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Pl Finite Point Method for Convection-Dominated Flow
$ !Q % Problems
g Chinapat Buachart and Worsak Kanok-Nukulchai

Abstract— In this paper, the new upwinding scheme incorporate to meshfree technique has been proposed to overcome
the instability issues in convection-dominated flow problem. This techniques is then demonstrated in one and two-
dimensional problems using meshfree point collocation method. Numerical results for example problems demonstrate
the techniques developed in this paper are effective to solve convection dominated problems.

Keywords— Meshfree, point collocation, upwinding, convectio-flow.

reported. Ofiatet al. [2] applied the finite point method
1. INTRODUCTION to the convection dominated problem with upwindiog
. . . ) the first derivative or with characteristics approation.
Many practical problems In €ngineering are 90}"?“"'5’30' Atluri et al. [6] used the MLPG method with local
the so-called convection-diffusion equations, iniaklh 5 inding weight to solve the convection-diffusion
there are bOt.h convective and diffusive terms. m’iﬂ_e problems. Gu and Liu [7] proposed several adaptive
t_he_ convection-diffusion  problems, the_ con_vent|0nal support domain techniques incorporate with meshfree
finite_element method (FEM), the finite difference .q)5cation method to solve convection-dominated
method (FDM), or the finite volume method (FVM) has problem successfully.
been widely used. . . o In this paper, techniques to stabilize the conweecti
However, there is a well-known instability issue of 4,minated problems are developed and investigated f
convection-diffusion problem; the highly oscillJor it point method (FPM). These techniques were
30Iut_|on (\leII occursh when .tTe convective  term dls developed based on edge stabilization with anallytic
ominated. Hence, {the special treatment IS requibed g4 tion  of equivalent one-dimensional convection
stabilize the numerical solution. A lot of studibave dominated equation. Numerical results demonstiage t
been performed to solve the instability problem in using these techniques, the instability problensediby

conventional numerical ~schemes, and excellent o ection term can be solved effectively via messf
documentation on stabilization techniques can b®do . othod

in the book written by Zienkiewicz and Taylor [1].
In recent years, meshfree or meshfree methods havg APPROXIMATION IN FPM
attracted more and more attention from many rebeasc '
in computational mechanics field, especially in Weighted-Least Square Approximation
computational fluid mechanics. These meshfree nastho
do not required a mesh to discretize the problemaio,
because the shape function is constructed entirated
on a set of scattered nodes. They are categords t
two groups. First category is based on the colionat
techniques, for example the finite point method NIFP .
[2] and the hp-cloud method [3]. Other meshfree [®) o
methods are based on weak form, e.g. the elemeat-fr (@) ’ X
Galerkin (EFG) method [4], the reproducing kernel

/0 o Yo\
particle (RKP) method [5], the meshfree local Petro o X;
O O o |

Let suppos«; is an local approximation domain (cloud)
of unknown functionu(x) consists ofstar point x;, and
set of pointsx;, j = 2,3,...np surrounding star point as
shown in Figure 1.

i

Galerkin (MLPG) method [6], and so on, this categoir

meshfree method require numerical integration to /

approximate the weak form. Hence, the first catedgor L O O o) ®) o

defined to be truly meshfreée. no mesh required to

perform numerical integration. o [®)
Only very few studies on solving convection

dominated problems using meshfree method have been

Fig.1. Local Approximation Domain in WLS.

Then, the local approximation ofcan be defined by
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where p(x) is a vector whosan-components are the
terms of a complete polynomial basis functions arid
a vector of coefficients which must be determinkd.

this work, complete quadratic polynomial bases are

employed, e.g.p'(x) = [1, X, y, X xy, Y] in 2-
dimensional domain. Note that the point’s coordisat
are relative to the star point position. For easianQ;

the number of could nodes is larger than number o
parametere, np > m. To solve for approximation
parameter, we define the functional

Ji :§¢i(xi)[ai _UJZ (2)

in which ¢i(x)) = ¢(x; — x) is a compact support
weighting function centered on the star poirdndnp is
the number of points in the local cloud. This pchoe,

known as fixed Weighted Least-Squares (WLS), can be

considered as a particular case of the Moving Least

Square (MLS) method proposed by Lancaster and

Salkauskas in [8]. The minimization of Eq. (2) with
respect to parameter leads to the following system of
equations

Aa =Bu €)

whereA = PT®(x)P, B = P'®(x), ®(x) = diagfi(x))],
and P" = [p(x1), p(X2), ..., p(Xnp)]. Then, the vector of
unknown coefficient can be obtained by inversion of
matrix A, i.e. « = A"'Bu, and the approximation value
of u(x) at the star point of the cloud is computed by Eq.

(1)

(4)

where g; is the approximation coefficient or shape
function at star pointx,. Having adopted a fixed
weighting function, matriceA andB become constant in
Q;, thus fist-order derivatives of the unknown fuoaotiat
star point are approximated in the FPM by

~ T n
% ap—(xi)A'lBu:zpbll.(u.
0%, 9 = (5)

in which bkij is the first partial derivative of shape
function a; with respect tox. and higher-order

derivatives can be obtained by successive diffeton

of basis function vector. Henceforth, the WLS
approximation of Laplacian operator can be compbted

np
0%, =0°p"(x )A"Bu= ) cu,

= (6)
wherec; is the Laplacian of shape function, defined by
¢, =0,

The Weighting Function

There exits many possibilities for choosing thectional
form of a weighting function. In this paper theléoling
normalized Gaussian (exponential) weighting funci®
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adopted
2
—(wd; _
Z (Xi ) = 7
1-e (7)
whered, = distance between star poi@nd surrounding
point x; in cloud. The parameters andy govern the

sshape of the weighting function. In this work, w#l et

the value ofy = 1.01. Next, to assign the admissible
range of parametew, the effect of parametav on the
shape of Gaussian weight function is illustrateéigure

2.

_______ w=2
——w=35
e W 2 §

d/dmax

0 e, N
[ 1

Fig. 2. Effects of the parametemw on the weighting function.

For large values oW, the shape functiog;; tends to
the Dirac delta function (see Figure 2) and the
approximation procedure tends to interpolate nod.
Larger valuew causes the error in the approximation to
decrease, while the condition number of matAx
increased [9]. As a result, the system Equation (3)
becomes more and more ill-conditioned. Hence, this
parameter should be properly set. The maximum vaflue
parametem is set to be 3.5 in a whole domain and then
it is reduced by factor 0.85 for each cloud of p®in
whenever necessary, in order to obtain a givenracgu
in the approximation or until reach the minimumueabf
2.0. If the minimum value of parameterwere reached,
then the influence domain will be increased by 25
percent,i.e. e ™" = 1.25dm®®, and the process to
compute the proper value wfwill be repeated again.

Consistency of Approximation

It is usual practice in meshfree method to assedia
ability of approximation coefficients to reproduce
given polynomial of ordep and its derivatives in an
exact way. A set of approximation coefficiersg bijk
and ¢; from WLS approximation have to satisfy
following conditions

np

Z%j p, = p(x)

=1

s op(x,)
bkp = !
;”g o
np
¢, p; =0°p(x;)

(8)



C. Buachart, and W. Kanok-Nukulchai / GMSARN International Journal 8 (2014) 79 - 84

wherep(x) is a complete polynomial base of orgieaind line of Equation (12), which implies that a linetstem

p; = p(x;). Due to the fact that the weight function use to have to be solved in order to obtain the nodalpatars
construct WLS approximation is fixed, the shape & ] ] )

function and its derivatives are discontinuouss lonly - Experiment shows that this equation system can be
possible to satisfy the consistency requirementaéhe  solved by a few iterations of a Gauss-Seidel mettiod
star point where the center of weighting functien i Similar [11, 12]. Then, taking advantage of thetifian

located. of nullity (PN) property of the shape function
derivatives, it is possible to infer
3. MODEL GOVERNING EQUATIONS np
k — kK — _ k
Two-Dimensional Convection-Diffusion Problem Z;bu =0-h = Zhj
j= j# 13
Consider the advection-diffusion equation in two- (13)
dimensional space [10]: and replacing Equation (13) into second line of &iun
(12) the following expression for first derivatieé scalar
6_¢+ U= kD2p+ f variable is obtained
ot 9) aé{
— K _
o(x.t) _ a__zb'i (4’? 441)
where "/ is the dependent variable, a scalar-valued X Ja (14)
function of the spatial coordinates and timet. The ) )
advection velocity field is denoted by(x) and the However, Equation (14) is unstable and needs to be
positive coefficientc(x) represent diffusivity. The body Stabilized. For that purpose, a more suitable edent
source term denoted Byx,t). form is proposed [11, 12, 13], which is given by
We allow the essential and natural boundary coomti aé{
e L : "
(diffusive flux), respectively: R - ZZ b (% — 441)
= 1# 15
p(x.t)=g(x,t),0x0r 10) (15)
nmw(x t) =h(X t) OxOT where % is a mean value of scalar variable at the
' e h (11)  midpoint of the line segment connecting the stantpq
where n is the unit outward normal vector to the to another poink; in cloud. This stabilized valud is
bound r=r, or, d dh ibed calculated by concerning the equivalent one-dinmaradi
oundary and g an are prescribe exact solution of convection dominated equatione Th
functions. The steady-state solution is defined(/g)}() stencil of points used in the calculation of Eqoa{{15)
when time derivative term in Equation (9) equalgeeo. 'S Presented in Figure 3. The theoretical issue of

stabilized variable will be described in the nes¢t®n.
4. THE MESHFREE FPM SOLVER

Spatial Discretization

The scalar variabld’ and derivatives are approximated

by the WLS scheme as described in section 2. Thwexef

for each star poink; we have the following numerical X;
approximations

R . np Fig. 3. The one-dimensional stencil of points.
(0( X; ) —®= ; a"i(di1 Upwind Computation of First Derivative
P ~ - The general solution of the steady-state equivabeet
w(xi) :a_%’:zhk(dw dimensional convection-diffusion equation with no
axk axk = 17 source term is represented by the exponential fadh
R np = A+ Be”g
2 _ (0
Dp(x) =2 6df 180
= (12) =ul, /2
Wherea u ”/ K is the stencil Peclet number and the

It is importance to note that the nodal paramefgrs normalized coordinate 1< ¢ <1, Substituting  the

- essential boundary conditions at both ends, namely
do not coincide with the approximated onBsbecause (-1) = (1) =
in the WLS approximation the shape functions do not ¢ 2 and !

interpolate nodal data. These values are relatefirdty

, we obtain
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2A=q¢+@ —(gal —qq)cotha

ZBsinhaz(qq —¢() an

Hence, the mean valuéﬂ” can be expressed by
average integral of solution in Equation (16) other line
segment as shown in Figure 3:

24 =9+9-¢(4-a) )
where { is the stencildissipation coefficient, which its
magnitude less than or equal to one. Using theevafu
coefficientsA and B from Equation (17), we obtain the
optimal upwind scheme (OU):

{ =cotha 1

a (19)

unknown at each star point

= ' ot

{24

p
r= _dFi -'-Kz:cijﬁj1 + fi
In which = , represented the
right-hand-side or residual term at current tinmedjrate
equation (24) in time using Euler scheme with caiti
time step size [11, 12] for each star pdi¢ads to the
incremental equation as follow

np
z ququ‘ = Atr,
i=1

(25)

Ag =g (t+0t)-¢ (t .
where 441 (d‘j( ) g ( ) the difference of nodal
unknown parameter between current and next time ste

A simplified scheme which avoids the calculation of Equation (24) can be solved iteratively by adding
hyperbolic cotangents and maintains second-ordeunknown parameters at star pdioin both sides:

accuracy [15] is given by

{=-1-1/a, a<-1
=0, -¥a< 1,
=1-Ya, ka,

(20)

We refer to Equation (19) as theritical upwind
scheme (CU). Moreover, the most simfigl upwind
scheme (FU) defined by

{=-1 a<Q,
=0, a= 0,
=1, a> 0,

(21)

which results in the first-order accuracy schemleusT
the approximation of convection term in governing
equation (9) at star pointan be expressed as follow:

-_ 0@, 0@ _
uDDq—ula+u20—X2.—2;dij(¢(j—qd“)
(22)

in which d; = wh* + ub? the algebraic divergence
operator. Further simplify of Equation (22) usinget
result from (18), obtain the stabilized convectitunx
(denoted byF)) as follow:

dF, =ulg =3 d, (1-¢)(4 -4)

j#i

(23)

The stabilized flux in expression (23) will be used
compute the convection term in next section

Discretization in Time

From the governing equation (9), expressions (f2he@
WLS approximation procedure, and the discretizatibn
the first derivatives, equations (14), (15) and)(2&
obtain the following semi-discretization form fohet
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np
A =t +ag ) = g ag
j=1

(26)

wheren = 0, 1, 2, ...; denotes number of iterations, and

rg@=0 _ . . .
! . The iterative form in Equation (26) typically
converges within few iteration steps [12, 13].

5. NUMERICAL EXAMPLES

Numerical solutions presented here onwards have bee
obtained with a FPM based on WLS approximation,
taken from literature [2, 16]. Half-size of criticime
step is used in time integration process.

One-dimentional: Sinusoidal Source Term

The one-dimensional convection-diffusion problenthwi
homogeneousboundary condition at both ends is
investigated. Twenty-one equally spaced points have
been used to discretize unit length domain. Comvect
vezlocity u = 1 m/s and diffusivity parametar = 0.01
m-/s.

Figure 4 shows the steady-state results for equé8p
with a sinusoidal source terfn= sin nx using three
schemes, namely OU, CU and FU as described in

previous section. The values of unknown parameqférs
solved by optimal and critical upwind show no diéfet
and very close to analytical solution. A small over
diffusion appears for FU scheme.

One-dimentional: Discontinuous I nitial Profile

The transient one-dimensional convection-diffusion
problem, which represents contaminant transport
phenomena, is simulated following the detail in Yamd
Mohsen [16]. The domain length is 200 ft. Convestiv
velocity u = — 0.1 ft/day and diffusivity parameter=
0.01 ft/day. The numerical simulations are performed
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using time step equals to 0.2 day, incorporate With Cross-point shows results from OU and CU schemes;
scheme in Equation (20) to compute stabilized Triangular marks represent FU result.
convective flux.
Results from two sets of equally spaced grids are

shown in this example. First grid, which is caltezhrse

grid, discretized using hundred-one equally spaced ¢3(,\-,_)
points. Second grid has been more refined by twice.
Figure 8 shows the results for 200, 400 and 600 days
and their corresponded analytical solution from|[Tthe
over diffusion results are observed. However, gsult
from finer grid produces less diffusion phenomexate

that all numerical results predict peak positiosdbtely
correct.

0.
03

Two-dimentional case x-coord %4
The next example is analysis of two-dimensionairtte 07
convection-diffusion a square domain under a unifor
heat sourcd = 10 using a regular square grid ok& Fig. 6. Contour of two-dimensional solution with dagonal
points with diagonal convective velocity = u, = 1 m/s  Velocity field, the optimal upwind (OU) scheme.
and diffusive coefficientc = 0.005 M/s. A prescribed

zero valuej.e. homogeneous boundary condition, of the

Profile of 2D solution on diagonal line, y = x
temperature at the boundary has been taken. Figures ° ‘ ‘ ‘ ‘ ‘ ‘

h 451 4
and 6 show the results for the unknown paraméofters -
The numerical solution is free of oscillations and o —ou 2
coincides with the expected result [2] for all sliabd e s FU
schemes. The slightly over diffusion solution frdit
scheme can be clearly seen from Figure 7, whiclvsho °
profile plot along diagonal line of two dimensional g st
solutions from Figures 5 and 6.

2 |
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0.8F o gzupwmd /\ B t b
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0.7k A FU / B 0.5 a
_ \/ 0[) 0.1 0.2 0.3 0.4 0.5 0.6 0.7
I 05 7 X
0.4F \7
ol | Fig.7. Profile of solution along diagonal line (¥ x) for two-
' k dimensional problem with diagonal velocity field.
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Fig. 4. One-dimensional solution with various stalized 08k
schems.
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Fig. 8. Solution of transient 1D discontinuous inial profile
(solid ine) att = 200, 400 and 600 days. Dash line represent

exact solutions, circle (0) and cross (x) points stv coarse
Fig. 5. Two-dimensional solution with diagonal velaty and fine grids result, respectively.
field.

y-coord
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6. CONCLUSION dimensional compressible flowThesis Project.

_ : , . CIMNE. Barcelona.
The finite point method (FPM) with upwind .
discretization of first derivatives to solve contien- [12]Buachart, C., Kanok-Nukulchai, W. , Ortega, E. and

dominated flow is presented. The advantage of the ©fate, E. 2014. A shallow water model by finite
method compared with standard finite element method ~ Point ~ method. International  Journal  of

(FEM) is to avoid the necessity of mesh generatind Computational Methods 11(1).

compared with classical finite difference metho®®  [13]Lohner, R., Sacco, C., Ofate, E. and Idelsohn, S.
is the facility to handle the non-structured disstion of 2002. A finite point method for compressible flow.
points. International Journal for Numerical Methods in

The results from numerical examples show that Engineering 53: 1765-1779.
present FPM are sufficiently accurate. Steady-statg14]Bathe, K. J. 1995The Finite Element Procedures.

solutions are perfectly matched with analyticalusoh. Prentice Hall. New Jersey.

Transient solutions with simple Euler time stepping [15]Hughes, T. J. R., Liu, W. K. and Brooks, A. 1979.
scheme show over diffusion results. In this casentp Finite element analysis of incompressible viscous
refinement might be used to improve accuracy.  flows by the penalty function formulatiodournal
Searching for method to reduce over diffusion stidd of Computational Physics 30: 1-60.

interested research topic. Extension of this mettod [16]yim, C. S. and Mohsen, M. F. N. 1992. Simulation
solve other specific fluid mechanic problems shoodd of tidal effects on contaminant transport in porous

further investigated. media.Ground Water 30(1): 78—86.
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