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Abstract— This paper aims at optimizing the operation of a microgrid system through effective dynamic energy 

management simulation studies. An attempt is made to investigate the problems associated with real time power 

balancing in a microgrid. A joint optimization scenario is considered among different units, (i.e) demand side, supply 

side, DG side and the renewable side incorporating the inherent randomness associated with such a system. 

Randomness associated with load, wind, solar and grid pricing are modeled using a 5 minute prediction interval. A 

Particle Swarm based optimization technique is proposed where each of the particles correspond to the various 

possible scheduling scenarios of the battery storage system. Accordingly, a centralized controller is proposed that 

monitors the scheduled power flow from ESS and central grid at intervals of 5 minutes according to the fluctuations 

from the demand and forecasting modules to minimize the total operational costs per day. The results of the proposed 

controller are compared against a greedy algorithm to prove the effectiveness in cost curtailment. 

 
Keywords— Controller, micro grid, particle swarm optimisation, time domain simulations. 
 

1. 
INTRODUCTION 

A Microgrid can be defined as a small-scale, self-

supporting network driven by an on-site generation 

source with the ability to separate from an external grid 

for sustainability [1]. Growing concerns about 

environmental issues and deregulation of the power 

industry has led to a phenomena of increase in 

installation of DG’s and energy storage systems(ESS) 

worldwide [2]. Smart microgrids can help in managing 

the ever-growing demand without overloading the 

already existing infrastructure and can help in cutting 

costs involved in expansion. Cost minimization, 

improving renewable contribution, improving reliability 

and security are some of the numerous benefits of 

effective energy management in microgrids.  The 

inclusion of Energy storage systems can help in 

minimizing the impact of intermittency of renewables in 

the microgrid [3] [4].The available local resources in a 

microgrid are mainly scheduled to satisfy load demand in 

a minimum cost manner. BSS can be effectively utilized 

by charging at low market price and discharging when 

grid price is high. This can in turn effectively lower the 

operational cost of microgrid which includes battery 

operating cost, cost of operating DG’s and cost of 

import/export from grid. As reported in the literature, 

proper control and scheduling of battery systems can 

lower microgrid operational costs [5] [6]. Cost studies on 

microgrid would be incomplete without considering 

operational cost of BSS , because it is necessary to  
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justify the reduction in operational cost of microgrid over 

the increase in capital investment of Storage system. 

An analytical method to determine the ratings of a 

Vanadium Redox battery through optimal scheduling 

analysis has been proposed in [7]. The optimal 

scheduling problem is solved through dynamic 

programming and the ideal ratings of VRB for both grid 

connected and isolated modes of a microgrid has been 

determined. A Robust energy management technique 

accounting for the worst-case amount of renewable 

generation and load so as to maximize social benefits and 

minimize exchange cost was discussed in [8]. Taguchi’s 

orthogonal array testing method is used to provide for the 

testing cases that represent the uncertainty of RG and 

load. Farzin et al. [9] have proposed a multi-objective 

optimization scenario using NSGA-II wherein 

operational cost minimization in grid connected mode 

and lowering levels of expected energy curtailment in 

case of unscheduled islanding events are the 

contradicting objectives. Also, a fuzzy decision making 

approach is used to represent the microgrid operator 

preferences for a compromise between the two 

objectives.  

Mix mode energy management strategy using linear 

programming and mixed integer linear programming 

techniques have been investigated in [10] for lowering 

the operational cost of the microgrid. An optimal battery 

sizing technique has also been investigated for various 

levels of SOC. Tran et al. [11] has proposed an energy 

manager to improve the energy efficiency and lifetime of 

ESS using a smart local prediction and local scheduling 

algorithm. Battery lifetime model based on battery 

workload using Peukert Lifetime Energy throughput was 

also studied. A two-stage stochastic energy scheduling 

model for an interconnected microgrid which 

accommodates the inherent intermittency and variability 

of wind and solar models has been formulated in [12]. 

The scenarios used to model wind and solar are variable 
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and the optimization achieves minimum power loss.  

An economic scheduling model of microgrid in grid 

connected mode has been established in [13] considering 

battery lifetime. Comparative studies have been carried 

out corresponding to the cases without BESS 

depreciation cost, Wh throughput method and Weighted 

Wh throughput method. A Smart energy management 

system based on matrix real coded- Genetic Algorithm 

that predicts the hourly power generation according to 

inputs from a weather forecaster has been developed by 

Chen et al. [14]. Methods have been devised to improve 

upon the reliability and security of microgrids in [15] 

[16]. Methods based on computational intelligence and 

artificial intelligence for EMS has been widely reported 

in [17] [18] [19] [20]. 

The work considered in this study involves 

development of a robust controller which considers the 

dynamic nature of main grid and microgrid to dispatch 

necessary outputs from local resources of the microgrid 

at regular intervals of 5 minutes to propose a cost-

effective scheduling algorithm. Most of the EMS 

problems in literature are formulated as offline 

optimization problems with a priori knowledge of hour-

ahead data. The increasing penetration from Renewables 

and random nature of loads such as Electric Vehicles has 

contributed to voltage and frequency stability issues in 

microgrid. This can be solved by accurate generation – 

demand scheduling. Traditional hour ahead scheduling 

may fail in such a scenario due to smaller network size 

and random nature of loads which is an inevitable part of 

future Smart grids. Thus traditional EMS have to be 

modified to handle the increased complexity due to large 

amount of data arriving in shorter intervals. 

To this need, we have proposed a dynamic controller 

based on Particle Swarm Optimization where-in the 

dynamics of renewables are captured appropriately and a 

suitable control strategy has been formulated. The 

algorithm uses 5 minute- ahead data of solar, wind, load 

and market data to arrive at a suitable control strategy. 

The charging/discharging schedule of the battery storage 

system is optimized using PSO and the final outcome is a 

series of commands corresponding to the current state of 

the microgrid. The challenge in dealing with the complex 

scheduling strategy with measurements from DG’s, 

battery, renewable and the main grid in intervals of 5 

minutes was analyzed efficiently using our controller. 

Time domain simulations were carried out to calculate 

the outputs from various sources and were optimized 

using PSO to reduce the overall operational costs. 

The main contributions of this paper are listed below: 

1) Develop a time –domain based control strategy 

which can mimic real-time solar, wind power and load 

variability to schedule dispatch levels of battery, main 

grid and controllable sources in a span of 5 minutes to 

minimize cost and emission levels.  

2) Comparing the proposed controller with that of a 

greedy algorithm to prove the effectiveness in cost 

minimization. 

Remainder of this paper is organized as follows. 

Section II explains the mathematical modeling of the 

components involved in the microgrid followed by the 

minimized objective function details. The proposed 

energy management strategy has been formulated in 

Section III along with explanation of different case 

studies that have been tested. Section IV highlights the 

results of implementation of the proposed scheme on a 

test microgrid and its capabilities in cost curtailment over 

the greedy algorithm. Robustness of the proposed 

controller has been explored through comparative studies 

and finally, concluding remarks are framed in Section V. 

2. MATHEMATICAL MODELING 

Fig 1 highlights the test case adopted along with the 

structure.  Various components involved are modeled as 

described below. Synchronous generators are modeled as 

IEEE type 6, Turbine Governor as IEEE type1 and 

AVR’s are modeled as IEEE type 2.  

2.1 Modelling of battery 

Battery storage system is modelled as follows [21]. 

If the BSS is charging, 

   (   )     ( )    ( )    
   (1)  

If the BSS is discharging, 

   (   )     ( )  
  ( )  

    
 (2)  

where E(t) is the current capacity of BSS. For periodic 

use of BSS, the capacity at the last time period should be 

equal to the initial capacity which is represented as 

   ( )     ( ) (3)  

where T is the last time period which is 24 hours. This 

constraint ensures that the Battery is available in the 

same state of charge while considering for planning 

studies for the next subsequent time interval. 

          ( )         (4)  

Equation (4) ensures that battery is not 

charged/discharged beyond the specified limits. 

 
Table 1. BSS parameters 

Parameter Value 

Charging efficiency 90 % 

Discharging efficiency 90 % 

SOCmin 10 % 

SOCmax 100 % 

 

2.2 Modelling of Wind Energy Conversion System 

(WECS) 

The turbine generator used for wind modeling is DFIG 

whose stator is directly connected and its rotor is 

connected through slip rings and lossless power 

electronic converter. [22]. 

2.3 Modelling of Solar PV cell 

For describing the solar cell electrical circuit equations in 

[23] are used. This dynamic PV model is suitable for DG 

applications in microgrid. Operational costs of solar and 
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wind is assumed as negligible. 

2.4 Modelling of controllable sources 

Fuel cell and Micro turbine are considered as the 

controllable sources. Since the output of renewables 

cannot be predicted,  the controllable sources are 

adjusted to meet the power balance according to 

dispatchable source control as illustrated in fig 2 .For 

MT or fuel cell, the fuel cost can be viewed as a linear 

function . 

  ( )       ( ) (5)  

2.5 Cost Modelling 

2.5.1 Battery cost modeling 

BSS capital cost is defined as a function of two parts, 

one is related to the Energy rating and the other part 

depends on the power rating. 

                          (6)  

The Total cost per day can be evaluated as 

   
 

   

 (   ) 

(   )   
          (7)  

 

 

Fig.1.(a) Microgrid structure (b) Test Case. 

Battery operation and maintenance cost is a fixed cost 

proportional to the power rating. The operation and 

maintenance cost per day can be modeled as follows. 

   
 

   
         (8)  

Hence the total cost per day for the battery can be 

evaluated as 

         (9)  

Assumed Battery parameters are tabulated in Table I. 

2.6 Objective function 

The EMS aims to minimize microgrid operational cost 

by maximizing the use of local production. The 

following objective function is minimized using PSO. 

            [∑  ( ) (   ( )     ( ))

 

   

   ( )  ( )    ( )  ( )] 

(10)  

subject to the following constraints: 

Power balance within the microgrid has to be checked 

at every time interval. The following power balance 

constraint has to be satisfied. 

  ( )     ( )    ( )    ( )

   ( )    ( ) 
(11)  

  ( ) is negative when power is exported to the main 

grid from microgrid and   ( ) is positive when power is 

imported from the main grid to meet the deficiency. 

 

    ( )   ̅    ( ) (12)  

Equation (12) ensures that power bought from the 

grid/sold to the grid is within the specified limits. 

     ( )   ̅     ( ) (13)  

Equation (13) imposes power balance constraints on 

diesel generator and fuel cell. Apart from the above 

constraints, constraints from (1),(2) and (4) is checked in 

every time interval and (3) is checked at the last instant. 

3. PROPOSED ENERGY MANAGEMENT 

STRATEGY USING PARTICLE SWARM 

OPTIMIZATION 

Controller decides upon the ideal charge -discharge 

schedules from the battery such that the total operational 

cost per day is minimized. Energy dispatches from the 

battery and grid are governed by the following algorithm. 

The controller is designed to handle the complex data 

sets and determine the ideal dispatch levels of the 

battery. The fitness function is modeled as below and 

subject to all the constraints mentioned above. The 

violated constraints are penalized using a penalty factor. 
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          ( )  [∑  ( ) (   ( )

   

   

    ( ))    ( )  ( )

   ( )  ( )  ∑     

  

   

] 

(14)  

where, 

                   ( ) for t=1,2,3..288 (15)  

 ( )- Fitness function 

   – Number of violated constraints 

   - Violated Constraint 

  - Penalty factor associated with violated constraint 

   

Figure 2 describes the methodology involved and fig.4 

depicts the control strategy. The control variables chosen 

are the charge/discharge power output from the battery 

storage system for the chosen scheduling interval. The 

studies are carried out for a single chosen day-24 hours 

and ∆t was taken as 5 minutes. This resulted in a total of 

288 scheduling intervals. The PSO outputs the 

charge/discharge pattern and the remaining power output 

from various controllable sources are calculated to meet 

the power balance constraint. Since the randomness 

associated with grid pricing is also included, PSO tries to 

find the optimal set of charge/discharge pattern from the 

battery such that grid import occurs during low price 

intervals. Thus the final output corresponds to a series of 

power output vectors such that the cost of purchase from 

main grid is minimized, thus minimizing the overall 

costs incurred. 

 
 

Table 2. PSO Settings 

PSO is a population based method which effectively 

gets the knowledge from competition and co-operation 

among the particles in a swarm. PSO has been identified 

as robust in solving complex optimization problems with 

high degree of non-linearity and dimensionality and is 

thus used for our problem at hand [25]. The PSO settings 

used for our study are tabulated in Table II. The 

centralized controller is based on Particle Swarm 

optimization to determine the ideal periods for 

charge/discharge. According to outputs from forecasting 

modules, controller optimizes flow of energy among 

generation, demand and storage units so as to meet the 

network constraints while optimizing the objective 

function. A set of vectors of recommended energy flows 

from source to destination at intervals of every 5 minutes 

is output from the controller. PSO compares the various 

possible charging/discharging scenarios and outputs the 

best particle corresponding to minimum cost. The 

advantage of using available storage to offset 

anticipatory grid price hike has been effectively used in 

the design strategy as explained below. 

1) The outputs from various units are input to the 

controller in span of 5 minutes. 

2) The PSO based controller determines the dispatch 

set points of DG’s and battery in such a way that 

the total cost function can be minimized. 

3) The set points are determined for a particular day 

according to the renewable generation and demand 

prediction. Accordingly, the controller is designed 

to handle the complex data sets and determine the 

ideal dispatch levels of the battery. The developed 

algorithm is compared against a greedy algorithm. 

 
Table 2. PSO Settings  

Parameter Settings 

Type of PSO Common 

Maximum no of iterations 200 

Population size 200 

Acceleration constant 1 2 

Acceleration constant 2 2 

Initial inertia weight 0.9 

Final Inertia weight 0.4 

4. GREEDY ALGORITHM 

The results of the proposed controller are validated 

against a greedy algorithm. 

Schedule   ( ) such that, 

 ( )  [∑  ( ) (   ( )     ( ))

   

   

   ( )  ( )    ( )  ( )

 ∑     

  

   

] 

(16)  
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Fig.3. Microgrid control strategy. 

 

subject to constraints (1)-(4) and (11)-(13).  

The greedy algorithm is the base case without the 

presence of a controller. Thus the charge/discharge 

schedules are obtained in order to satisfy (11) without 

considering the future grid price variations. The outputs 

from the greedy algorithm are shortsighted as it 

minimizes the cost at each time without considering the 

possible future variations into account. 

5. RESULTS AND DISCUSSION 

To assess the validity of the proposed control strategy, 

case studies were carried out.  Sample microgrid 

considered in this paper consists of 2 MW solar PV 

generation, 2.5 MW wind generation, 5 MWh battery 

energy storage system [26], 2.5 MW fuel cell and 2.5 

MW micro turbine. Main grid considered is the IEEE 14 

bus test case. A microgrid was connected to the main 

grid across the point of common coupling and the 

exchange power limit was set.  

 

 

Fig 4. Renewable generation output (a) Solar (b) Wind. 

 

Figure 4 shows the generation output from PV and 

wind modules. As can be seen, the variations are 

captured for intervals of 5 minutes. The PV output is 

obtained for a particular day from [27] and wind output 

is also captured for the same day [28]. Figure 5 plots the 

net load demand and the 5-minute real time pricing 

obtained from [29]. 

 

 

 

Fig 5. (a) Load (b) Real time pricing 

 

Fig.6 (a) plots the results obtained from the PSO based 

controller and 6 (b) plots the results of greedy algorithm. 

The plots are shown for duration of 24 hours resulting in 

a total of 288 scheduling intervals of 5 minutes each. 

Thus a complex optimisation strategy involving a total of 

2016 measurements involving measurements from Wind, 

Solar, Microturbine, fuel cell, battery , Grid and Load 

were handled efficiently using the proposed controller.  It 

is worthwhile to note that the proposed controller took an 

average time of 0.52 seconds per interval, according to 

the parameters given in Table II to solve the complex 

optimisation scenario thus making it possible to extend 

in real time.  

Points A, B, C and D correspond to the various load 

scenarios in Fig.5 (a). The corresponding scheduling 

results can be observed from Fig. 6(a). As observed from 

the figure, at point A the battery charges due to lightly 

loaded conditions which are typical in real time. It can be 

seen that the battery effectively manages the fluctuations 

in load as well as renewables. At point B, there is an 
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increase in load demand, which is managed by the 

controller by importing from the main grid according to 

the real time pricing strategy. Also, the battery gets 

discharged for a short interval which results in 

subsequent charging in the next intervals. Point C 

corresponds to lightly loaded condition, resulting in 

power export to the main grid with exchange taking 

place according to real time pricing. At point D, when 

the load fluctuation is beyond the capacity of microgrid, 

power is again imported from the main grid, but only 

after the battery discharges to its maximum capacity. 

 

 

 

Fig.6. (a) PSO based scheduling of DERs in the microgrid 

(b) Greedy algorithm scheduling results. 

 

Emission control is also implemented for the fuel cell 

thus optimising the litres of fuel consumed and 

minimising the grid emission factor. This is evident from 

the on-off control which is implemented for DG2. 

 The results are compared against a greedy algorithm 

whose scheduling results are discussed in Fig.6(b). The 

greedy algorithm is short sighted (i.e) optimization is 

considered only for that particular period without 

considering the possible future variations. At point A, 

battery is charged due to lightly loaded conditions 

followed by complete battery discharge at point B. On 

the other hand, scheduling using PSO prevents complete 

drainage of battery charge, thus enabling power export 

during instances of peak-pricing as observed at point C 

Thus the power imported/exported can be effectively 

optimised through ideal charge/discharge scheduling. At 

point D, battery is completely drained and the remaining 

required power is imported from the main grid. It can be 

observed that effective scheduling results in import of 

around 10 MW during peak interval, whereas greedy 

algorithm results in import of around 12 MW. Moreover 

DG2 scheduling is also not optimised resulting in higher 

micro grid emission factor. 

Fig.6 plots the comparison results. As shown, the PSO 

algorithm outplays the greedy algorithm at all the 

intervals except in the middle part. This can be attributed 

to the short sightedness of the greedy algorithm, whereas 

the PSO algorithm reduces the net cost incurred for the 

MGO, even though the cost is compromised initially. 

Table III compares the cost obtained among the two 

algorithms. As shown total savings of 411.7$ were 

obtained for a single day using the PSO based controller. 

 

 

Fig 7. Time accumulated cost comparison 

 
Table 3. Cost comparison 

Method 

 

Total 

Cost($) 

Time average 

cost($) 

Greedy Algorithm 4405.7 15.3 

PSO Controller 3994 13.86 

6. CONCLUSION 

This paper presents a framework for optimal scheduling 

of DG’s and ESS’s in a microgrid in the context of cost 

optimization.  The work is an attempt to model the future 

smart grid/microgrid framework where the variations in 

load and renewable might be highly uncertain thus 

resulting in the need to consider shorter time frames for 

optimization. 

The major conclusions are discussed as follows: 

1) Dynamic grid model coupled with micro grid has 

been developed and a cost effective control strategy has 

been investigated based on real time grid pricing and 

forecasted renewable outputs and load. 

2) The charging/discharging schedule of ESS’s and set 

point calculation of DG’s is considered in a complex 

optimization framework mainly because of the reduced 

scale of optimization interval (i.e) 5 minutes. 

3) A dynamic controller based on Particle Swarm 

optimization has been designed to deal with the 

optimization problem to develop an ideal scheduling 

strategy for the considered period of 24 hours. 

4) The obtained results highlight the performance of 

the proposed controller. The time required for solving the 

scheduling problem is around 0.52 seconds per interval. 

Thus the proposed controller can effectively handle real 

time data and propose a control stategy . 
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NOMENCLATURE 

The main notations used in this paper are listed below 

for quick reference. 

BSS Battery storage system 

MG  Microgrid 

EMS  Energy Management System 

PSO  Particle Swarm Optimization 

  (t)  Battery output at time t 

      Power rating of BSS 

      Energy rating of BSS 

    Time interval of operation 

      Charging efficiency of BSS 

       Discharging efficiency of BSS 

   ( )  Current State of charge of BSS 

        Minimum SOC value  

        Maximum SOC value 

   ( )  Initial SOC value 

   ( )  Final SOC value 

    Generation cost of controllabe sources  

a,b  Cost coefficients of controllabe sources 

  ( )  Power output of controllable sources at 

time t 

          Capital cost of BSS 

     ,    Cost coefficients of BSS 

     Operation and Maintenance cost of 

BSS 

r  Interest rate for financing BSS 

n  Lifetime of BSS 

    Total cost of operation of BSS 

   ( )  Power output of fuel cell at time t 

   ( )  Power output of micro turbine at time t 

  ( ) Cost of purchase from grid/ Revenue 

obtained by selling to grid at time t.  

  ( ) Power output of main grid at time t 

  ( ) Power output of wind at time t 

   ( ) Power output of solar PV panel at time 

t  

  ( ) Total Demand of microgrid at time t.  

 ̅    ( ) Maximum power that can be imported 

from grid/exported to grid. 

 


