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Abstract— This paper proposes a simple particle swarm optimization with constriction factor (PSO-CF) method for 
solving optimal reactive power dispatch (ORPD) problem. The proposed PSO-CF is the conventional particle swarm 
optimization based on constriction factor which can deal with different objectives of the problem such as minimizing the 
real power losses, improving the voltage profile, and enhancing the voltage stability and properly handle various 
constraints for reactive power limits of generators and switchable capacitor banks, bus voltage limits, tap changer 
limits for transformers, and transmission line limits. The proposed method has been tested on the IEEE 30-bus and 
IEEE 118-bus systems and the obtained results are compared to those from other PSO variants and other methods in 
the literature. The result comparison has shown that the proposed method can obtain total power loss, voltage 
deviation or voltage stability index less than the others for the considered cases. Therefore, the proposed PSO-CF can 
be favorable solving the ORPD problem. 
 
Keywords— Constriction factor, optimal reactive power dispatch, particle swarm optimization, voltage deviation, voltage 
stability index. 
 

    NOMENCLATURE 

Gij, Bij Transfer conductance and susceptance between 
bus i and bus j, respectively 

gl Conductance of branch l connecting between 
buses i and j 

Li Voltage stability index at load bus i 

Nb Number of buses 

Nd Number of load buses 

Ng Number of generating units 

Nl Number of transmission lines 

Nt Number of transformer with tap changing 

Pdi, Qdi Real and reactive load demand at bus i, 
respectively 

Pgi, Qgi Real and reactive power outputs of generating 
unit i, respectively 

Qci Reactive power compensator at bus i 

Sl Apparent power flow in transmission line l 
connecting between bus i and bus j 

Tk Tap-setting of transformer branch k 

Vgi Voltage at generation bus i 

Vgi, Vli Voltage magnitude at generation bus i and load 
bus i, respectively 

Vi, δi Voltage magnitude and angle at bus i, 
respectively 
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1. INTRODUCTION 

Optimal reactive power dispatch (ORPD) is to determine 
the control variables such as generator voltage 
magnitudes, switchable VAR compensators, and 
transformer tap setting so that the objective function of 
the problem is minimized while satisfying the unit and 
system constraints [1]. In the ORPD problem, the 
objective can be total power loss, voltage deviation at 
load buses for voltage profile improvement [2], or 
voltage stability index for voltage stability enhancement 
[3]. ORPD is a complex and large-scale optimization 
problem with nonlinear objective and constraints. In 
power system operation, the major role of ORPD is to 
maintain the load bus voltages within their limits for 
providing high quality of services to consumers. 

The problem has been solved by various techniques 
ranging from conventional methods to artificial 
intelligence based methods. Several conventional 
methods have been applied for solving the problem such 
as linear programming (LP) [4], mixed integer 
programming (MIP) [5], interior point method (IPM) [6], 
dynamic programming (DP) [7], and quadratic 
programming (QP) [8]. These methods are based on 
successive linearizations and use gradient as search 
directions. The conventional optimization methods can 
properly deal with the optimization problems of 
deterministic quadratic objective function and 
differential constraints. However, they can be trapped in 
local minima of the ORPD problem with multiple 
minima [9]. Recently, meta-heuristic search methods 
have become popular for solving the ORPD problem due 
to their advantages of simple implementation and ability 
to find near optimum solution for complex optimization 
problems. Various meta-heuristic methods have been 
applied for solving the problem such as evolutionary 
programming (EP) [9], genetic algorithm (GA) [3], ant 
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colony optimization algorithm (ACOA) [10], differential 
evolution (DE) [11], harmony search (HS) [12], etc. 
These methods can improve optimal solutions for the 
ORPD problem compared to the conventional methods 
but with relatively slow performance. Among the meta-
heuristic search methods, particle swarm optimization 
(PSO) is the most popular one for solving the ORPD 
problem including many variants such as multiagent-
based PSO [13], enhanced PSO [2], parallel PSO [14], 
comprehensive learning PSO [15], etc. The PSO methods 
are generally simpler implementation, more powerful 
search ability, and faster performance than other meta-
heuristic search methods, leading to solution quality for 
optimization problems considerably improved. In 
addition the single methods, hybrid methods have been 
also widely implemented for solving the problem such as 
hybrid GA [16], hybrid EP [17], hybrid PSO [18], etc to 
utilize the advantages of the single methods. The hybrid 
methods usually obtain better solution quality than the 
single methods but they also suffer longer computational 
time.  

In this paper, a simple particle swarm optimization 
with constriction factor (PSO-CF) method is proposed 
for solving the ORPD problem. The proposed PSO-CF is 
the particle swarm optimization based on constriction 
factor which can deal with different objectives of the 
problem such as minimizing the real power losses, 
improving the voltage profile, and enhancing the voltage 
stability and properly handle various constraints for 
reactive power limits of generators and switchable 
capacitor banks, bus voltage limits, tap changer limits for 
transformers, and transmission line limits. The proposed 
method has been tested on the IEEE 30-bus and IEEE 
118-bus systems and the obtained results are compared 
to those from other PSO variants and other methods in 
the literature. 

The remaining organization of this paper is follows. 
Section 2 addresses the formulation of ORPD problem. 
A PSO-CF implementation for the problem is described 
in Section 3. Numerical results are presented in Section 
4. Finally, the conclusion is given. 

2. PROBLEM FORMULATION 

The objective of the ORPD problem is to minimize is 
to optimize the objective functions while satisfying 
several equality and inequality constraints. 
Mathematically, the problem is formulated as follows: 

 
Min ( , ) F x u  (1) 

 
where the objective function F(x,u) can be expressed in 
one of the forms as follows: 

• Real power loss: 
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• Voltage deviation at load buses for voltage profile 

improvement [2]: 
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where Vi

sp is the pre-specified reference value at load bus 
i, which is usually set to 1.0 pu. 

• Voltage stability index for voltage stability 
enhancement [3], [19]: 
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For all the considered objective functions, the vector 

of dependent variables x represented by: 
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and the vector of control variables u represented by: 
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The problem includes the equality and inequality 

constraints as follows: 
a) Real and reactive power flow equations at each bus: 
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b) Voltage and reactive power limits at generation 

buses:  
 

,min ,max;  1,...,gi gi gi gV V V i N≤ ≤ =  (9) 

,min ,max;  1,...,gi gi gi gQ Q Q i N≤ ≤ =  (10) 

 
c) Capacity limits for switchable shunt capacitor 

banks: 
 

,min ,max;  1,...,ci ci ci cQ Q Q i N≤ ≤ =  (11) 

 
d) Transformer tap settings constraint: 

 

,min ,max;  1,...,k k k tT T T k N≤ ≤ =  (12) 

 
e) Security constraints for voltages at load buses and 

transmission lines:  
 

,min ,max;  1,...,li li li dV V V i N≤ ≤ =  (13) 

,max;  1,...,l l lS S l N≤ =  (14) 

 
where the Sl is the maximum power flow between bus i 
and bus j determined as follows: 
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max{| |,| |}l ij jiS S S=   (15) 

 

3. PARTICLE SWARM OPTIMIZATION WITH 
CONSTRICTION FACTOR 

3.1 Basic particle swarm optimization 

PSO is a population based evolutionary computation 
technique inspired from the social behaviors of bird 
flocking or fish schooling. Since the first invention in 
1995 [20], PSO has become one of the most popular 
methods applied in various optimization problems due to 
its simplicity and ability to find near optimal solutions. 
In the conventional PSO, a population of particles moves 
in the search space of problem to approach to the global 
optima. The movement of each particle in the population 
is determined via its location and velocity. During the 
movement, the velocity of particles is changed over time 
and their position will be updated accordingly. For 
implementation in a n-dimension optimization problem, 
the position and velocity vectors of particle d are 
represented by xd = [x1d, x2d, …, xnd] and vd = [v1d, v2d, …, 
vnd], respectively, where d = 1,…, NP and NP is the 
number of particles. The best previous position of 
particle d is based on the valuation of fitness function 
represented by pbestd = [p1d, p2d, …, pnd] and the best 
particle among all particles represented by gbest. The 
velocity and position of each particle in the next iteration 
(k+1) for fitness function evaluation are calculated as 
follows: 
 

( )
( )

( 1) ( 1) ( ) ( ) ( )
1 1

( ) ( )
1 2         

k k k k k
id id id id

k k
i id

v w v c rand pbest x

c rand gbest x

+ += × + × × −

+ × × −
 (16) 

( 1) ( ) ( 1)k k k
id id idx x v+ += +  (17) 

 
where the constants c1 and c2 are cognitive and social 
parameters, respectively and rand1 and rand2 are random 
values in [0, 1]. 

3.2 Implementation of constriction factor 

The position and velocity for each particle have their 
own limits. For the position limits, the lower and upper 
bounds are from the limits of variables represented by 
the particle’s position. However, the velocity limits for 
the particles can be defined by users. Generally, the 
solution quality of the PSO method for optimization 
problems is sensitive to the cognitive and social 
parameters and velocity limit of particles. Therefore, 
there have been several attempts to control the 
exploration and exploitation abilities of the PSO 
algorithm by adjusting the cognitive and social factors or 
to limit the range of velocity in the range [-vid,max, vid,max]. 
In this paper, the improved PSO with constriction factor 
proposed in [21] is implemented for solving the ORPD 
problem. The authors have claimed that the use of a 
constriction factor may be necessary to insure the stable 
convergence of the PSO algorithm. The modified 
velocity for the particles with constriction factor is 
expressed as follows: 
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In the PSO-CF, the factor ϕ  has an effect on the 

convergence characteristic of the system and must be 
greater than 4.0 to guarantee stability. However, as the 
value of ϕ increases, the constriction C decreases 
producing diversification which leads to slower response. 
The typical value of ϕ  is 4.1 (i.e. c1 = c2 = 2.05) as 
proposed in [22]. When the constriction factor 
implemented in the PSO, the search procedure ensures 
the convergence for the method based on the 
mathematical theory. Consequently, the PSO-CF can 
obtain better quality solutions than the basic PSO 
approach. 

3.3 PSO-CF for the ORPD problem 

For implementation of the proposed PSO-CF to the 
problem, each particle position representing for control 
variables is defined as follows: 
 

1 1 1[ ,...,  ,  ,...,  ,  ,...,  ]

1,...,
g t c

T
d g d gN d d N d c d cN dx V V T T Q Q

d NP

=

=
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The upper and lower limits for velocity of each 

particle are determined based on their lower and upper 
bounds of position: 
 

,max ,max ,min( )d d dv R x x= × −  (21) 

,min ,maxd dv v= −  (22) 

 
where R is the limit factor for particle velocity.  

Both particle positions and velocities are initialized 
within their limits given by: 
 

(0)
,min 3 ,max ,min( )d d d dx x rand x x= + × −  (23) 

(0)
,min 4 ,max ,min( )d d d dv v rand v v= + × −  (24) 

 
where rand3 and rand4 are random values in [0, 1]. 

During the iterative process, the positions and 
velocities of particles are always adjusted in their limits 
after being calculated in each iteration as follows: 
 

{ }{ }ddd
new
d vvvv ,max,min min,max,=  (25) 

{ }{ }ddd
new
d xxxx ,max,min min,max,=  (26) 

 
The fitness function to be minimized is based on the 

problem objective function and dependent variables 
including reactive power generations, load bus voltages, 
and power flow in transmission lines. The fitness 
function is defined as follows: 
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where Kq, Kv, and Ks are penalty factors for reactive 
power generations, load bus voltages, and power flow in 
transmission lines, respectively. 

The limits of the dependent variables in (25) are 
determined based on their calculated values as follows: 
 





<
>

=
minmin
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xxfx

xxifx
x  (28) 

 
whrere x and xlim respectively represent for the calculated 
value and limits of Qgi, Vli, or Sl,max. 

The overall procedure of the proposed PSO-CF for 
solving the ORPD problem is addressed as follows: 

Step 1: Choose the controlling parameters for PSO-CF 
including number of particle NP, maximum 
number of iterations ITmax, cognitive and social 
acceleration factors c1 and c2, limit factor for 
maximum velocity R, and penalty factors for 
constraints. 

Step 2: Generate NP particles for control variables in 
their limits including initial particle position xid 
representing vector of control variables in (5) 
and velocity vid as in (23) and (24), where i = 1, 
…, Ng + Nt + Nc and d = 1, …, NP.  

Step 3: For each particle, calculate value of dependent 
variables based on power flow solution using 
Matpower toolbox and evaluate the fitness 
function Fpbestd in (27). Determine the global 
best value of fitness function Fgbest = 
min(Fpbestd). 

Step 4: Set pbestid to xid for each particle and gbesti to 
the position of the particle corresponding to 
Fpbestd. Set iteration counter k = 1. 

Step 5: Calculate new velocity v(k)
id and update position 

x(k)
id for each particle using (18) and (17), 

respectively. Note that the obtained position and 
velocity of particles should be limited in their 
lower and upper bounds given by (25) and (26). 

Step 6: Solve power flow using Matpower toolbox 
based on the newly obtained value of position 
for each particle. 

Step 7: Evaluate fitness function FTd in (27) for each 
particle with the newly obtained position. 
Compare the calculated FTd to F(k-1)

pbestd to 
obtain the best fitness function up to the current 
iteration F(k)

pbestd. 
Step 8: Pick up the position pbest(k)

id corresponding to 
F(k)

pbestd for each particle and determine the new 
global best fitness function F(k)

pbestd and the 
corresponding position gbest(k)

i. 

Step 9: If k < ITmax, k = k + 1 and return to Step 5. 
Otherwise, stop. 

4. NUMERICAL RESULTS 

The proposed PSO-CF has been tested on the IEEE 30-
bus and 118-bus systems with different objectives 
including power loss, voltage deviation, and voltage 
stability index. The data for these systems can be found 
in [23], [24]. The characteristics and the data for the base 
case of the test systems are given in Tables 1 and 2, 
respectively. 

In this paper, the power flow solutions for the systems 
are obtained from Matpower toolbox [24]. For 
comparison, three other variants of PSO also 
implemented for solving the problem are PSO with time-
varying inertia weight (PSO-TVIW) [25] and PSO with 
time-varying acceleration coefficients (PSO-TVAC) and 
self organizing hierarchical particle swarm optimizer 
with time-varying acceleration coefficients (HPSO-
TVAC) in [26]. The algorithms of the PSO methods are 
coded in Matlab platform [27] and run on a 2.1 GHz with 
2 GB of RAM PC. The parameters of the PSO methods 
for the test systems are given in Table 3. For stopping 
criteria, the maximum number of iterations for all PSO 
methods is set 200. For each test case, the PSO methods 
are performed 50 independent runs. 

4.1 IEEE 30-bus system 

In the test system, the generators are located at buses 1, 
2, 5, 8, 11, and 13 and the available transformers are 
located on lines 6-9, 6-10, 4-12, and 27-28. The 
switchable capacitor banks will be installed at buses 10, 
12, 15, 17, 20, 21, 23, 24, and 29 with the minimum and 
maximum values of 0 and 5 MVAR, respectively. The 
limits for control variables are given in [11], generation 
reactive power in [28], and power flow in transmission 
lines in [29]. The number of particles for the PSO 
methods in this case is set to 10. 

The results obtained by the PSO methods for the 
system with different objectives including power loss, 
voltage deviation for voltage profile improvement, and 
voltage stability index for voltage enhancement are given 
in Tables 4, 5, and 6, respectively and the solutions for 
best results are given in Tables A1, A2, and A3 of 
Appendix. 

The obtained best results from the proposed PSO-CF 
method are compared to those from DE [11], 
comprehensive learning particle swarm optimization 
(CLPSO) [15], and other PSO variants for different 
objectives as given in Table 7. For the objective of total 
power loss and voltage deviation, the optimal solutions 
by the proposed PSO-CF are less than those from the 
others while the best voltage stability index from the 
PSO-CF method is approximate to that from others and 
better than that of HPSO-TVAC. For computational 
time, the CLPSO method obtained its optimal solution 
for an average of 138 seconds which is vastly slower 
than that from the PSO-CF method. There is no report of 
computational time for the DE method. 
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Table 1. Characteristics of test systems 

System No. of 
branches 

No. of 
generation buses 

No. of 
transformers 

No. of 
capacitor banks 

No. of 
control variables 

IEEE 30 bus 41 6 4 9 19 

IEEE 118 bus 186 54 9 14 77 

 
 

Table 2. Base case for test systems 

System ΣPdi ΣQdi Ploss Qloss ΣPgi ΣQgi 

IEEE 30 bus 283.4 126.2 5.273 23.14 288.67 89.09 

IEEE 118 bus 4242 1438 132.863 783.79 4374.86 795.68 

 
 

Table 3. Parameters for PSO methods 

Method PSO-TVIW PSO-TVAC HPSO-TVAC PSO-CF 

wmax 0.9 - - - 

wmin 0.4 - - - 

c1, c2 2 - - 2.05 

c1i, c2f - 2.5 2.5 - 

c1f, c2i - 0.2 0.2 - 

R 0.15 0.15 0.15 0.15 

 
 

Table 4. Results by PSO methods for the IEEE 30-bus system with power loss objective 

Method PSO-TVIW PSO-TVAC HPSO-TVAC PSO-CF 

Min Ploss (MW) 4.5129 4.5356 4.5283 4.5128 

Avg. Ploss (MW) 4.5742 4.5912 4.5581 4.6313 

Max Ploss (MW) 5.8204 4.9439 4.6112 5.7633 

Std. dev. Ploss (MW) 0.1907 0.0592 0.0188 0.2678 

VD 2.0540 1.9854 1.9315 2.0567 

Lmax 0.1255 0.1257 0.1269 0.1254 

Avg. CPU time (s) 10.98 10.85 10.38 10.65 

 
 

Table 5. Results by PSO methods for the IEEE 30-bus system with voltage deviation objective 

Method PSO-TVIW PSO-TVAC HPSO-TVAC PSO-CF 

Min VD 0.0922 0.1210 0.1136 0.0890 

Avg. VD 0.1481 0.1529 0.1340 0.1160 

Max VD 0.5675 0.1871 0.1615 0.3644 

Std. dev. VD 0.1112 0.0153 0.0103 0.0404 

Ploss (MW) 5.8452 5.3829 5.7269 5.8258 

Lmax 0.1481 0.1485 0.1484 0.1485 

Avg. CPU time (s) 9.97 9.88 9.59 9.89 
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Table 6. Results by PSO methods for the IEEE 30-bus system with voltage stability index objective 

Method PSO-TVIW PSO-TVAC HPSO-TVAC PSO-CF 

Min Lmax 0.1249 0.1248 0.1261 0.1247 

Avg. Lmax  0.1261 0.1262 0.1275 0.1265 

Max Lmax  0.1280 0.1293 0.1287 0.1281 

Std. dev. Lmax  0.0008 0.0009 0.0006 0.0008 

Ploss (MW) 4.9186 4.8599 5.2558 5.0041 

VD 1.9427 1.9174 1.6830 1.9429 

Avg. CPU time (s) 13.42 13.39 13.05 13.39 

 
Table 7. Comparison of best results for the IEEE 30-bus system 

Method Power loss 
(MW) 

Voltage deviation 
(VD) 

Stability index 
(Li,max) 

DE [11] 4.5550 0.0911 0.1246 

CLPSO [15] 4.5615 - - 

PSO-TVIW 4.5129 0.0922 0.1249 

PSO-TVAC 4.5356 0.1210 0.1248 

HPSO-TVAC 4.5283 0.1136 0.1261 

PSO-CF 4.5128 0.0890 0.1247 

 
4.2 IEEE 118-bus system 
In this system, the position and lower and upper limits 
for switchable capacitor banks, and lower and upper 
limits of control variables are given in [15]. The number 
of particles for the implemented PSO methods is set to 
40. 

The obtained results by the PSO methods for the 
system with different objectives similar to the case of 
IEEE 30 bus system are given in Tables 8, 9, and 10, 
respectively and the comparison of best results from 
methods for different objectives is given in Table 11. For 
the total power loss objective, the proposed PSO-CF can 
obtain less power loss than CLPSO and other PSO 
variants. For the voltage deviation, the PSO-CF method 
also obtains better optimal solution than that from other 
PSO variants while the best voltage stability index is 
nearly the same for PSO-CF and other PSO variants. For 
the computational time, the proposed PSO-CF is also 
vastly faster than that from CLPSO whose average 
computational time for this system is 1472 seconds. 

5. CONCLUSION 

In this paper, the PSO-CF method has been effectively 
and efficiently implemented for solving the ORPD 
problem. PSO-CF is a simple improvement of the 
conventional PSO method with convergence guaranteed 
for the method based on the mathematical theory. The 
proposed PSO-CF has been tested on the IEEE 30-bus 
and IEEE 118-bus systems with different objectives 
including power loss, voltage deviation, and voltage 
stability index. For the selected stopping criteria based 
on number of iterations, the obtained solutions by the 
proposed PSO-CF for test cases satisfy all constraints of 
the problem. Moreover, the convergence process of the 

PSO-CF method is also stable to the optimal solution of 
the problem. The test results have shown that proposed 
method can obtain total power loss, voltage deviation, or 
voltage stability index less than other PSO variants and 
other methods for the test cases. Therefore, the proposed 
PSO-CF could be a useful and powerful method for 
solving the ORPD problem. 
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APPENDIX 

The best solutions by PSO methods for the IEEE 30-
bus system with different objectives are given in Tables 
A1, A2, and A3. 
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Table A1. Best solutions by PSO methods for the IEEE 30-bus system with power loss objective 

Control variables PSO-TVIW PSO-TVAC HPSO-TVAC PSO-CF 

Vg1 1.1000 1.1000 1.1000 1.1000 

Vg2 1.0943 1.0957 1.0941 1.0944 

Vg5 1.0748 1.0775 1.0745 1.0749 

Vg8 1.0766 1.0792 1.0762 1.0767 

Vg11 1.1000 1.1000 1.0996 1.1000 

Vg13 1.1000 1.0970 1.1000 1.1000 

T6-9 1.0450 1.0199 1.0020 1.0435 

T6-10 0.9000 0.9401 0.9498 0.9000 

T4-12 0.9794 0.9764 0.9830 0.9794 

T27-28 0.9652 0.9643 0.9707 0.9647 

Qc10 5.0000 4.5982 2.3238 5.0000 

Qc12 4.9952 2.8184 2.8418 5.0000 

Qc15 5.0000 2.3724 3.6965 5.0000 

Qc17 5.0000 3.6676 4.9993 5.0000 

Qc20 4.0765 4.3809 3.1123 4.0041 

Qc21 5.0000 4.9146 4.9985 5.0000 

Qc23 2.5071 3.6527 3.5215 2.3834 

Qc24 5.0000 5.0000 4.9987 5.0000 

Qc29 2.2284 2.1226 2.3743 2.2176 

 

Table A2. Best solutions by PSO methods for the IEEE 30-bus system with voltage deviation objective 

Control variables PSO-TVIW PSO-TVAC HPSO-TVAC PSO-CF 

Vg1 1.0090 1.0282 1.0117 1.0080 

Vg2 1.0036 1.0256 1.0083 1.0030 

Vg5 1.0184 1.0077 1.0169 1.0159 

Vg8 1.0079 1.0014 1.0071 1.0078 

Vg11 1.0240 1.0021 1.0707 1.0558 

Vg13 1.0220 1.0046 1.0060 1.0059 

T6-9 1.0387 1.0125 1.0564 1.0780 

T6-10 0.9000 0.9118 0.9076 0.9000 

T4-12 0.9964 0.9617 0.9545 0.9799 

T27-28 0.9596 0.9663 0.9695 0.9654 

Qc10 3.1805 5.0000 1.5543 5.0000 

Qc12 0.0000 1.5065 1.4242 5.0000 

Qc15 4.9903 3.9931 2.5205 4.7892 

Qc17 1.5245 3.7785 1.6400 0.0000 

Qc20 5.0000 3.2593 5.0000 5.0000 

Qc21 5.0000 4.1425 1.8539 4.9069 

Qc23 5.0000 4.9820 3.3035 5.0000 

Qc24 4.1862 4.5450 4.5941 5.0000 

Qc29 1.6848 4.1272 3.5062 2.1107 
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Table A3. Best solutions by PSO methods for the IEEE 30-bus system with objective of stability index 

Control variables PSO-TVIW PSO-TVAC HPSO-TVAC PSO-CF 

Vg1 1.1000 1.1000 1.0979 1.1000 

Vg2 1.0911 1.0934 1.0997 1.1000 

Vg5 1.0440 1.0969 1.0500 1.1000 

Vg8 1.0734 1.0970 1.0663 1.0766 

Vg11 1.1000 1.1000 1.0561 1.1000 

Vg13 1.1000 1.1000 1.0886 1.0834 

T6-9 0.9701 1.0935 0.9939 1.0040 

T6-10 0.9000 0.9000 1.0150 0.9000 

T4-12 0.9451 0.9579 0.9121 0.9182 

T27-28 0.9425 0.9651 0.9406 0.9414 

Qc10 3.7186 3.1409 3.7685 3.4792 

Qc12 2.2318 3.0186 4.6323 0.0000 

Qc15 0.5772 1.4347 2.6542 2.5747 

Qc17 0.0000 3.8498 2.6897 0.0061 

Qc20 2.3728 0.0000 2.8806 2.3822 

Qc21 2.6790 5.0000 2.1071 2.5272 

Qc23 0.1350 0.0000 3.1044 1.1154 

Qc24 1.2181 2.1733 2.1797 0.0000 

Qc29 1.3609 2.2708 3.5843 0.0000 
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