case there are several @VD controlling the current through the HVDCs and using
state feedback it is possible to move the eigemgto
pre-specified locations in the complex plane aratehy
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connected between nodes A and C and between B .and C x is the d-axis synchronous reactance
The power production is large in node A and thealloa X!
center is assumed to be in node C, i.e., there is a "d
significant power flow from nodes A to C. The power E; is the constant generator field voltage
can go either through the ac lines or through th8
links. An overview of the test power systems isvaihdn

is the d-axis transient reactance

: . 1
Fig. 1. lg :L_(Vd’ _Vdi)_%ld (4)
d d
Generator A Bus A Bus B Generator B X" = K' (Idse{p B Id) (5)
(\ji”ff‘ i Line1 T 1 Line2 f 7 ’_{/\\\‘
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Fig. 1. Test Power system. . r
__ / 2 _p2
4. SYSTEM MODEL Q=S -k (11)
The HVDC link is of a classical type, which impligsat cosf )= % +Kp (g~ g, ) (12)
it consumes reactive power and that the active pcae
be controlled. The HVDC link consists of an ideal 32 3
rectifier, inverter, and series reactor which medgie Va, i Vi, cosl )‘]—_[Xci lq (13)
dc-line and creates a smooth dc current. The power
through the HVDC is controlled by controlling therfg 3\/§Vbdc I,
angle, 0. The firing angle is controlled by a basic PI- S =~ 5 iy 1 (14)
controller and the input is the set point currefhe She
generators are modelled by the one axis modelritbesc Vo
by equations (1)-(3) [3], thus three states peregator P =MV@ I (15)
are used. The dynamics of the HVDC [4] are desdribe . '
in equations (4)-(16), where the subscripts dnd ‘"
refer to rectifier and inverter, respectively. Q=- /SZ _ Rz (16)
d=w 1) where
w:i(Pm -p- Da)) @) Vdr, VOIi are the per unit dc terminal voltages at the

rectifier and inverter
. . -x' V. ,I. , are the base gquantities at the dc
E' =[Ef Mg+l Xy cos@'—e)j 3) b 'bac’ e |

X4 X side for the voltage, current and power,
respectively

where Xo . X, —are the unit commutation reactances
rovi
8 is the rotor angle RyLy  are the per unit dc line parameters
@ Is the rotor synchronous speed V. ,V. are the per unit ac bus voltages
E;DJ, VO are the voltage phasors at the internal rpu’ ipu P g
and terminal buses Iy is the current set point through the HVDC
Tdo' is the d-axis transient open-circuit time constan Setp
Pm is the mechanical power applied to the generators  pMoODAL ANALYSIS
D .Sh"ﬁt 's shaft d . To study the power system small-signal stability
Is the generator’s shaft damping constant problem, an appropriate model for the machinesgdoa
M is the machine inertia
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and HVDC dynamics is required. The behavior of a
power can be described by a set of first orderineat
ordinary differential equations and a set of nadin
algebraic equations [3].

x=f(x,y,u) an

0=g(x,y,u) (18)

where
x=(3"w'Ey 1]x'x')'is the vector containing the
state variables,y=(8"V")"is the vector designating

algebraic variables, and finally = Idsetp the defined as

the vector of control variables.

In the small signal stability analysis, the equasig¢l7)
and (18) are linearized at an equilibrium point dhe
higher order terms are neglected. The linearizagioas
the structure as follows:

Ax = f Ax+ f Ay + f,Au
X Yy u - (19)
0= g,Ax+ g, Ay +g,Au
Ax=(f, - f,9;'9,)0x+(f, - f,0,'g,)Au 20)
=J,Ax+J Au.
The prefix A means a small increment in

corresponding variables. The matrices in equati®) (
and (20) can be found in appendix.

The Lyapunov's first stability method is the
fundamental analytical basis for power system small
signal stability assessment. It is based on eidaava
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system. The controllable subspace provides infdonat
how the eigenvalues can be moved i.e. how the myste
can be controlled. The Kalman decomposition trams$o
the state space model into controllable, uncoratipdd!,
observable and unobservable subspaces [5],[6]. &/her
the controllable and uncontrollable subspaces dre o
interest, since they provide information about hthe
eigenvalues can be moved. The matrigeandJ, span
the controllability matrix and the image of the
corresponding map is the controllable space. The
proposed method can thereby be used for practizhl a
large scale power systems. By following the above
described procedure the controllability gramianvies
the information how the poles can be moved, i.ew h
the damping in the system can be increased.

The eigenvalues can nor be moved arbitrary in the
controllable subspace due to limitations in therentr
through the HVDCs.

6. SIMULATION STUDY

In the test power system the eigenvalues ,0fin]
equation (20) are determined. It results in twallzdory
modes which are referring to the system model. The
eigenvalues can be foundTable 1

The damping in the system is about 5%. By usingg sta
feedback it is possible to increase the dampinge Th
control is performed as showedFiy. 2 This is full state
feedback which means all states are used in thito &,
if not all the states are available, it possibleptaform
state estimation. The unavailable signals can
estimated by an observer, but this situation isdafside
of the scope of this paper.

be

Table 1. Eigenvalues of the linearized system

analysis and provides valuable information of the H A ]
behavior of the system, i.e. the time domain no feedback no feedback feedback feedback
characteristics of a system mode. It is usual snciate -0.552 + 9.780i 0.0564 -2.887 1
each eigenvaluel with a mode of the system. Real
. . -0.552 - 9.780i 0.0564 -2.887 1
eigenvalues represent non-oscillatory modes, wleere
negative one corresponds to decaying mode, while @a-1.179 + 13.258 0.0886 -3.464 1
positive one relates to aperiodic instability. Cdenp _
eigenvalues are associated with system oscillatory 1-179 - 13.258i)  0.0886 -3.464 1
modes, th_e pair of complex_ eigenv_alues with n(_agativ -0.102 1 2 1
real parts indicate a decreasing oscillatory bedraand
those with positive real parts result in an inciegs -0.496 1 -2.25 1
oscillatory behavior. The damping of the i:th made 0.716 1 25
defined as follows: e o
-0.849 1 -2.75 1
-0,
§{=—F/—= (21) -1.138 1 -3 1
o’ +of
-1.138 1 -3.25 1
where -2.373 1 -35 1
o.=0e() -2.373 1 -3.75 1
@=0m(\) 0 - -4 1
0 - 0 -
By controlling the HVDCs and thereby controllingeth 0 0
modes it is thereby possible to change the behafithre i )
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The output may be chosen arbitrarily from the staie Frequency deviation, output 2
a linear combination of the states. However, is flaper ‘ ‘ ‘ ‘
generator A is taken as the reference and the tugpa 0.1t ——ho control |
the deviation in speed of generator B and gene@or | /v  [F control

i.e. output one = wc-wa and output two = wg-wa. The
output is related to the states by a matrix whish i
linearly combining the state to the output. Thisl®wn

in Fig. 2and the relating matrix is denotedJas

amplitude, rad/s
[am]

-0.055%
I, N u@)| . output
l H\Z:/ X :JXAXH_‘]MAM J}' } -01
0 1 2 3 4 5
time, s
Fig. 4. Disturbance one i.e. increase of load 3 and decreas
Kx() of load 1. Output two i.e. speed difference of gersor B
K and A.
Frequency deviation, output 1
i 02 - ; ; ;
Fig. 2. State feedback. B —
""""" control

In the case study in this paper all the eigenvatzes
be moved arbitrarily. One possibility is to increahe
damping or remove the oscillatory modes completely.
the test power system the closed loop system has th
eigenvalues given iMable 1

Two disturbances are applied to the system, the
disturbances are due to load changes. Case one i©od
a decrease of load 1 and increase of load 3. @asést
due to decrease of load 2 and increase of load Both
the cases the increase and the decrease are ebidl, 02 . . .
is done to preserve the equilibrium poifiy. 3andFig. 4 0 1 2 3 4 3
show the output signals when disturbance one iieabp time, s
Itis obvious that inspection of the figures regethiat the g 5. Disturbance two i.e. increase of load 3 drdecrease
system behaves more nicely when using the statef load 2. Output one i.e. speed difference of geragor C
feedback and the oscillatory behavior should belliot  and A.
eliminated, since alk;.=0 Fig. 5 and Fig. 6 show the

<
-

amplitude, rad/s
]

S
-

system behavior under disturbance two, and algbifn Frequency deviation, output 2
case, the response is better in the controlledesyst - - ‘ -
compared to the uncontrolled. e ——no control
s i control
Freguency deviation, output 1 % 0.04¢
A2 ' ' : ‘ © o.02
——no control -
@
""""" control T 0N
£ 041 2 T
g 5 -0.02f
= =
- @ -0.04r
S o
3 -0.06¢
= i ‘
£ g1 0045 1 2 3 4 5
© time, s

Fig. 6. Disturbance two i.e. increase of load 3 drdecrease
-0.20 1 2 3 4 of load 2. Output two i.e. speed difference of gersor B

. and A.
time, s

Fig. 3. Disturbance one i.e. increase of load 3 @mecrease

of load 1. Output one i.e. speed difference of gemg¢or C 7. CONCLUSIONS
and A.

This paper presents modal analysis of a power syste
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with several HVDC links and investigates the paisjb
to increase the damping in the system by chandiag t
modes in the system. The obtained results strongly
indicate that essential enhancement of small-signal
stability can be achieved by proper coordinatiorthaf
control of the HVDC links.

The paper also describes the ideas about the
controllability of the modes, which are dependirighe
structure of the grid and may be determined as the

i V2K,
fia(m,m) = ! —Ly

i TE
. V2V,
fis(m.m) = Txml
32V
faglmm) =— :"I:f.r,rrm

faglmum) = —K;

controllable subspace.
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APPENDIX

In the following section the Jacobian matrices of the linearized
system are given.

The following is given: Let N be the number of network buses,
and ny be the number of generators. Also let ny = 3(ng + 0. )
be the number all state variables, where n, . 15 the number of
HVDC-links. And finally n, = 2N be the number of all system
algebraic variables. Then the Jacobian matrices fi. fi. fu. 80 8¢
and g, have the structure as follows:

0o f, 0 0 0 0
) B G, G, 0 0 0
PRV O S B
e [0 0 0 [, G
o 0 0 K, 0 0
o 0 o0 £, 0 0
which is of order n, = n,
fork=1...n,and form=1...n,,,-
fialkk) =1
E'LV
3y J‘.H——% "I:ll;.u-nl'bd, B)
Fa(k k) = -2

M
1 ¥
f2alk, ‘-}——F—‘-lﬂf& By )

My Xy

» . Xak — X, e
_|f-.;| l:kk.l‘ = ﬁr—{ Vi .HII‘II\E}J. B;\]
akdk
T X,
Falk k) = -5
i da
Tamam) = ——L(V, + V. )+ =X =X ) — —
Sy qlm,m) er — Vi, ) I[( } J »

fiqlmm) = Ky

0 0
B, B,
PRETNE A+
dy 0o 0
0 0
(1] 0

which is of order ny x ny
fork=1...n,

E' Vi
£ (ki) = M‘:"l, cos(; — 8)
“alk

=

S lk k) = - 'j sin(8; — 8
r.l’n

£k k) = 28 ‘“P,;xm[b; 8,)
h X T
v 3 X, 'f
N E e dk cos(By —8y)
7

o ¥ Ak

d
Su= Bi_w o0 F-l'.l l‘5'.| l"m]

which is of nnil:rnm.m. % My

form=1...n.

. W2,
S (mm) = EAP("J‘H i hN]
L

S5 (mm) = K;
Jey(mam) = —K;

dg (B?.l 0 giy gy Bl i’-i.n)

ax \gyy 0 giy gl g5 Bl

which is of order n, % n,

fork=1...npandm=1...m,,-
L, Vi
gl (kk) = — =2 cos(0, — &)
e‘H.
g1k k) = —‘-nuﬂ; -8y )
Xt
Sl (2 (1, — Kply, ) + EXerla,)  +
&1alk,m) = L‘“"s&?‘ﬂ“ [i.:‘rl""i (xi+ Kplg, ) + gxt'r'fdm} i
0 ok
_ Vicaloar W3y,
I:} g[ﬁ'.nr] = { 3n = i”'!d"' E
- ] %

Viglhte 332
Vieglite 3Ty p
g alk.m) = { 5 m (Kl ¥
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EaVy . )
&8 (kk) = — =B gin 0, — &)
"'.-_H.

V
2540k, k) = J—J'O(}S(a;- &)
’ Kk
_Cl'mﬁm -‘—l\tiﬂ{.rr — Kply, + EX"""*-") *
gralkom)=q . Cl&“\%{m‘ jﬁ\rjvﬂir"' Kplg, + EX,-,-J',:,‘} o
. koK
&5 s(k.m) = Cgy < (k.m)
giglk.m) = —Cgj o(k,m)



