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Abstract— This paper proposes an improved particle swarm optimization method for transient stability constrained 
optimal power flow (TSCOPF) problem. The transient stability constraint should be taken into consideration for the 
solution of the optimization problems in power systems. The formulas of TSCOPF are derived through the addition of 
rotor angle inequality constraints into optimal power flow relationships. The proposed IPSO is the particle swarm 
optimization with constriction factor and the particle’s velocity guided by a pseudo-gradient. The pseudo-gradient is to 
determine the direction of the particles so that they can quickly move to optimal solution. The proposed method has 
been applied on WSCC 3-generator, 9-bus system, IEEE 30-bus systems. The obtained results using the IPSO are 
compared with those obtained using other modern techniques for performance examination. 
 
Keywords— Improved particle swarm optimization, optimal power flow, transient stability. 
 

1. INTRODUCTION 

Optimal power flow (OPF) is an important tool for 
power system operation, control and planning. It was 
first introduced by “Dommel and Tinney (1968)” [1].  
OPF has become an important issue to the researchers 
over past two decades and has established its position as 
one of the main tools for optimal operation and planning 
of modern power systems. The objective of an OPF 
problem is to find the steady state operation point  of 
generators in the system so as their total generation cost 
is minimized while satisfying various generator and 
system constraints such as generator’s real and reactive 
power, bus voltage, transformer tap, switchable capacitor 
bank, and transmission line capacity limits. 1In the OPF 
problem, the controllable variables usually determined 
are real power output of generators, voltage magnitude at 
generation buses, injected reactive power at 
compensation buses, and transformer tap settings.  

OPF with transient stability constraints is an extension 
of the traditional OPF problems. In addition to the 
common constraints of OPF, the TSCOPF problems 
consider the dynamic stability constraints of power 
system. When any of a specified set of disturbances 
occurs, a feasible operation point should withstand the 
fault and ensure that the power system moves to a new 
stable equilibrium after the clear-ance of the fault 
without violating equality and inequality constraints even 
during transient period. These conditions for all of the 
specified credible contingencies are called as transient 
stability constraints. Transient stability constrained 
optimal power flow is an effective measure to coordinate 
the security and economic of power system. TSCOPF is 
a large-scale nonlinear optimization problem with both 
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algebraic and differential equations developed by Sauer 
and Pai (1998) [2], Kundur (1994) [3]. 

The TSCOPF problem has been solved by several 
conventional methods such as: primal-dual interior-point 
method [4], linear programming (LP) [5], etc the 
conventional methods can find the optimal solution for 
an optimization problem with a very short time. 
However, the main drawback of these methods is that 
they are difficult to deal with non-convex optimization 
problems with non-differentiable objective. Moreover, 
these methods are also very difficult for dealing with 
large-scale problems due to large search space.  Meta-
heuristic search methods recently developed have shown 
that they have capability to deal with this complicated 
problem. Several meta-heuristic search methods have 
been also widely applied for solving the TSCOPF 
problem such as Evolutionary Programming (EP) [6], 
Genetic Algorithm (GA) [7], Artificial Bee Colony [8]... 
These meta-heuristic search methods can overcome the 
main drawback from the conventional methods with the 
problem not required to be differentiable. However, the 
optimal solutions obtained by these methods for 
optimization problems are near optimum and quality of 
the solutions is not high when they deal with large -scale 
problems; that is the obtained solutions may be local 
optimums with long computational time. 

In 1995, Eberhart and Kennedy suggested a particle 
swarm optimization (PSO) method based on the analogy 
of swarm of bird flocking and fish schooling [9]. Due to 
its simple concept, easy implementation, and 
computational efficiency when compared with 
mathematical algorithm and other heuristic optimization 
techniques, PSO has attracted many attentions and been 
applied in various power system optimization problems 
such as economic dispatch, reactive power and voltage 
control, transient stability constrained optimal power 
flow and many others. 

In this paper, a newly improved particle swarm 
optimization (IPSO) method is proposed for solving 
transient stability constrained optimal power flow 
problem. The proposed IPSO is the particle swarm 
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optimization with constriction factor and the particle’s 
velocity guided by a pseudo-gradient. The pseudo-
gradient is to determine the direction for the particles so 
that they can quickly move to optimal solution. The 
proposed method has been tested on WSCC 3-generator, 
9-bus system, IEEE 30-bus systems and the obtained 
results are compared to those from Differential Evolution 
(DE), Trajectory Sensitivities (TS), Time Domain 
Simulation (TDS), Genetic algorithm (GA), Evolutionary 
programming (EP). 

2. PROBLEM FORMULATION 

2.1. OPF formulation 

The OPF problem was defined in the early 1960’s as an 
extension of conventional economic dispatch to 
determine the optimal settings for control variables in a 
power network with respect to various constraints. The 
OPF is a static constrained nonlinear optimization 
problem, whose development has closely followed 
advances in numerical optimization techniques and 
computer technology. The OPF is a nonlinear 
optimization problem with nonlinear objective function 
and nonlinear constraints. The objective of the OPF 
problem is to minimize is to optimize the objective 
functions while satisfying several equality and inequality 
constraints [10]. Mathematically, the problem is 
formulated as follows: 
 

Min f(x,u)                                 (1) 

subject to 

g(x,u) = 0                                  (2) 

h(x,u)  0                                  (3) 

where f is the objective function to be minimized, g is the 
set of equality constraints, and h is the set of inequality 
constraints. Vectors x and u, the parameters of these 
functions, are called the state variable vector and control 
variable vector, respectively. 

2.2. Objective function 

The objective function is defined as the total fuel cost of 
the system with fuel cost curve approximated as a 
quadratic function of generator real power output: 
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where Pgi is the real power output of generating units i; 
Ng is the number of generating units; ai, bi and ci are fuel 
cost coefficients of generating unit i. 

2.3. Equality constraints 

The equality in the OPF are defined as equality 
constraints: 
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where Nb is the number of buses; Pdi, Qdi are the real and 
reactive power demands at bus i, respectively; Vi is the 
voltage magnitude of the ith bus, Gij is the transfer 
conductance between bus i and j , Bij is the transfer 
susceptance between bus i and j , and ij is the voltage 
angle difference between bus i and j. 

2.4. Inequality constraints 

a. Limits at generation buses 

,min , ax ; 1,..., (7)gi gi gi m gP P P i N
 

,min , ax ; 1,..., (8)gi gi gi m gQ Q Q i N
 

,min , ax ; 1,..., (9)gi gi gi m gV V V i N
 

b. Capacity limits for switchable shunt capacitor banks:
 

,min , ax ; 1,..., (10)ci ci ci m cQ Q Q i N
 

c. Transformer tap settings constraints
 

,min , ax ; 1,..., (11)k k k m tT T T k N
 

2.5. Transient stability constraints 

The transient stability problem is explained through a 
range of algebraic equations. The oscillation equations of 
ith generator: 

0 (12)i i  

0 ( ) (13)i i mi ei i iM P P D
 

where i is the rotor angle of the ith generator, i is the 
rotor speed of the ith generator, Mi is the moment of 
inertia of the ith generator, Di is the damping constant of 
the ith generator, Pmi is the mechanical input power of the 
ith generator, Pei is the electrical output power of the ith 

generator, and 0 is the synchronous speed. 
The position of the center of inertia (COI) is defined as 

follows: 

     

The inequality constraints of the transient stability are 
formulated as follows: 

 

maxmax
1,..., (15)i COI gi N  

3. 3. PSO ALGORITHMS FOR TSCOPF 

3.1. Conventional Particle Swarm Optimization 

Particle swarm optimization (PSO) provides a 
population-based search procedure in which individuals 
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called particles change their position (state) with time. In 
a PSO system, particles fly around in a multidimensional 
search space. During the flight, each particle adjusts its 
position according to its own experience (personal best: 
pbest), and according to the experience of a neighboring 
particle (global best: gbest), leading to the best position 
encountered by itself and its neighbor [11]. The modified 
velocity and position of each particle are calculated:   
  

( 1) ( ) ( ) ( )
d d 1 1 d d

( ) ( )

2 2 d d

r d (pbes )

r d (gbes ) (16)

k k k k
i i i i

k k

i i
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( 1) ( ) ( 1)

d id d (17)k k k

i ix x v  

where the constants c1 and c2 are cognitive and social 
parameters, respectively and rand1 and rand2 are the 
random values in [0, 1]. 

3.2. Concept of Pseudo-Gradient 

The main idea of the pseudo-gradient is determining the 
direction of each individual in population based methods 
to solve non-convex optimization problems with non-
differentiable functions [12]. The advantage of the 
pseudo-gradient is that it can provide a good direction in 
the search space of a problem without requiring the 
objective function to be differentiable. 

For n-dimension optimal problem with non-
differentiable function f(x), the pseudo-gradient gp(x) is 
defined as follow [13]: 

Supposed that xk = [xk1, xk2, …, xkn] is a point in the 
search space of the problem and it moves to another 
point xl. There are two abilities for this movement by 
considering the value of the objective function at these 
two points. 

If f(xl) < f(xk), the direction from xk to xl is defined as 
the positive direction. The pseudo-gradient at point xl is 
determined by: 

 

1 1 2 ln( ) [ ( ), ( ),..., ( )] (18)T
p l lg x x x x  

where (xli) is the direction indicator of element xi 
moving from point k to point l defined by: 
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If f(xl)  f(xk), the direction from xk to xl is defined as 
the negative direction. The pseudo-gradient at point xl is 
determined by: 

 

1( ) 0 (20)pg x  

From the definition, if the value of the pseudo-gradient 
gp(xl)  0, it implies that a better solution for the 
objective function could be found in the next step based 
on the direction indicated by the pseudo-gradient gp(xl) at 
point l. Otherwise, the search direction at this point 
should be changed due to no improvement of the 
objective function in this direction. 

 

3.3. Improved Particle Swarm Optimization 

The IPSO here is the PSO with constriction factor 
enhanced by the pseudo-gradient for speeding up its 
convergence process. The purpose of the pseudo-gradient 
is to guide the movement of particles in positive 
direction so that they can quickly move to the 
optimization. 

In the PSO with constriction factor (Clerc & Kennedy, 
2002) [14], the velocity of particles is determined as 
follows: 
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The factor  has an effect on the convergence 
characteristic of the system. But if the factor  increases 
and makes the constriction C decrease producing 
diversification, it leads to slower convergence. Thus, the 
typical of factor  is 4.1. PSO with constriction factor 
improved performance for a wide range of problems and 
was applied in various technical field.  

For implementation of the pseudo-gradient in PSO, the 
two considered points corresponding to xk and xl in 
search space of the pseudo-gradient are the particle’s 
position at iterations k and k+1 those are x(k) and x(k+1), 
respectively. Therefore, the updated position for particles 
in (17) is rewritten by:  

 

 

3.4. Implementation  of IPSO for TSCOPF problem 

The overall procedure of the proposed IPSO for solving 
the TSCOPF problem is addressed as follows: 

Step 1: Input system data, contingency set; choose the 
controlling parameters for IPSO including 
number of particles NP, maximum number of 
iterations ITmax, cognitive and social 
acceleration factors c1 and c2 

Step 2: Create initial particles’ positions and velocities 

Step 3: For each particle, calculate value of the 
dependent variables based on power flow 
solution and evaluate the fitness function Fpbestd. 
Determine the global best value of fitness 
function Fgbest 

Step 4: Set pbest to the initial position for each particle 
and gbest for the best position of all particles. 
For transient stability violation evaluation (15), 
transient-stability simulation is used to produce 
the generator rotor responses. The maximum 
rotor angle deviation from the COI, among all 
generators and contingencies, is then used to 
compute a transient-stability penalty. 
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Step 5:  Set the pseudo-gradient associated with particles 
to zero. Set iteration counter k = 1. 

Step 6:  Calculate new velocity v(k)
id and update position 

x(k)
id for each particle using (21) and (23), 

respectively.  

Step 7:  Solve power flow based on the newly obtained 
value of position for each particle. 

Step 8:  Evaluate fitness function for each particle with 
the newly obtained position. Compare the 
calculated FT to FTpbest to to update the best 
position of each particle. 

Step 9:  Pick up the best position of all particles to 
update the global best fitness function FTgbest 
and the global best position gbest  

Step 10: Calculate the new pseudo-gradient for each 
particle based on its two latest positions 
corresponding to x(k)

id and x(k-1)
id. 

Step 11: If k < MAXITER, k = k + 1 and return to Step 
6. Otherwise, stop. 

A flowchart for overall procedure of the IPSO for 
solving the TSCOPF problem is also depicted in Fig 1. 

4. NUMERICAL RESULTS 

The proposed IPSO is tested on WSCC 3-generator, 9-
bus system, IEEE 30-bus systems. In all tested system, 
the upper and lower of voltage limits are set to 1.1pu and 
0.95pu, respectively. The upper and lower of transformer 
tap changers are set to 1.1pu and 0.9pu, respectively. The 
transformer taps and switchable capacitor banks are 
discrete with a changing step of 0.01pu and 0.1MVar, 
respectively. The algorithm of this method was 
programmed by MATLAB R2009b in 2.4 GHz, i3, 
personal computer. 

4.1. WSCC 3-generator, 9-bus system 

The WSCC 3-generator, 9-bus system is shown in Fig 2 
and the system data are given in [2]. The upper and 
lower limits of all of the generator voltage magnitudes 
are set at 1.10 p.u. and 1.00 p.u., respectively. The upper 
and lower limits of the voltage magnitudes of the other 
buses are also set at 1.10 p.u. and 0.90 p.u., respectively. 
For this test system, the OPF and TSCOPF problems are 
solved for 2 fault cases. The step time of the integration 
is 10 ms for the transient stability simulation and the 
simulation period is taken into consideration as 5.0s. 
Here, max is set to 2000 for the WSCC 3-generator, 9-bus 
system. 

Case 1: There is no transient stability constraint in this 
optimization problem. The objective in this optimization 
problem is to minimize the total fuel cost of the entire 
power system to subject the generator constraints. 

 

 
 

Fig. 1. Flowchart of IPSO for TSCOPF problem. 

 

Fig. 2. One-line diagram of the WSCC 3-generator, 9-bus 
system. 
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The optimal power flow solution without transient 
stability limits has been obtained using IPSO. The main 
objective is to minimize the total fuel cost of the entire 
system. The results of the proposed algorithm are 
compared with the algorithms of: Differential Evolution 
(DE) [15], Trajectory Sensitivities (TS) [16], Time 
Domain Simulation (TDS) [17]. The comparison tables 
of the simulation results by different optimization 
techniques for Case 1 are given in Table1. From this 
table we can say that the value of the fuel cost obtained 
by the proposed algorithm is less than the results 
obtained from others in the above problem. 

 
Table 1: Comparision of simulation results for Case 1 

Method DE [15] TS [16] TDS [17] IPSO 

Pg1 (MW) 105.94 106.19 105.94 106.11 

Pg2 (MW) 113.04 112.96 113.04 114.26 

Pg3 (MW) 99.29 99.20 99.24 96.60 

Vg1 (p.u.) 1.05 1.00 1.05 1.035 

Vg2 (p.u.) 1.05 1.00 1.05 1.029 

Vg3(p.u.) 1.04 1.00 1.04 1.033 

FC ($/hr) 1132.30 1132.59 1132.18 1131.75 

 

 

Fig. 3. Convergence characteristics of IPSO for Case 1. 
 

Case 2: A 3-phase to ground fault at bus 7 and in line 
7-5 in the system. The above fault was cleared by 
opening the contacts of the circuit breakers by 0.35 sec. 
The solution obtained from this case satisfies transient 
stability limit. The minimum fuel cost values and power 
generations are compared with other optimization 
methods Differential Evolution (DE) [15], Trajectory 
Sensitivities (TS)[16], Time Domain Simulation (TDS) 
[17] are given in Table 2; the convergence characteristics 
in Fig.4.  

 
 
 
 
 

Table 2: Comparision of simulation results for Case 2 

Method DE [15] TS [16] TDS [17] IPSO 

Pg1 (MW) 130.94 170.20 117.85 116.61 

Pg2 (MW) 94.46 48.94 103.50 105.89 

Pg3 (MW) 93.09 98.74 96.66 93.29 

Vg1 (p.u.) 0.9590 1.000 1.05 1.028 

Vg2 (p.u.) 1.0139 1.000 1.05 1.068 

Vg3(p.u.) 1.0467 1.000 1.04 1.056 

FC ($/hr) 1140.06 1179.95 1134.01 1132.37 

 

 

Fig. 4. Convergence characteristics of IPSO for Case 2. 
 
Case 3: A 3-phase to ground fault at bus 9 and in line 

9-6 in the system. The above fault was cleared at 0.3sec 
by opening the contacts of the nearby circuit breakers. 
Here also, the minimum fuel cost values and power 
generations are compared with other optimization 
methods: Differential Evolution (DE) [15], Trajectory 
Sensitivities (TS)[16], Time Domain Simulation (TDS) 
[17] given in Table 3. From there, it is observed that the 
fuel cost values and power generations obtained by the 
proposed method are less than those others. The 
convergence characteristic is shown in Fig 5. 

 
Table 3: Comparision of simulation results for Case 3 

Method DE [15] TS [16] TDS [17] IPSO 

Pg1 (MW) 130.01 164.38 120.01 120.23 

Pg2 (MW) 127.17 112.44 121.13 119.83 

Pg3 (MW) 60.72 41.00 76.84 76.95 

Vg1 (p.u.) 1.0495 1.000 1.05 1.019 

Vg2 (p.u.) 1.0481 1.000 1.05 1.039 

Vg3(p.u.) 1.0327 1.000 1.04 1.024 

FC ($/hr) 1148.58 1179.95 1137.82 1135.25 
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Fig. 5. Convergence characteristics of IPSO for Case 3. 
 

4.2. IEEE 30-bus system 

The IEEE 30-bus test system contains 41 transmission 
lines, 6 generators, and 4 transformers, as shown in 
Figure 6. The system data were taken from [18] and the 
data for the generators in the test system are given in 
Table 3. The total active load and reactive load of the 
system is 189.2 MW and 107.2 MVar, respectively. 
Here, max is set to 500 for the IEEE 30-bus system. 
 

 

Fig. 6. IEEE 30-bus system one-line diagram. 

 

The following fault case is studied for the test system: 

Case 4: A 3-phase to ground fault at bus 2 and in line 
2-5 in the system. The fault clearing time is taken as 0.18 

s. The step time of the integration is at 10 ms for the 
transient stability simulation and the simulation period is 
taken into consideration as 5.0s. The obtained solutions 
are compared with other optimization methods: Genetic 
algorithm (GA) [7], Evolutionary programming (EP) 
[19]. From this Table 4 we can say that the value of the 
fuel cost obtained by the proposed algorithm is less than 
the results obtained from other two. The convergence 
characteristic is shown in Fig 7. 

 
Table 4: Comparision of simulation results for Case 4 

Method GA [7] EP [19] IPSO 

Pg1 (MW) 41.88 50.25 41.10 

Pg2 (MW) 56.38 38.86 58.32 

Pg3 (MW) 22.94 17.96 25.39 

Pg4 (MW) 37.63 27.33 32.49 

Pg5 (MW) 16.7 20.29 18.24 

Pg6 (MW) 16.53 37.25 16.34 

T1 (buses 6–9) 1.01 1.02 1.01 

T2 (buses 6–10) 0.95 0.99 0.96 

T3 (buses 4–12) 1.00 0.97 1.01 

T4 (buses 27 and 28) 0.97 1.04 0.97 

FC ($/hr) 585.62 585.83 585.10 

 

 

Fig. 7. Convergence characteristics of IPSO for Case 4. 
 

5. CONCLUSION 

The proposed IPSO method has been efficiently 
implement for solving the TSCOPF. The proposed IPSO 
method is a simple improvement from the PSO method 
with constriction factor by integrating the pseudo-
gradient in to particle’s velocity to enhance its search 
capability. The pseudo-gradient speeds up particles in 
search space in case they are on a right direction. 
Simulations are carried out with WSCC 3-generator, 9-
bus system, IEEE 30-bus systems then compared with 
other methods. The results obtained by the proposed 
method outperform the other methods in terms of 
solution quality and computation efficiency. Therefore, 
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the proposed PG-PSO could be a useful and favorable 
method for solving the non-differentiable problem in 
power systems. 
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