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Abstract— The secure operation of power systems is always the first aid in the power system operation. However, an 

economic operation of power systems in both the normal and contingency cases is always a goal to achieve for electric 

power system operators. This paper is dealing with the multi-objective security-constrained optimal active and reactive 

power dispatch (MO-SCOARPD) problem in power systems considering different objectives such as fuel cost, power 

losses, stability index, and voltage deviation with the worst scenarios of contingency analysis for transmission line 

outage to determine the best states for operation. The MO-SCOARPD is a very complex and large-scale problem due to 

handling many control variables in both normal and contingency cases. In this paper, a hybrid particle swarm 

optimization and differential evolution (HPSO-DE) has been implemented for solving the problem. The proposed 

HPSO-DE is a hybrid method to utilize the advantages of both PSO and DE methods for solving the complex and large-

scale optimization problems. Consequently, the new hybrid method is more effective than the DE and PSO in obtaining 

the optimal solution for the optimization problems. The effectiveness of the proposed HPSO-DE has been verified on the 

IEEE 30 bus system for different objectives and various scenarios of line outages. The obtained results have indicated 

that the proposed HPSO-DE method can find better solution quality than both DE and PSO methods for all cases. 

Therefore, the proposed HPSO-DE can be a very favorable and promising method for dealing with the complex and 

large-scale optimization problem in power systems such as the MO-SCOARPD problem. 

 
Keywords— Differential evolution, contingency analysis, hybrid particle swarm optimization and differential evolution, 

optimal active and reactive power dispatch, fuel cost, stability index, voltage deviation. 
 

1. 
INTRODUCTION 

Optimal active and reactive power dispatch (OARPD) is 

considered as an important sub-problem in the operation 

of the power systems and its solution is closely related to 

many other important problems in the power system 

analysis and evaluation. The mathematical model of the 

OARPD problem was first introduced by Carpentier in 

1962 [1]. The OARPD aims to find the optimum settings 

of control variables such as generator active power 

outputs and voltages, shunt capacitors/reactors, and 

transformer tap changing settings in order to minimize 

total generation cost while satisfying the generator and 

system constraints [2]. Thus, the OARPD problem has 

become a powerful tool to assist the system operators in 

decision making for the planning and operating of their 

system. However, OARPD is a complex and large-

dimension optimization problem because there are many 

adjustable variables. In addition, the problems of 

OARPD have a nonlinear characteristic due to the 

nonlinear objective function and constraints. Despite the 

suffered difficulties, enthusiastic researchers have made 

continuous efforts to propose newly robust approaches 

for solving the problem effectively.  

In the early stage of the problem discovery process, 
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traditional optimization methods including Newton-

based techniques [3], linear programming [4], non-linear 

programming [5], quadratic programming [6], and 

interior point methods [7] were first applied in problem 

solving and achieved encouraging results. In general, 

these methods are effective in solving the simple 

OARPD problems with some theoretical assumptions 

such as convex, continuous, and differential objective 

functions [8]. However, the OARPD problem is an 

optimization problem with non-convex, non-continuous, 

and non-differentiable objective functions. 

Consequently, conventional methods may be difficult to 

cope with such problems. Therefore, the determination of 

a global optimal solution is not possible with 

conventional methods. 

In the later stage of the discovery, artificial 

intelligence-based methods have emerged as one of the 

alternative options for solving the OARPD problem with 

promising results obtained. The main solution methods 

include genetic algorithm (GA) [9], evolutionary 

programming (EP) [10], artificial neural network (ANN) 

[11], bacteria foraging algorithm (BFA) [12], tabu search 

(TS) [13], and simulated annealing (SA) [14]. In addition 

to the single methods, hybrid methods have been also 

widely implemented for solving the OARPD problem 

such as a hybrid shuffle frog leaping algorithm and 

simulated annealing (SFLA-SA) method [15] as well as a 

hybrid modified imperialist competitive algorithm and 

teaching learning algorithm (MICA–TLA) [16]. Based 

on the reports from the dominant studies in solving the 

traditional OARPD problem, it may be recognized that 

various optimization methods have achieved promising 
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results for the problem. However, the solution of the 

traditional OARPD only meets the normal operating 

requirements of the power system. In order to explain 

more clearly the mentioned issue, the OARPD problem 

was initially established to guide the system operators 

toward optimum operation of the power system under 

normal condition (N-0) without considering contingency 

conditions (N-1) such as outage of a transmission line or 

a generator. On the other hand, system security has not 

been properly evaluated in such situation and limit 

violation after a credible contingency may therefore 

occur. To overcome this challenge, the traditional 

OARPD problem can be corrected with the inclusion of 

security constraints representing operation of the system 

after contingency outages. These security constraints 

allow the OARPD to dispatch the system in a defensive 

manner. That is, the OARPD now forces the system to be 

operated so that if a contingency happened, the resulting 

voltages and flows would still be within limit. This 

special type of OARPD which is called a security-

constrained OARPD (SCOARPD) is a vital research area 

for industrials to enhance the reliability of practical 

power systems. Recently, a series of articles have been 

proposed for solving this problem. In [17], the authors 

have presented a self-organizing hierarchical particle 

swarm optimization with time-varying acceleration 

coefficients (SOHPSO-TVAC) for dealing with the 

SCOARPD problem to achieve the total fuel cost 

minimization objective. However, the valve point 

loading effects characteristic of thermal units is not taken 

into account in this study, which makes the problem 

unrealistic. Xu et al [18] have introduced a contingency 

partitioning approach for preventive-corrective security-

constrained optimal power flow computation. However, 

the authors have used a DC model instead of a AC model 

for calculating power flow and not taken into account the 

valve loading effects of units when evaluating the cost 

objective function, which make the problem unrealistic. 

A modified bacteria foraging algorithm (MBFA) has 

been proposed in [19] to determine the optimal operating 

conditions with the aims of minimizing the cost of wind-

thermal generation system and reducing the active power 

loss while maintaining a voltage secure operation. 

Although the authors have introduced a detailed cost 

model for the SCOARPD problem that considers the 

generation cost of different types of generators, the 

generation cost component of thermal units in the 

proposed cost model does not include the valve loading 

effects. In [20], the authors have proposed a fuzzy 

harmony search algorithm (FHSA) to find out the 

optimal solution for OARPD problem for power system 

security enhancement. However, in this study, the valve 

point loading effects of units, which causes the high non-

convexity of the problem, is not considered. In [21], a 

new planning strategy based on adaptive flower 

pollination algorithm (APFPA) has been applied to 

tackle the SCOARPD problem with the objectives of fuel 

cost, power losses and voltage deviation at normal and 

critical conditions such as severe faults in generation 

units. However, this study does not evaluate the different 

serious scenarios of credible contingencies, such as loss 

of transmission lines, to select the best post-contingency 

operating states. An improved version of conventional 

PSO, namely pseudo-gradient based PSO (PG-PSO), has 

been proposed [22] to find out the solution of SCOARPD 

problem with the aim of minimizing the total fuel cost of 

thermal units. However, there are no specific criteria for 

assessing the severity level of an outage contingency in 

this research. In [23], the authors have developed a 

multi-objective model for SCOARPD problem in which 

a twin objective of generation cost and voltage stability 

margin is minimized through a robust differential 

evolution algorithm (RDEA) - based optimization tool. 

However, this study does not evaluate the different 

serious scenarios of credible contingencies, such as loss 

of transmission lines, to select the best post-contingency 

operating states. It is worth mentioning again that the 

SCOARPD problem is inherently highly non-convex, 

since the considered problem model is related to valve 

point loading effects and AC power flow equations. 

Normally, previous authors have endured this challenge 

and tried to apply adaptive optimization algorithms to 

deal with it. However, in a recent study [24], Attarha and 

Amjady have completely changed this point of view by 

proposing a new technique based on Taylor series and 

power transformation techniques to convert highly non-

convex SCOARPD problem to a convex one. The 

authors have considered generation cost of thermal units 

as the objective of this study. In [25], Marcelino et al 

have proposed the application of a new hybrid canonical 

differential evolutionary particle swarm optimization 

(hC-DEEPSO)-based hybrid approach for coping with 

the problem to minimize the two different mono-

objective functions of total operating cost and total active 

power losses.  

From the literature survey, it can be observed that the 

SCOARPD problem is approached in different ways 

according to research objectives. Various techniques 

have been used to solve single-objective SCOARPD 

problem and the total fuel cost of thermal units is the 

main objective considered. Only a few studies have 

examined more than one objective when solving the 

problem, for example, the further consideration of power 

loss, voltage deviation or voltage stability. However, in 

previous studies, the authors only treat these objectives 

separately without considering combinations of several 

objectives through a multi-objective optimization 

framework. In addition, in most previous studies, there 

are no specific criteria for assessing both the severity 

level of an outage contingency and the resiliency of 

power system with corresponding corrective control 

actions. This is probably the study gap that has been 

found in previous studies and motivated us to conduct 

this study.  

The main ideas of the study can be expressed as 

follows: with fuel cost mentioned as a key objective, 

there may be several different pairs of two objectives 

including fuel cost and power losses, fuel cost and 

voltage deviation and fuel cost and voltage stability for 

further analysis. It is worth noting that in the SCOARPD 

problem with combined objectives, the obtained 

operating instructions help not only to reduce the 

generation cost, but also to improve on a related 

technical objective even in outage contingency cases. 
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Further, a specific criteria for ranking the severity cases 

of outage contingency is necessary. 

In this paper, a multi-objective SCOARPD (MO-

SCOARPD) framework is formulated and a hybrid 

particle swarm optimization and differential evolution 

(HPSO-DE) [26] is also proposed for solving the MO-

SCOARPD problem with non-smooth cost functions 

such as quadratic cost function and fuel cost with valve 

point effects for both the normal case and selected outage 

cases considering different objectives of fuel cost, power 

losses, stability index, and voltage deviation. For the 

contingency analysis, the outage cases are considered by 

calculating the severity index (SI) using N-1 criteria. The 

value of SI is used to rank the severity cases of outage 

contingency. The outage case corresponding to the high 

SI value will be selected for inclusion in the problem 

together with the normal case. Further, in this study, the 

multi-objective problem considers two objectives for 

each operating case including fuel cost and power losses, 

fuel cost and stability index, as well as fuel cost and 

voltage deviation. For multi-objective problem, a price 

penalty factor based technique has been proposed to 

convert the multi-objective problem to a single-objective 

problem for a direct determination of the best solution 

for the problem. Regarding the proposed hybrid 

approach, HPSO-DE, it combines differential 

information obtained by DE with the memory 

information extracted by PSO to create the promising 

solution. The proposed method is tested on IEEE 30-bus 

system and their results are compared with conventional 

PSO and DE methods. 

2. PROBLEM FORMULATION 

The SCOARPD is really a very complex and large-scale 

optimization problem in power system operation. The 

objective of this problem is to determine the control 

variables in both normal and contingency cases including 

voltage magnitude at generation buses, reactive power 

generation of switchable capacitors, and position of 

transformer tap changers so as the objective of fuel cost, 

power losses, stability index, or voltage deviation is 

minimized satisfying the active and reactive power 

balance, real and reactive power generation limits, bus 

voltage limits, reactive power limits of shunt capacitors, 

transformer tap changer limits, and power limits in 

transmission lines. The multi-objective SCOARPD 

problem is a combination of different objective functions 

in the SCOARPD problem. Consequently, the considered 

MO-SCOARPD problem is a very complex and large-

scale problem with several cases to be calculated. In this 

paper, the considered multi-objective cases include the 

fuel cost with the quadratic function or valve point 

loading effects combined with another objective of 

power losses, stability index, or voltage deviation. On the 

other hand, the contingency analysis applied in this 

problem is based on the severity index (SI) which is used 

to determine the worst cases of line outages in the 

system.  

In general, the mathematical model of the SCOARPD 

problem is formulated as follows: 

 Min [F1(X, U), F2(X, U)] (1) 

subject to the equality and inequality constraints of the 

normal case: 

g(X, U) = 0 (2) 

h(X, U)  0 (3) 

and the equality and inequality constraints of the outage 

case: 

g(X
S
, U

S
) = 0 (4) 

h(X
S
, U

S
)  0 (5) 

where F1(X,U) is the first objective of fuel cost from 

thermal generating units, F2(X,U) is the second objective 

of power losses, stability index, or voltage deviation 

from the system, X is the vector of control variables, U is 

the vector of state variables, g(.) is the set of equality 

constraints, h(.) is the set of the inequality constraints, 

and S is the set of outage lines.    

2.1 Objective functions 

 Fuel cost: This objective is to minimize the total 

fuel cost of all thermal generating units injecting real 

power into the system: 





gN

i

gii PF F
1

1 )(Min Min  (6) 

where Fi(Pgi) is the fuel cost function of thermal unit i 

represented whether by a quadratic function 

2)( giigiiigii PcPbaPF    (7) 

or by a sinusoidal function added to the quadratic 

function representing valve point loading effects:  

|))(sin(|)( min,

2

gigiiigiigiiigii PPfePcPbaPF 

  (8) 

in which, Pgi is the power output of thermal unit i, Pgi,min 

is the minimum power output of thermal unit i, and ai, bi, 

ci, ei and fi are fuel cost coefficients, and Ng is the 

number of generation buses. 

 Power losses: This objective is to minimize the 

total power losses of all lines in the system as follows: 

 











l

l

N

l

jijijil

N

l

lloss

VVVVg

P F

1

22

1

,2

)cos(||2||||Min 

Min Min 



 (9) 

where gl is the conductance of line l; Nl is the number of 

lines; |Vi| and |Vj| are the voltage magnitude at buses i and 

j, respectively; i and j are the voltage angle at buses i 

and, j, respectively. 

 Stability index: This objective is to improve the 

voltage stability at load buses by minimizing the 

maximum voltage stability index Li,max obtained among 

the load buses [27]. The objective is expressed follows: 

  di NiLL F ..., ,2 ,1 ,}max{Min Min Min max3 

 (10) 
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where Li is the stability index at bus i; Lmax is the global 

stability index of the system; Nd is the number of load 

buses. 

The stability index at a load bus is calculated as 

follows.  

The injected currents at buses are calculated based on 

the bus admittance matrix Ybus and bus voltage Vbus given 

by: 

busbusbus VYI   (11) 

The above equation is rewritten by separating the 

generation and load buses as: 



















LLLG

GLGG

L

G

YY

YY

I

I
 (12) 

where IG and VG are the current and voltage at generation 

buses, respectively; IL and VL are the current and voltage 

at load buses, respectively; YGG is the admittance related 

among generation buses; YLL is the admittance related 

among load buses; and YGL and YLG are the admittance 

matrix related to both generation and load buses. 

The above equation can be rewritten by: 

















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







G
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L

V

I

YK
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I

V
 (13) 

where the sub-matrix FLG is represented by: 

FLG = -[YLL]
-1

[YLG] (14) 

Therefore, the L-index of load bus i is defined as:  

||

||

1
1

li

N

j

gjij

i
V

VF

L

g





; i = 1, 2, …, Nd (15) 

where Vgi is the voltage magnitude at generation bus i, Vli 

is the voltage magnitude at load bus i, and Nd is the 

number of load buses. 

 Voltage deviation: This objective is to minimize 

the total voltage magnitude deviation at load buses 

expressed by: 





dN

i

lili VVVD F
1

)0(

4 ||||Min Min  (16) 

where Vi
(0)

 is the pre-specified voltage magnitude at load 

bus i, which is set to 1.0 p.u. in this study.  

2.2 Equality and Inequality Constraints 

The problem is subject to the equality and inequality 

constraints for the normal and outage cases as follows. 

- Real and reactive power balance: The real and 

reactive balance at each bus in the system is represented 

as follows. 





bN

j

ijjijijidigi VYVPP
1

)cos(||||||  , i = 1, 2, 

…, Nb (17) 





bN

j

ijjijijidigi VYVQQ
1

)sin(||||||  , i = 1, 2, 

…, Nb (18) 

where Pgi and Qgi are the real and reactive power outputs 

of thermal unit i, respectively; Pdi and Qdi are the real and 

reactive power demands at load bus i, respectively; Nb is 

the number of buses in the system, |Vi|i and |Vj|j are 

the voltages at buses i and j, respectively, and |Yij|ij is 

an element in Ybus matrix related to buses i and j.  

- Real and reactive power generation limits: The 

limits of real and reactive power outputs of thermal units 

are represented as: 

max,min, gigigi PPP  , i = 1, 2, …, Ng (19) 

max,min, gigigi QQQ  , , i = 1, 2, …, Ng (20) 

where Pgi,min and Pgi,max are the minimum and maximum 

real power outputs of thermal unit i, respectively; Qgi,min 

and Qgi,max are the minimum and maximum reactive 

power outputs of thermal unit i, respectively. 

- Bus voltage limits: The generation and load bus 

voltages are limited within their upper and lower limits 

described by:  

max,min, gigigi VVV  , i = 1, 2, …, Ng (21) 

max,min, lilili VVV  , , i = 1, 2, …, Nd (22) 

where Vgi is the voltage at generation bus i; Vli is the 

voltage at load bus i; Vgi,max and Vgi,min are the maximum 

and minimum voltages at generation bus i, respectively; 

Vli,max and Vli,min are the maximum and minimum voltages 

at load bus i, respectively. 

- Capacity limits of switchable capacitors: The 

capacity of switchable capacitor banks should be limited 

in their upper and lower boundaries. 

max,min, cicici QQQ  , i = 1, 2, …, Nc (23) 

where Qci is the capacity of switchable capacitor bank at 

bus i; Qci,max and Qci,min are the maximum and minimum 

capacity of switchable capacitor banks; and Nc is the 

number of buses with switchable capacitor bank. 

- Limits of transformer tap changer: The transformer 

tap changers should be within their lower and upper 

limits as. 

max,min, kkk TTT  , k = 1, 2, …, Nt (24) 

where Tk is the value of the transformer tap changer k; 

Tk,min and Tk,max are the minimum and maximum values of 

transformer tap changer i, respectively; and Nt is the 

number of transformer tap changers. 

- Transmission line limits: The apparent power flow 

in transmission lines should be limited in their capacity. 

max,ll SS  , l = 1, 2, …, Nl (25) 

where Sl is the apparent power flow in line l, Sl,max is 

maximum capacity of transmission line l, and Nl is the 

number of transmission lines. 
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For the security constraint, the outage cases are 

considered by calculating the severity index (SI) using 

N-1 criteria. The value of SI used to rank the severity 

cases of line outage is calculated by: 

2

1 max,



















lN

l l

l

S

S
SI   (26) 

In this research, three cases will be considered in this 

paper including a combination of fuel cost and power 

loss, fuel cost and stability index, and fuel cost and 

voltage deviation. In each case, the number of control 

and state variables will depend on the used objectives.  

3. IMPLEMENTATION OF HPSO-DE FOR 

SOLVING THE PROBLEM 

3.1 Particle Swarm Optimization Method 

The particle swarm optimization (PSO) method is a 

population based meta-heuristic method based on the 

movement organization of a bird flock or a fish school 

developed by Kennedy and Eberhart in 1995 [28]. The 

main advantages of the PSO are very simple and easy for 

implementation and applicable to large-scale problem 

with fast convergence.  

In the PSO algorithm, a population (swarm) includes 

individuals (particles) where each particle contains two 

parameters of position and velocity that means each 

particle has its own position and moves from a position 

to another with a certain velocity. However, the position 

and velocity of each particle in the swarm should not 

exceed their limits to guarantee the intake of swarm.  

Consider a population with Np particles where each 

particle d (d = 1, 2, …, Np) is represented by a position 

Xid and a velocity Vid, in which i = 1, 2, …, N is the 

dimension in the position of each particle representing 

the dimension of a problem. The velocity of each particle 

is calculated by: 

)(**

)(**

)1(
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31
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


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n
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n
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n

id

XGbestrandc

XPbestrandcVV 
 (27) 

and the position of particles is updated by: 

)1()1()(   n

id

n

id

n

id VXX
 (28) 

where  the inertia weight parameter; n is the current 

iteration; c1 and c2 are the individual and social cognitive 

factors, respectively; Pbestd is the best position of 

individual d up to iteration n-1, and Gbest is the best 

position among positions of particles up to iteration n-1. 

 In addition, the conventional PSO method can be 

improved to enhance its search ability for complex 

optimization problems, a constriction factor has been 

added by Clerc in 1999 [29]. Therefore, the velocity of 

particles of PSO with constriction factor is calculated by: 
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in which, the constriction factor  is defined by: 




42

2

2 


,  = c1 + c2,  > 4    (30) 

Beside the improvement in the velocity of particles, 

the position update of particles can be also improved to 

enhance search ability of the method. One of the 

methods for updating the position of particles is a 

concept of pseudo-gradient [30]. The pseudo-gradient is 

used for determining the best search direction in the 

search space of non-differentiable problems. Suppose 

that a function f(x) is minimized, the pseudo-gradient 

gp(x) from a point xk moving to another one xl is 

determined as follows [31]: 

i) If f(xk)  f(xl): The direction is good and the 

particle should continue to follow on this one. 

Consequently, the pseudo-gradient at point l is 

nonzero, e.g. gp(xl) 0. 

ii) If f(xk)  f(xl): The direction is not good and the 

particle should change to another one. Therefore, 

the pseudo-gradient at point l is zero, e.g. gp(xl) = 

0. 

Based on the rules, the new position of particles is 

updated using the pseudo-gradient as follows: 




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
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

otherwise
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idp
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 (31) 

In this paper, the pseudo-gradient based PSO with 

constriction factor is used in the proposed hybrid method 

with the velocity and position of particles are calculated 

from (29) and (31), respectively. 

3.2 Differential Evolution Method 

The DE developed by Storn and Price in 1995 [32] is 

also a simple and effective population based method for 

solving complex optimization problems. In the DE 

method, there are three main stages for generating a new 

population from the parent population including 

mutation, crossover, and selection as follows.  

 Mutation stage: This stage is to create a new 

population by using a base individual added by a 

difference of other random individuals to effectively 

explore the search space. In this paper, the DE/rand/1 

mutation scheme is selected among the mutation 

schemes as follows: 

)(* )(

3

)(

2

)(

1

)(' n

dr

n

dr

n

dr

n

id XXFXX   (32) 

where r1, r2, and r3 are differently integer random 

numbers in the range [1,Np], 
)(' n

idX is the newly created 

individual based on other individuals, and F is the 

mutation factor in the range [0,1]. 

 Crossover stage: This stage is also referred as the 

recombination stage, which is activated to increase the 

diversity of the perturbed individuals. This stage creates 

new individuals by mixing the successful individuals 

from the previous generation with the newly created 

individuals as: 
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

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)('' or if
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where rand5 is a random number in [0,1], Drand is a 

integer random number in the range [1,Np], and CR is the 

crossover rate in the range [0,1]. 

 Selection stage: This stage is to determine that 

whether an individual is selected for the next generation 

or not by comparing the best individuals from the 

previous generation with the new created ones in the 

current generation. The better ones will be selected for 

the next generation. 

3.3. The Hybrid PSO and DE Method 

Although PSO and DE are efficient methods for dealing 

with different optimization problems, they still suffer 

difficulties when dealing with large-scale and complex 

problems. The PSO method can quickly obtain the 

optimal solution for a problem but the high solution 

quality for optimization problems is not always 

guaranteed. In the contrary, the DE method is very 

effective for small-scale problems but it may suffer 

difficulties of long computational time, low solution 

quality, or infeasible solution when dealing with large-

scale problems. In this paper, a hybrid of PSO and DE 

methods is proposed by utilizing their advantages to 

form a more powerful method for dealing with large-

scale and complex optimization problems. Therefore, the 

proposed hybrid PSO and DE (HPSO-DE) method is a 

very effective method for dealing with a very large-scale 

and complex optimization problem of MO-SCOARPD in 

power systems. The proposed method consists of the 

main steps for solving optimization problems as follows:  

 Initialization: An initial population of Np 

individuals is randomly initialized in their lower 

and upper limits.  

 Creation of the first new generation: The first 

new generation in this step is created using the 

mechanism of the PSO method based on the 

initialized one. The new generated individuals are 

then evaluated to select the best ones for the next 

generation.  

 Creation of the second new generation: The 

mechanism of this step is from the DE method to 

create the second new generation. The newly 

created individuals are also evaluated to select the 

best ones for the next iteration.   

3.4. Implementation of the Hybrid PSO and DE 

Method 

3.4.1 Price penalty factor 

For dealing with a multi-objective optimization problem, 

there are usually two approaches used to convert the 

multi-objective problem to a single-objective problem 

including the weighting factor method to form a Pareto 

optimal front where the best compromise solution can be 

obtained [33] and the price penalty factor for a direct 

determination of the best solution for the problem [34]. 

In this paper, the second one is used since the first one is 

time consuming and it is not appropriate for this study 

with several scenarios to be considered. 

In this study, three cases are investigated where each 

case includes a pair of two objectives as follows: 

 Fuel cost and power losses:  
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 Fuel cost and stability index: 
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 Fuel cost and voltage deviation: 

 




















VDhPF

FhFF

gN

i

gii

III

*)(Min 

*Min 

2

1

431

 (36) 

where the penalty factors h1 , h2, and h3 corresponding to 

the combined objectives FI, FII, and FIII are respectively 

determined based on the obtained solution from the 

power flow problem in the base case as follows:  
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3.4.2 Implementation of HPSO-DE 

The overall procedure of the proposed HPSO-DE applied 

for solving the MO-SCOARPD problem includes the 

steps as follows: 

Step 1: Select control parameters for the method 

including the population size Np, maximum 

number of iterations Nmax, individual and social 

cognitive coefficients c1 and c2, mutation factor 

F, crossover ratio CR, and penalty factors.  

 Perform the contingency analysis, calculate the 

SI value, and select the most severe cases 

corresponding to the high SI value for inclusion 

together with the normal case. 

Step 2: Initialization 

 An initial population with Np individuals, where 

each individual d (d = 1, 2, …, Np) contains a 

vector of control variables represented by 
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where bus 1 is selected as the slack bus, i = 1, 2, 

…, N with N = 2Ng + Nc + Nd -1. The state 

variables represented by 

]

,...,,,,...,,,,...,,,[ 2121211

l

dg

lN

lllNllgNggg

S

SSVVVQQQPU 

are used to evaluate the feasible solution 

provided from the individuals.  

 For each individual d in the population, its 

position is initialized by: 

)(* minmax

1

min)0(

idididid XXrandXX   (40) 

 In addition, the velocity of each individual d is 

also initialized similar to its position: 

)(* minmax

2

min)0(

idididid VVrandVV   (41) 

where Xid
max

 and Xid
min

 are the upper and lower 

limits for individual d, respectively; Vid
max

 and 

Vid
min

 are the upper and lower bounces of 

velocity for individual d, respectively; rand1 and 

rand2 are the random numbers in the range 

[0,1]; and the maximum and minimum limits for 

the velocity of individuals are determined by: 

)(* minmaxmax

ididid XXRV   (42) 

maxmin

idid VV   (43) 

where R is the scale factor for the velocity limits 

from the positions. 

Step 3: Evaluate the initial population 

 The power flow problem is solved based on the 

initial population to evaluate the quality of 

individuals. The result from the obtained 

solution from the power flow problem is used to 

include in the fitness function for each 

individual in the normal case. Moreover, the 

initial population is also used to solve the power 

flow problem for the severe case to evaluate the 

quality of individual for line outage case. The 

fitness function for each individual consisting of 

the results from the normal and severe cases is 

calculated by:    
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 where F is one of the combined objectives as 

defined in (34)-(36); Kp0, Kq0, Kv0, and Ks0 are 

the penalty factors for real power at the slack 

bus, reactive power at generation buses, voltage 

at load buses, and apparent power flow in 

transmission lines the normal case, respectively; 

Kq, Kv, and Ks are the penalty factors for the 

outage case, lim

1gP  is the power limits at the slack 

bus; lim

giQ is the reactive power limits at 

generation buses; lim

liV is the voltage limits at 

load buses, Q
s
gi is the reactive power at 

generation bus i in the outage case; V
s
li is the 

voltage at load bus i in the outage case; S
s
l is the 

apparent power flow in transmission line l in the 

outage case. 

 The limits of the state variables consisting of the 

real power output at the slack bus, reactive 

power at generation buses, and voltage at load 

buses for both normal, and outage cases are 

defined by: 
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 where X represents Pg1, Qgi, and Vli. 

 The initial population is set to the best position 

Pbestd of each particle and the corresponding 

best fitness function is set to FTd
best

. The 

position of particle having the best fitness 

function value among particles in the population 

is set to Gbest.  

 Set the iteration counter k = 1. 

Step 4: Generate a first new population 

 The first new population in this step is created 

using the mechanism of the PSO method. 

Firstly, the new velocity of particles in the 

population is calculated by using (29). New 

created velocity of particle is checked with their 

upper and lower limits and if violations are 

found, a repair action is used as follows:   
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  The new generated population is then updated 

by using (31) and the new obtained position of 

particles is also need to be checked with their 

limits and a repair action is applied if there are 

any violations as follows: 
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Step 5: Evaluate the first created population 

 The new generated population is used to run the 

power flow problem in the normal and outage 

cases and the obtained results from the problem 

are used to calculate the fitness function (44) to 



 

D. N. Vo, T. P. Nguyen, and K. D. Nguyen / GMSARN International Journal 12 (2018) 84 - 117 

 
91 

evaluate the quality of individuals.  

Step 6: Mutation for the second created generation 

 The mutation stage is to create a second new 

population using mechanism of the DE method. 

The individuals Xid
‘(k)

 in the second new 

population are determined from the first 

generated population Xid
 (k) 

by the PSO method 

as in (32).  

 The new created position Xid
’(k)

 is checked with 

their limits and a repair action is used as in (45) 

if any limit violations found. 

Step 7: Crossover for the second created generation 

 The purpose of the crossover process in the DE 

method is to provide new individuals Xid
’’(k) 

from the second new created population Xid
’(k)

 

by using (33).  

Step 8: Evaluation for the second created population 

 The newly generated individuals from the 

crossover stage is used to solve the power flow 

problem in the normal and outage cases and the 

obtained results are applied to calculate the 

fitness function in (44). 

Step 9: Selection for the second created population 

 The selection process in this step is to choose 

the best individuals for the next generation by 

comparing the values of the fitness function 

from individuals from the first and second 

generated populations. The individual 

corresponding to the lower the value of the 

fitness function will be selected for the next 

population as follows:  
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 The new fitness function value FTd
new(d)

 and the 

corresponding individual Xid
new(n)

 are updated 

accordingly. 

Step 10: Update the best population 

 The best selected individuals from the first 

generated population by PSO and the second 

generated population be DE in this iteration is 

compared to the best one from the previous 

iteration to choose the best individual so far for 

the next iteration. The better individuals 

between the two populations will be selected 

and will be stored   as the best individual so far. 

The update process is performed as follows: 



 
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otherwisePbest

FT FTX
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d

best

d

knew

d

knew

id

d
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 The corresponding better fitness function FTd
best

 

is also updated for comparison in the next 

iteration and the best position among Pbestd is 

updated to Gbest.  

Step 11: Stopping criteria 

 Only the number of iterations is controlled in 

this study. If k < Nmax, k = k + 1 and return to 

Step 4, Otherwise, stop. 

4. NUMERICAL RESULTS 

The proposed HPSO-DE has been verified on the IEEE 

30-bus system with quadratic fuel cost function and 

valve point loading effects for both the normal case and 

selected outage cases considering different objectives of 

fuel cost, power losses, stability index, and voltage 

deviation. In this study, the multi-objective problem 

considers two objectives for each case including fuel cost 

and power losses, fuel cost and stability index, and fuel 

cost and voltage deviation.  

The test system comprises six generators at buses 1, 2, 

5, 8, 11, and 13 where bus 1 is selected as the slack bus, 

41 transformers and transmission lines, and two 

switchable capacitor banks located at buses 10 and 24. 

The data of this system is given in [35] and the fuel cost 

data for generators with quadratic function and valve 

point loading effects is given in Tables 1 and 2, 

respectively. The other data for the system such as the 

bus voltage and transformer tap changer limits is given in 

Table 3 and the reactive power limits at generation and 

compensated buses given in Table 4. For the base case, 

the real power outputs at generation buses 2, 5, 8, 11, and 

13 are set to 80 MW, 50 MW, 20 MW, 20 MW, and 20 

MW, respectively. The limits of apparent power in 

transmission lines are given in Appendix. 

 

 

Table 1: Data of generators with quadratic cost function of the IEEE 30-bus system 

Unit ai ($/h) bi ($/MWh) ci ($/MW
2
h) Pi,max (MW) Pi,min (MW) 

1 0 2.00 0.00375 200 50 

2 0 1.75 0.01750 80 20 

5 0 1.00 0.06250 50 15 

8 0 3.25 0.00834 35 10 

11 0 3.00 0.02500 30 10 

13 0 3.00 0.02500 40 12 
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Table 2: Data of generators with valve point effects of the IEEE 30-bus system 

Unit ai ($/h) bi ($/MWh) ci ($/MW
2
h) ei ($/h) fi (1/MW) Pi,max (MW) Pi,min (MW) 

1 150 2.00 0.00160 50 0.063 200 50 

2 25 2.50 0.01000 40 0.098 80 20 

5 0 1.00 0.06250 0 0 50 15 

8 0 3.25 0.00834 0 0 35 10 

11 0 3.00 0.02500 0 0 30 10 

13 0 3.00 0.02500 0 0 40 12 

 

Table 3: Bus voltage and transformer tap changer limits of the IEEE 30-bus system 

 Lower limit (pu) Upper limit (pu) 

Slack bus voltage 0.95 1.05 

Gen. bus voltage 0.95 1.10 

Load bus voltage 0.95 1.05 

Trans. tap changer 0.90 1.10 

 

Table4: Reactive power limits at generation and compensated buses of the IEEE 30-bus system 

 Lower limit (MVAr) Upper limit (MVAr) 

Generation buses 

Bus 1  -20 200 

Bus 2  -20 100 

Bus 5  -15 80 

Bus 8  -15 60 

Bus 11  -10 50 

Bus 13  -15 60 

Compensated buses 
Bus 10 0 19 

Bus 24 0 4.3 

 

For the contingency analysis, the SI is calculated for 

each N-1 outage line and five outage cases including 

lines 1-2, 1-3, 3-4, 2-5 and 4-6 are selected as the most 

severe outage cases due to the highest SI value, where 

each of these five outage cases is considered in one 

contingency case. 

The conventional PSO and DE methods have been also 

implemented for solving the problem and run on the 

same computer for a result comparison. For 

implementation of the methods, their control parameters 

are generally selected as follows. The number of 

individuals Np in the population is set to 10 and all 

penalty factors are set to 10
6
 for all implemented 

methods. The cognitive coefficients c1 and c2 for the 

proposed HPSO-DE are set to 2.05. The mutation factor 

F and the crossover ratio CR for the proposed HPSO-DE 

and DE methods are set to 0.7 and 0.5, respectively. The 

cognitive coefficients c1 and c2 for the PSO are set to 2.0. 

The maximum number of iterations is set to 150 for the 

normal case with quadratic cost function, and 200 for the 

normal case with valve point loading effects. For the 

contingency cases, the maximum number of iterations is 

set to 200 for the cases with quadratic cost function and 

300 for the cases with valve point loading effects for all 

implemented methods. All these methods are coded in 

Matlab and run 50 independent trials for each case in a 

CPU E5-1620@3.5 GHz. In this paper, the Newton-

Raphson method in Matpower toolbox [35] is used to 

solve the power flow problem. 

4.1 Base case 

In the base case, the methods have been implemented for 

solving the multi-objective OARPD problem with the 

quadratic cost function and valve loading effects of 

generators. The three considered multi-objective cases 

are including the fuel cost and power losses, fuel cost 

and stability index, and fuel cost and voltage deviation. 

For obtaining different solutions, the methods have been 

implemented for solving the problem with single and 

multiple objectives.  

4.1.1 Quadratic fuel cost function 

The results obtained by the methods for the three cases 

with different objectives are given in Tables 5-7. In each 

table, the best solution from DE, PSO, and HPSO-DE for 

single and multiple objectives are provided.  

For the fuel cost objective only, the DE method has 

provided three different best results for the three 
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combinations of objectives while the best results for the 

three cases by PSO and HPSO-DE are not much 

different. In fact, the three cases of the problem with 

three combinations of objectives are the same. The 

standard deviation of DE, PSO, and HPSO-DE from the 

three cases of combined objectives are 3.0723 $/h, 

0.1452 $/h, and 0.0012 $/h, respectively. As observed 

from the standard deviation, the DE method has lower 

solution quality than PSO and HPSO-DE and the 

proposed has the highest solution quality for these cases. 

The best total cost obtained by the proposed HPSO-DE 

from the three combined objectives is better than that 

from DE and PSO. For the power loss objective only, the 

total power loss obtained by the proposed method is 

much lower than that from DE and slightly lower than 

that from the PSO. For the case with the objective of the 

stability index, the stability indices obtained by the three 

methods are approximately together. For the case with 

only the voltage deviation objective, the proposed 

method can obtain a better result than both DE and PSO 

methods. Therefore, the proposed HPSO-DE method is 

can obtain better results than both DE and PSO for the 

cases with single objective.   

For the three cases with combined objectives, the 

proposed HPSO-DE method can obtain dominant 

solutions compared to those by the DE and PSO 

methods. It has indicated that the proposed method 

dominate DE and PSO methods for dealing with the 

considered multi-objective problem.  

For the computational time, the DE is faster than the 

other methods while the proposed HPSO-DE method is 

slower than the others for all cases. It is easy to explain 

that the proposed HPSO-DE method combines both the 

PSO and DE methods, thus it is always slower either one 

of them when dealing with the same optimization 

problem. However, the effectiveness of the proposed 

HPSO-DE method is always higher than that from the 

PSO and DE. Therefore, the hybrid method is better than 

the single methods for the test cases in this section. 

The convergence characteristics of the best result from 

the DE, PSO, and HPSO-DE methods for the three cases 

with the combined objectives including the fuel cost and 

power losses, fuel cost and stability index, and fuel cost 

an d voltage deviation are given in Figures 1 to 3, 

respectively. As observed from the curves, all the 

methods have reached the stability of the fitness function 

after 10 iterations. 

 

 

Table 5: The best result for the base case with quadratic fuel cost and power losses   

Method Min. fuel cost Min. power loss 
Min. combined fuel cost and 

power loss 

DE 

Fuel cost ($/h) 808.4815 907.2449 858.8653 

Power losses (MW) 9.5466 4.9723 5.4654 

Avg. CPU (s) 2.6598 2.5715 2.5806 

PSO 

Fuel cost ($/h) 802.5413 968.0259 845.1316 

Power losses (MW) 9.5035 3.2523 5.2201 

Avg. CPU (s) 4.6641 5.0329 4.9537 

HPSO-DE 

Fuel cost ($/h) 802.2482 967.9584 844.8537 

Power losses (MW) 9.4507 3.2240 5.1915 

Avg. CPU (s) 6.7505 7.3286 7.4612 

 

Table 6: The best result for the base case with quadratic fuel cost and stability index  

Method Min. fuel cost 
Min. stability 

index 

Min. combined fuel cost 

and stability index 

DE 

Fuel cost ($/h) 813.7452 833.1655 811.2307 

Stability index (pu) 0.1732 0.1378 0.1383 

Avg. CPU (s) 3.0015 2.7862 2.8948 

PSO 

Fuel cost ($/h) 802.8308 838.2087 802.9334 

Stability index (pu) 0.1494 0.1375 0.1386 

Avg. CPU (s) 5.2279 5.3368 5.5814 

HPSO-DE 

Fuel cost ($/h) 802.2503 948.8882 802.4336 

Stability index (pu) 0.1386 0.1368 0.1374 

Avg. CPU (s) 7.7314 8.2025 8.1195 
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Table 7: The best result for the base case with quadratic fuel cost and voltage deviation   

Method Min. fuel cost Min. voltage 

deviation 

Min. combined fuel cost 

and voltage deviation 

DE 

Fuel cost ($/h) 808.3679 844.3073 821.0422 

Voltage deviation (pu) 0.5202 0.2405 0.4124 

Avg. CPU (s) 2.4289 2.4720 2.5728 

PSO 

Fuel cost ($/h) 802.7055 843.2551 804.6858 

Voltage deviation (pu) 0.3436 0.1557 0.1597 

Avg. CPU (s) 4.8523 4.9555 4.8307 

HPSO-DE 

Fuel cost ($/h) 802.2482 826.3338 804.0284 

Voltage deviation (pu) 0.7549 0.1399 0.1468 

Avg. CPU (s) 6.7614 6.8924 7.0372 

 

 

 

Fig. 1: Convergence characteristic of DE, PSO, and HPSO-

DE for the base case with quadratic fuel cost and power 

losses. 

 

Fig. 2: Convergence characteristic of DE, PSO, and HPSO-

DE for the base case with quadratic fuel cost and stability 

index. 

 

Fig. 3: Convergence characteristic of DE, PSO, and HPSO-

DE for the base case with quadratic fuel cost and voltage 

deviation. 

 

4.1.2 Valve point loading effects 

For the bases case with the valve point loading effects, 

the investigation is also performed similar to the bases 

case with quadratic fuel cost. In the three cases with 

single objective of fuel cost, the DE has obtained 

different results with large deviation while the PSO and 

HPSO-DE methods can obtain results with smaller 

deviation. The standard deviations for the total fuel cost 

by the three methods for the three cases are 29.1265 $/h, 

3.1357 $/h, and 0.5453 $/h, respectively. Among the 

three methods, the HPSO-DE method can provide the 

highest solution quality than the others due to obtaining 

the lowest standard deviation. For the cases with single 

objective of power losses and voltage deviation, the total 

power loss and voltage deviation from the proposed 

method are slightly lower than those from PSO and DE 

methods, respectively while the stability index obtained 

the proposed method is approximate to that from the DE 

and PSO methods for the single stability index objective. 

For the combined objectives between fuel cost and 

power losses, fuel cost and stability index, and fuel cost 

and voltage deviation, the proposed HPSO-DE method 

has always obtained dominant solutions to the DE and 
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PSO have done. In fact, the proposed method has 

achieved better solution quality than the DE and PSO 

methods for all the considered cases with valve point 

loading effects. The proposed HPSO-DE method is also 

very effective for dealing with the complex and non-

convex problem. 

The computational time in this case is also similar to 

the base case with the quadratic cost function. The 

average CPU time from the proposed method is 

approximate thrice compared to that from the DE method 

and twice compared to that from the DE method for all 

the three combinations of objectives. The convergence 

characteristics of the three methods for the three 

combinations of objectives are given in Figures 4-6. 

Obviously, the fitness function of all methods can reach 

a stable state before 10 iterations. From 10 to 200 

iterations, there are not any further changes from the 

fitness functions from the methods. 

 

Table 8: The best result for the base case with valve point loading effects of fuel cost and power losses   

Method Min. fuel cost Min. power loss Min. combined fuel cost and 

power loss 

DE 

Fuel cost ($/h) 984.7631 1.1553e+03 1.0561e+03 

Power losses (MW) 8.0540 4.5373 5.8433 

Avg. CPU (s) 3.3606 3.2935 3.4183 

PSO 

Fuel cost ($/h) 928.2641 1.1702e+03 1.0432e+03 

Power losses (MW) 10.6817 3.2437 4.6960 

Avg. CPU (s) 6.0432 6.6893 6.4101 

HPSO-DE 

Fuel cost ($/h) 922.1135 1.1700e+03 1.0411e+03 

Power losses (MW) 10.5262 3.2238 4.5415 

Avg. CPU (s) 9.9803 10.2265 9.4259 

 

Table 9: The best result for the base case with valve point loading effects of fuel cost and stability index 

Method Min. fuel cost Min. stability 

index 

Min. combined fuel cost and 

stability index 

DE 

Fuel cost ($/h) 928.6662 1.0986e+03 973.7027 

Stability index (pu) 0.1498 0.1350 0.1487 

Avg. CPU (s) 3.6570 3.6401 3.8860 

PSO 

Fuel cost ($/h) 922.5905 1.0809e+03 924.2321 

Stability index (pu) 0.1558 0.1375 0.1387 

Avg. CPU (s) 6.8653 7.1470 7.2266 

HPSO-DE 

Fuel cost ($/h) 922.9096 1.0210e+03 921.6729 

Stability index (pu) 0.1396 0.1371 0.1383 

Avg. CPU (s) 10.3984 10.7956 11.1463 

 

Table 10: The best result for the base case with valve point loading effects of fuel cost and voltage deviation   

Method Min. fuel cost Min. voltage 

deviation 

Min. combined fuel cost and 

voltage deviation 

DE 

Fuel cost ($/h) 974.7877 1.0626e+03 949.2665 

Voltage deviation (pu) 1.0777 0.2568 0.3619 

Avg. CPU (s) 2.4286 2.4533 2.5834 

PSO 

Fuel cost ($/h) 923.1131 1.0600e+03 930.7257 

Voltage deviation (pu) 0.3502 0.1570 0.2065 

Avg. CPU (s) 4.5225 4.5903 4.7362 

HPSO-DE 

Fuel cost ($/h) 921.8661 1.0660e+03 922.7598 

Voltage deviation (pu) 0.2317 0.1404 0.1683 

Avg. CPU (s) 6.7162 6.7577 6.9673 
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Fig. 4: Convergence characteristic of DE, PSO, and HPSO-

DE for valve point loading effects of fuel cost and power 

losses. 

 

 

Fig. 5: Convergence characteristic of DE, PSO, and HPSO-

DE for valve point loading effects of fuel cost and stability 

index. 

 

Figure 6: Convergence characteristic of DE, PSO, and 

HPSO-DE for valve point loading effects of fuel cost and 

voltage deviation. 

 

4.2 Outage cases 

A contingency analysis is performed before solving 

the outage cases for the problem. The contingency 

analysis is based on the N-1 criteria and the outage case 

corresponding to the high SI value will be selected for 

inclusion in the problem together with the normal case. 

The most severe cases from the analysis for the IEEE 30-

bus system are given in Table 11. Among the outage 

cases, the outage lines 1-2, 1-3, 3-4, 2-5, and 4-6 have a 

higher SI value compared to the other cases and each of 

them is selected for consideration in the problem. 

Therefore, the study in this section will include the 

normal case and one outage line for each the 

combination of objectives those are fuel cost and power 

losses, fuel cost and stability index, and fuel coat and 

voltage deviation for quadratic fuel cost function and 

valve loading effects. 

4.2.1 Quadratic fuel cost 

The problem with the quadratic fuel cost is considered 

for the outage lines as mentioned with three different 

combinations of objectives of fuel cost and power losses, 

fuel cost and stability index, and fuel cost and voltage 

deviation. For each case of line outage, the results for 

single objective and combined objectives are also 

provided.  

4.2.1.1 Fuel cost and power loss objective 

The best results obtained by the methods for the five 

cases of line outage for the combined objective of fuel 

cost and power losses are given in Tables 12 to 16.  For 

the fuel cost objective only, the proposed method can 

obtain much better total cost than that from DE and also 

slightly better than that from PSO for all five outage 

cases. This manner is also similar for the case with single 

objective of power losses, where the total power loss 

provided by the HPSO-DE method is much lower than 

that from the DE method and slightly lower than that 

from the PSO method. For the combined objectives, the 

proposed method only dominate the DE method for the 

case with line 1-2 outage while the solutions for other 

cases of line outage do not dominate each other.  

On the other hand, the successful rate of the DE 

method among the independent runs is generally much 

lower than that from the other methods while the rate of 

success from the proposed method is slightly higher than 

that of the PSO method for both single objective and 

combined objectives. For the CPU time, the proposed 

method is generally thrice slower than the DE method 

and twice slower than the SPO method for all outage 

lines. 

The convergence characteristics of the DE, PSO, and 

HPSO-DE methods for the problem with the combined 

fuel cost and power loss objective for five outage cases 

are given in Figure 7 to 11 and the successful rate of 

these methods for the five outage cases is also depicted 

in Figure 12. As seen from the curves, the fitness 

function of PSO and HPSO-DE can reach the stable state 

less than 10 iterations while that from the DE method 

sometimes reaches the stable state after 10 iterations. 

Moreover, the successful rate as observed from Figure 12 
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is much lower than that of PSO and HPSO-DE methods 

while the proposed HPSO-DE method can reach the 

highest rate of success among the three methods. 

Therefore, the proposed method is very effective for 

solving the problem with the two objective of fuel cost 

and power losses for five outage cases. 

 

 

Table 11: Contingency analysis of the IEEE 30 bus system 

Outage line Overload line Line flow 

(MVA) 

Line flow limit 

(MVA) 

Overload rate 

(%) 
Severity index 

1-2 

2 307.0136 130 236.1643 

16.3035 
4 281.3522 130 216.4248 

7 178.4014 90 198.2238 

10 46.5144 32 145.3575 

1-3 

1 274.0264 180 152.2369 

7.3218 
3 86.1203 65 132.4928 

6 92.7203 65 142.6466 

10 35.2567 32 110.1773 

3-4 

1 271.0750 180 150.5972 

7.1590 
3 84.8816 65 130.5871 

6 91.7672 65 141.1803 

10 34.9449 32 109.2027 

2-5 

3 74.6652 65 114.8695 

6.9418 
6 102.9619 65 158.4030 

7 123.6755 90 137.4172 

10 35.4150 32 110.6719 

4-6 

1 200.5759 180 111.4311 

4.6212 6 98.5645 65 151.6377 

15 67.5536 65 103.9286 

 

 

Table 12: The best result for line 1-2 outage case with quadratic fuel cost and power losses    

Method Min. fuel cost Min. power loss Min. combined fuel cost and 

power loss 

DE 

Fuel cost ($/h) 838.1276 899.8429 868.4918 

Power losses (MW) 6.2099 5.0426 5.8822 

Avg. CPU (s) 7.0076 6.9083 7.0019 

Rate of success (%) 22 20 18 

PSO 

Fuel cost ($/h) 826.3915 967.9847 846.5717 

Power losses (MW) 6.5656 3.2350 5.1752 

Avg. CPU (s) 12.8295 13.4017 13.4816 

Rate of success (%) 98 96 96 

HPSO-DE 

Fuel cost ($/h) 825.3446 967.9579 844.9736 

Power losses (MW) 6.2735 3.2238 5.1872 

Avg. CPU (s) 19.4792 20.1553 19.9610 

Rate of success (%) 98 100 98 
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Table 13: The best result for line 1-3 outage case with quadratic fuel cost and power losses    

Method Min. fuel cost Min. power loss Min. combined fuel cost and 

power loss 

DE 

Fuel cost ($/h) 820.0893 871.6405 815.6695 

Power losses (MW) 8.2336 5.4651 7.7767 

Avg. CPU (s) 6.8023 7.1795 6.8940 

Rate of success (%) 14 30 18 

PSO 

Fuel cost ($/h) 803.1417 968.0002 838.1468 

Power losses (MW) 9.3406 3.2415 5.4960 

Avg. CPU (s) 11.9665 13.0108 13.0386 

Rate of success (%) 98 96 98 

HPSO-DE 

Fuel cost ($/h) 802.5571 967.9600 845.1425 

Power losses (MW) 9.2018 3.2247 5.1819 

Avg. CPU (s) 18.5158 20.6704 19.7703 

Rate of success (%) 98 100 100 

 
Table 14: The best result for line 3-4 outage case with quadratic fuel cost and power losses    

Method Min. fuel cost Min. power loss Min. combined fuel cost and 

power loss 

DE 

Fuel cost ($/h) 811.7975 869.5471 880.2518 

Power losses (MW) 9.6164 5.0592 4.9663 

Avg. CPU (s) 7.3221 6.8247 7.0238 

Rate of success (%) 22 24 30 

PSO 

Fuel cost ($/h) 803.0869 967.8676 845.0038 

Power losses (MW) 9.4465 3.2440 5.2554 

Avg. CPU (s) 12.6111 12.9425 13.3858 

Rate of success (%) 96 96 96 

HPSO-DE 

Fuel cost ($/h) 802.4731 967.9645 845.0078 

Power losses (MW) 9.3108 3.2266 5.1904 

Avg. CPU (s) 19.2162 20.1968 19.8262 

Rate of success (%) 98 100 98 

 
Table 15: The best result for line 2-5 outage case with quadratic fuel cost and power losses    

Method Min. fuel cost Min. power loss Min. combined fuel cost and 

power loss 

DE 

Fuel cost ($/h) 818.1612 869.5423 844.9030 

Power losses (MW) 9.0420 5.6705 6.5657 

Avg. CPU (s) 6.6594 6.7271 6.9271 

Rate of success (%) 20 22 12 

PSO 

Fuel cost ($/h) 809.0476 968.0114 850.6773 

Power losses (MW) 8.1112 3.2462 5.0337 

Avg. CPU (s) 12.2645 13.5531 12.8342 

Rate of success (%) 100 100 96 

HPSO-DE 

Fuel cost ($/h) 808.2097 967.9586 844.9093 

Power losses (MW) 7.7863 3.2241 5.1894 

Avg. CPU (s) 18.6019 19.6511 19.2724 

Rate of success (%) 100 98 100 
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Table 16: The best result for line 4-6 outage case with quadratic fuel cost and power losses    

Method Min. fuel cost Min. power loss Min. combined fuel cost and 

power loss 

DE 

Fuel cost ($/h) 822.0595 864.2526 852.8589 

Power losses (MW) 9.8934 5.3472 6.3168 

Avg. CPU (s) 6.8297 7.6075 6.8912 

Rate of success (%) 22 20 34 

PSO 

Fuel cost ($/h) 803.7308 968.0040 849.9696 

Power losses (MW) 9.0994 3.2431 5.0628 

Avg. CPU (s) 12.0118 13.0676 13.2663 

Rate of success (%) 96 96 98 

HPSO-DE 

Fuel cost ($/h) 803.2353 967.9698 845.2778 

Power losses (MW) 8.8824 3.2288 5.1824 

Avg. CPU (s) 18.2974 20.7060 19.6908 

Rate of success (%) 100 100 100 

 

 

Fig. 7: Convergence characteristic of DE, PSO, and HPSO-

DE for line 1-2 outage case with quadratic fuel cost and 

power losses. 

 

 

Fig. 8: Convergence characteristic of DE, PSO, and HPSO-

DE for line 1-3 outage case with quadratic fuel cost and 

power losses. 

 

 

Fig. 9: Convergence characteristic of DE, PSO, and HPSO-

DE for line 3-4 outage case with quadratic fuel cost and 

power losses. 

 

 

Fig. 10: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 2-5 outage case with quadratic fuel cost 

and power losses. 
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Fig. 11: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 4-6 outage case with quadratic fuel cost 

and power losses. 

 

 

Fig. 12: The successful rate of DE, PSO, and HPSO-DE 

methods for the outage cases with combined quadratic fuel 

cost and power losses. 

4.2.1.2 Fuel cost and stability index objective 

The obtained best results from DE, PSO, and HPSO-DE 

methods for different outage cases with this combined 

objective are given in Tables 17 to 21. In these tables, the 

results including fuel cost, stability index, average CPU 

time and rate of success for each single objective and the 

combined objective are presented. For the single 

objective of fuel cost, the proposed method has obtained 

better total cost than both DE and PSO methods for all 

the outage cases, where the DE has obtained much 

higher total cost than both PSO and HPSO-DE while the 

total cost from the PSO is slightly higher than that of 

HPSO-DE. For the single objective of stability index, the 

proposed HPSO-DE method has also provided much 

better stability index than that of the DE method and 

slightly better than that from PSO method. For the 

combined objective, the best compromise solution from 

the proposed has also dominated that from DE and PSO 

methods.  

In terms of the computational time, the DE is faster 

than both PSO and HPSO-DE methods while the 

proposed method is the slowest one among the three 

methods. However, the successful rate from the DE 

method is much lower than that from PSO and HPSO-

DE for all outage cases. The convergence characteristics 

by DE, PSO, and HPSO-DE methods for the problem 

with different outage lines are given in Figures 13 to 17 

and the rate of success of these methods for the 

corresponding outage lines is also given in Figure 18. 

For the characteristic curves, the fitness function from 

PSO and HPSO-DE methods can reach a stable state 

after 10 iterations while the DE method may need up to 

100 iterations for the stability. Therefore, the proposed 

HPSO-DE method is effective for the problem with 

objectives of fuel cost and stability index for different 

severe outage cases. 

 

 

Table 17: The best result for line 1-2 outage case with quadratic fuel cost and stability index    

Method Min. fuel cost Min. stability 

index 

Min. combined fuel cost and 

stability index 

DE 

Fuel cost ($/h) 842.7381 884.4817 847.7666 

Stability index (pu) 0.1437 0.1427 0.1420 

Avg. CPU (s) 8.0809 7.7951 7.3164 

Rate of success (%) 18 20 12 

PSO 

Fuel cost ($/h) 826.1567 896.5642 826.7181 

Stability index (pu) 0.1467 0.1376 0.1382 

Avg. CPU (s) 13.5630 13.8872 14.2875 

Rate of success (%) 92 100 100 

HPSO-DE 

Fuel cost ($/h) 825.4490 897.0565 825.9634 

Stability index (pu) 0.1427 0.1367 0.1370 

Avg. CPU (s) 20.4049 21.7915 20.8458 

Rate of success (%) 96 96 96 
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Table 18: The best result for line 1-3 outage case with quadratic fuel cost and stability index    

Method Min. fuel cost Min. stability 

index 

Min. combined fuel cost and 

stability index 

DE 

Fuel cost ($/h) 813.5007 900.6135 807.7377 

Stability index (pu) 0.1463 0.1416 0.1446 

Avg. CPU (s) 7.3402 7.1735 7.2899 

Rate of success (%) 20 20 14 

PSO 

Fuel cost ($/h) 803.0136 890.5964 804.8835 

Stability index (pu) 0.1460 0.1375 0.1381 

Avg. CPU (s) 13.6398 14.0597 13.7128 

Rate of success (%) 96 98 100 

HPSO-DE 

Fuel cost ($/h) 802.5372 907.0473 802.7189 

Stability index (pu) 0.1391 0.1368 0.1377 

Avg. CPU (s) 20.0127 20.0386 19.6259 

Rate of success (%) 100 94 100 

 
Table 19: The best result for line 3-4 outage case with quadratic fuel cost and stability index    

Method Min. fuel cost Min. stability 

index 

Min. combined fuel cost and 

stability index 

DE 

Fuel cost ($/h) 822.6512 848.5848 815.8437 

Stability index (pu) 0.1539 0.1395 0.1462 

Avg. CPU (s) 7.7298 7.8000 7.3408 

Rate of success (%) 20 24 16 

PSO 

Fuel cost ($/h) 802.7692 855.5184 803.8044 

Stability index (pu) 0.1402 0.1379 0.1382 

Avg. CPU (s) 13.5727 13.8847 14.3989 

Rate of success (%) 94 98 92 

HPSO-DE 

Fuel cost ($/h) 802.4723 836.2112 802.7179 

Stability index (pu) 0.1394 0.1374 0.1376 

Avg. CPU (s) 20.4274 20.7874 20.6358 

Rate of success (%) 98 94 100 

 
Table 20: The best result for line 2-5 outage case with quadratic fuel cost and stability index    

Method Min. fuel cost Min. stability 

index 

Min. combined fuel cost and 

stability index 

DE 

Fuel cost ($/h) 827.0310 823.4742 827.3048 

Stability index (pu) 0.1521 0.1394 0.1438 

Avg. CPU (s) 7.8082 7.3489 7.2388 

Rate of success (%) 18 22 26 

PSO 

Fuel cost ($/h) 809.0015 860.4109 810.6360 

Stability index (pu) 0.1474 0.1373 0.1380 

Avg. CPU (s) 13.0261 13.3833 13.8663 

Rate of success (%) 92 98 96 

HPSO-DE 

Fuel cost ($/h) 808.1932 879.4510 808.7812 

Stability index (pu) 0.1414 0.1368 0.1377 

Avg. CPU (s) 19.2168 20.3850 20.0542 

Rate of success (%) 98 94 100 
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Table 21: The best result for line 4-6 outage case with quadratic fuel cost and stability index    

Method Min. fuel cost Min. stability 

index 

Min. combined fuel cost and 

stability index 

DE 

Fuel cost ($/h) 814.6387 819.9251 810.3613 

Stability index (pu) 0.1443 0.1412 0.1397 

Avg. CPU (s) 7.7801 8.8141 7.3579 

Rate of success (%) 14 34 10 

PSO 

Fuel cost ($/h) 803.8655 833.8059 804.7025 

Stability index (pu) 0.1449 0.1378 0.1379 

Avg. CPU (s) 14.6101 14.6756 13.7312 

Rate of success (%) 92 98 94 

HPSO-DE 

Fuel cost ($/h) 803.2421 858.3530 803.8445 

Stability index (pu) 0.1413 0.1370 0.1373 

Avg. CPU (s) 19.1688 20.2920 19.7878 

Rate of success (%) 94 100 96 

 

 

Fig. 13: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 1-2 outage case with quadratic fuel cost 

and stability index. 

 

 

Fig. 14: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 1-3 outage case with quadratic fuel cost 

and stability index. 

 

Fig. 15: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 3-4 outage case with quadratic fuel cost 

and stability index. 

 

 

Fig. 16: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 2-5 outage case with quadratic fuel cost 

and stability index. 
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Fig. 17: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 4-6 outage case with quadratic fuel cost 

and stability index 

 

 

Fig. 18: The successful rate of DE, PSO, and HPSO-DE 

methods for the outage cases with combined quadratic fuel 

cost and stability index. 

4.2.1.3 Fuel cost and voltage deviation objective 

The two objectives including fuel cost and voltage 

deviation are considered for the multi-objective problem 

in this section. The outage cases considered here are also 

similar to those from the previous cases. The best results 

from DE, PSO, and HPSO-DE methods for the outage 

lines 1-2, 1-3, 3-4, 2-5, and 4-6 with the objective of fuel 

cost, voltage deviation, and combined fuel cost and 

voltage deviation are shown in Tables 22 to 26. As 

observed from the tables, the proposed HPSO-DE 

method can obtain much better fuel cost and voltage 

deviation than those from DE and PSO methods for the 

single objective of fuel cost and voltage deviation 

corresponding to all outage cases, respectively. For the 

combined objective, the solutions for all outage cases 

obtained by the proposed method are also dominating 

those from DE and PSO methods.  

For the computational time, the DE method is always 

faster than the other methods and the proposed method is 

always slower than the others. However, the rate of 

success from the DE is very low for all cases compared 

to the other methods while the proposed method has 

better the rate of success than that from the others. The 

convergence characteristics by DE, PSO, and HSPO-DE 

methods for the problem with five outage cases are 

shown in Figures 19 to 23 and the successful rate of the 

methods corresponding to the outage cases is also 

depicted in Figure 24. As observed from the figures, the 

fitness function from the methods can reach the stable 

state after 20 iterations. Therefore, the proposed HPSO-

DE method is very effective for dealing with the problem 

with two objectives of fuel cost and voltage deviation for 

the most severe five outage cases of the system.  

 

Table 22: The best result for line 1-2 outage case with quadratic fuel cost and voltage deviation 

Method Min. fuel cost Min. voltage 

deviation 

Min. combined fuel cost and 

voltage deviation 

DE 

Fuel cost ($/h) 847.5497 924.5120 850.3111 

Voltage deviation (pu) 0.4394 0.2916 0.3850 

Avg. CPU (s) 8.0809 7.5071 6.9046 

Rate of success (%) 22 14 20 

PSO 

Fuel cost ($/h) 825.8534 904.2731 829.1851 

Voltage deviation (pu) 0.3826 0.1573 0.1761 

Avg. CPU (s) 12.7431 12.7044 13.3022 

Rate of success (%) 94 100 96 

HPSO-DE 

Fuel cost ($/h) 825.4980 901.3550 828.2059 

Voltage deviation (pu) 0.3438 0.1397 0.1467 

Avg. CPU (s) 19.2296 19.3685 19.3279 

Rate of success (%) 96 98 100 
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Table 23: The best result for line 1-3 outage case with quadratic fuel cost and voltage deviation 

Method Min. fuel cost Min. voltage 

deviation 

Min. combined fuel cost and 

voltage deviation 

DE 

Fuel cost ($/h) 819.0703 860.9857 845.7150 

Voltage deviation (pu) 0.4636 0.2592 0.3101 

Avg. CPU (s) 7.3264 7.2793 6.8082 

Rate of success (%) 20 14 22 

PSO 

Fuel cost ($/h) 803.2157 881.3245 807.2743 

Voltage deviation (pu) 0.2145 0.1661 0.1623 

Avg. CPU (s) 12.1266 12.1384 12.5213 

Rate of success (%) 94 90 96 

HPSO-DE 

Fuel cost ($/h) 802.5491 875.1800 804.0308 

Voltage deviation (pu) 0.7325 0.1415 0.1483 

Avg. CPU (s) 17.9008 17.6986 18.2187 

Rate of success (%) 100 100 96 

 
Table 24: The best result for line 3-4 outage case with quadratic fuel cost and voltage deviation 

Method Min. fuel cost Min. voltage 

deviation 

Min. combined fuel cost and 

voltage deviation 

DE 

Fuel cost ($/h) 823.3570 841.1731 816.0523 

Voltage deviation (pu) 0.5570 0.2545 0.3919 

Avg. CPU (s) 7.8927 7.6977 6.8531 

Rate of success (%) 8 12 16 

PSO 

Fuel cost ($/h) 803.0765 836.6660 806.5116 

Voltage deviation (pu) 0.2645 0.1632 0.1698 

Avg. CPU (s) 13.8292 13.7456 13.2286 

Rate of success (%) 96 94 96 

HPSO-DE 

Fuel cost ($/h) 802.4870 912.7295 804.0239 

Voltage deviation (pu) 0.6917 0.1413 0.1481 

Avg. CPU (s) 18.8643 19.1607 19.2995 

Rate of success (%) 94 98 98 

 
Table 25: The best result for line 2-5 outage case with quadratic fuel cost and voltage deviation 

Method Min. fuel cost Min. voltage 

deviation 

Min. combined fuel cost and 

voltage deviation 

DE 

Fuel cost ($/h) 830.1180 903.3103 828.0206 

Voltage deviation (pu) 0.4285 0.2408 0.2253 

Avg. CPU (s) 7.8465 7.8540 6.8971 

Rate of success (%) 12 12 22 

PSO 

Fuel cost ($/h) 809.0451 869.9984 813.1933 

Voltage deviation (pu) 0.2830 0.1531 0.1623 

Avg. CPU (s) 12.1646 13.2838 12.7456 

Rate of success (%) 100 98 98 

HPSO-DE 

Fuel cost ($/h) 808.2091 887.6686 810.5690 

Voltage deviation (pu) 0.6052 0.1395 0.1494 

Avg. CPU (s) 18.6973 18.2206 18.4303 

Rate of success (%) 96 100 98 
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Table 26: The best result for line 4-6 outage case with quadratic fuel cost and voltage deviation 

Method Min. fuel cost Min. voltage 

deviation 

Min. combined fuel cost and 

voltage deviation 

DE 

Fuel cost ($/h) 817.2350 935.0229 824.9980 

Voltage deviation (pu) 0.3202 0.2402 0.3688 

Avg. CPU (s) 7.7657 7.7829 6.7948 

Rate of success (%) 18 30 26 

PSO 

Fuel cost ($/h) 803.7879 820.6546 806.3401 

Voltage deviation (pu) 0.3825 0.1611 0.1571 

Avg. CPU (s) 12.7868 13.0301 12.6311 

Rate of success (%) 98 98 98 

HPSO-DE 

Fuel cost ($/h) 803.2338 870.7119 804.7736 

Voltage deviation (pu) 0.5562 0.1399 0.1462 

Avg. CPU (s) 19.0349 18.2780 18.6643 

Rate of success (%) 100 98 96 

 

 

Fig. 19: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 1-2 outage case with quadratic fuel cost 

and voltage deviation. 
 

 

Fig. 20: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 1-3 outage case with quadratic fuel cost 

and voltage deviation. 

 

Fig. 21: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 3-4 outage case with quadratic fuel cost 

and voltage deviation. 

 

 

Fig. 22: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 2-5 outage case with quadratic fuel cost 

and voltage deviation. 
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Fig. 23: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 4-6 outage case with quadratic fuel cost 

and voltage deviation. 

 

Fig. 24: The successful rate of DE, PSO, and HPSO-DE 

methods for the outage cases with combined quadratic fuel 

cost and voltage deviation. 

 

4.2.2 Valve point loading effects 

When the valve point loading effects are considered for 

the fuel cost of generators, the considered cases are also 

the same to those considered for the quadratic fuel cost 

of generators. However, the problem has become more 

complex due to the non-differentiable fuel cost function 

which leads to more difficult to find the optimal solution. 

Therefore, the problem with the valve point loading 

effects is more challenge than that with the quadratic fuel 

cost function for generating units.   

4.2.2.1 Fuel cost and power loss objective 

The best results obtained by DE, PSO, and HPSO-DE 

methods including fuel cost, power losses, average CPU 

time, and rate of success for the problem with single 

objectives and combined objective are given in Tables 27 

to 31 corresponding to the outage lines of 1-2, 1-3, 3-4, 

2-5, and 46, respectively. As shown in the tables, the 

proposed HPSO-DE method can obtain better total cost 

than the DE and PSO do for the single objective of fuel 

cost and better power loss than the others do for the 

single objective of power losses for all the outage cases. 

For the combined objective of fuel cost and power loss, 

the proposed method can obtain best compromise 

solutions dominating those from DE and PSO methods 

for most of outage cases except PSO for outage line 1-3, 

DE for outage line 3-4, DE and PSO for outage line 2-5, 

and DE for outage line 4-6, where there is a trade-off 

between the total fuel cost and power losses from the 

provided solutions.  

 

  

 
Table 27: The best result for line 1-2 outage case with valve point loading effects of fuel cost and power losses    

Method Min. fuel cost Min. power loss Min. combined fuel cost and 

power loss 

DE 

Fuel cost ($/h) 1.0599e+03 1.0833e+03 1.0787e+03 

Power losses (MW) 7.4777 5.2735 5.3012 

Avg. CPU (s) 10.2920 10.6299 10.2792 

Rate of success (%) 22 16 16 

PSO 

Fuel cost ($/h) 1.0364e+03 1.1701e+03 1.0444e+03 

Power losses (MW) 5.7086 3.2387 4.6412 

Avg. CPU (s) 19.2680 20.5060 19.9413 

Rate of success (%) 94 96 96 

HPSO-DE 

Fuel cost ($/h) 1.0359e+03 1.1700e+03 1.0403e+03 

Power losses (MW) 5.5740 3.2237 4.5576 

Avg. CPU (s) 29.6857 30.0698 30.5949 

Rate of success (%) 98 100 98 
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Table 28: The best result for line 1-3 outage case with valve point loading effects of fuel cost and power losses    

Method Min. fuel cost Min. power loss Min. combined fuel cost and 

power loss 

DE 

Fuel cost ($/h) 978.0553 1.1241e+03 1.0657e+03 

Power losses (MW) 9.3330 6.3157 6.0973 

Avg. CPU (s) 10.2075 9.7513 10.0808 

Rate of success (%) 30 24 16 

PSO 

Fuel cost ($/h) 955.3976 1.1701e+03 1.0402e+03 

Power losses (MW) 7.6920 3.2446 4.7754 

Avg. CPU (s) 18.4440 19.5145 18.7641 

Rate of success (%) 94 100 96 

HPSO-DE 

Fuel cost ($/h) 953.8790 1.1700e+03 1.0413e+03 

Power losses (MW) 7.7058 3.2241 4.5301 

Avg. CPU (s) 26.9002 29.6021 28.8365 

Rate of success (%) 100 94 98 

 
Table 29: The best result for line 3-4 outage case with valve point loading effects of fuel cost and power losses    

Method Min. fuel cost Min. power loss Min. combined fuel cost and 

power loss 

DE 

Fuel cost ($/h) 992.1392 1.1127e+03 1.0284e+03 

Power losses (MW) 8.8199 4.7438 7.5135 

Avg. CPU (s) 9.8833 9.8795 10.2958 

Rate of success (%) 18 22 14 

PSO 

Fuel cost ($/h) 956.7896 956.7896 1.0470e+03 

Power losses (MW) 7.9006 7.9006 4.6003 

Avg. CPU (s) 19.7497 19.7497 19.5578 

Rate of success (%) 94 94 98 

HPSO-DE 

Fuel cost ($/h) 953.6279 1.1700e+03 1.0413e+03 

Power losses (MW) 7.6013 3.2264 4.5335 

Avg. CPU (s) 28.4231 30.2839 30.1881 

Rate of success (%) 98 96 98 

 
Table 30: The best result for line 2-5 outage case with valve point loading effects of fuel cost and power losses    

Method Min. fuel cost Min. power loss Min. combined fuel cost and 

power loss 

DE 

Fuel cost ($/h) 1.0082e+03 1.1735e+03 1.0216e+03 

Power losses (MW) 8.1609 5.0484 7.2747 

Avg. CPU (s) 9.6730 9.7170 10.0942 

Rate of success (%) 22 14 20 

PSO 

Fuel cost ($/h)   970.4957 1.1701e+03 985.7324 

Power losses (MW) 7.9976 3.2379 6.3845 

Avg. CPU (s) 19.0583 20.4421 18.8927 

Rate of success (%) 94 94 92 

HPSO-DE 

Fuel cost ($/h) 965.8093 1.1700e+03 1.0409e+03 

Power losses (MW) 8.3106 3.2239 4.5541 

Avg. CPU (s) 27.2964 29.3332 28.8633 

Rate of success (%) 94 98 100 
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Table 31: The best result for line 4-6 outage case with valve point loading effects of fuel cost and power losses    

Method Min. fuel cost Min. power loss Min. combined fuel cost and 

power loss 

DE 

Fuel cost ($/h) 1.0479e+03 1.1040e+03 995.5160 

Power losses (MW) 7.1423 5.1848 8.3728 

Avg. CPU (s) 10.0705 10.0181 10.0711 

Rate of success (%) 16 14 30 

PSO 

Fuel cost ($/h) 923.5486 1.1701e+03 1.0456e+03 

Power losses (MW) 10.7852 3.2416 4.6142 

Avg. CPU (s) 18.4780 19.8942 19.3176 

Rate of success (%) 96 100 96 

HPSO-DE 

Fuel cost ($/h) 922.3533 1.1701e+03 1.0397e+03 

Power losses (MW) 10.5272 3.2288 4.5823 

Avg. CPU (s) 27.7176 30.0108 29.5859 

Rate of success (%) 100 100 98 

 

For the CPU time, the DE always provides a solution 

with a faster manner than both PSO and HPSO-DE 

methods for the problem with single and combined 

objectives in all outage cases. However, the successful 

rate of the DE method is very low compared to that from 

the PSO and HPSO-DE methods for all cases of line 

outage in both single and combined objective of the 

problem. As observed from the tables, the successful rate 

from DE is not higher than 30% while that from PSO and 

HPSO-DE is not lower than 94%. The convergence 

characteristics of DE, PSO, and HPSO-DE methods for 

the combined objective with the five outage cases are 

given in Figures 17 to 23 and the corresponding 

successful rate of the methods is also shown in Figure 

24. As shown in the figures, the fitness function from 

PSO and HPSO-DE methods usually reaches the stabile 

state earlier than that from DE method.  Therefore, the 

proposed method is rather effective for the non-convex 

problem in these cases. 

 

 

Fig. 19: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 1-2 outage case with valve point loading 

effects of fuel cost and power losses. 

 

 

Fig. 20: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 1-3 outage case with valve point loading 

effects of fuel cost and power losses. 

 

 

Fig. 21: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 3-4 outage case with valve point loading 

effects of fuel cost and power losses. 
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Fig. 22: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 2-5 outage case with valve point loading 

effects of fuel cost and power losses. 

 

 

Fig. 23: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 4-6 outage case with valve point loading 

effects of fuel cost and power losses. 

 

Fig. 24: Successful rate of DE, PSO, and HPSO-DE for 

outage cases with combined valve point loading effects of 

fuel cost and power losses. 

 

4.2.2.2 Fuel cost and stability index objective 

The combined objective of fuel cost and stability index is 

also considered for the mentioned five outage cases as 

previous sections. The results including fuel cost, 

stability index, average CPU time, and successful rate of 

DE, PSO, and HPSO-DE methods for five different 

outage lines are depicted in Tables 32 to 36. For the 

single objective, the proposed method can obtain better 

total cost and stability index than that from DE and PSO 

methods for all the outage cases. Moreover, the best 

compromise solution from the proposed method for the 

combined objective is also dominating that from DE and 

PSO for all the outage cases.  

 
Table 32: The best result for line 1-2 outage case with valve point loading effects of fuel cost and stability index    

Method Min. fuel cost Min. stability 

index 

Min. combined fuel cost and 

stability index 

DE 

Fuel cost ($/h) 1.0617e+03 1.0846e+03 1.0684e+03 

Stability index (pu) 0.1426 0.1395 0.1405 

Avg. CPU (s) 11.1862 10.3881 10.8854 

Rate of success (%) 30 18 16 

PSO 

Fuel cost ($/h) 1.0369e+03 1.0870e+03 1.0374e+03 

Stability index (pu) 0.1386 0.1374 0.1375 

Avg. CPU (s) 20.9116 21.4380 21.3799 

Rate of success (%) 98 100 100 

HPSO-DE 

Fuel cost ($/h) 1.0358e+03 1.1159e+03 1.0362e+03 

Stability index (pu) 0.1403 0.1366 0.1368 

Avg. CPU (s) 29.9918 31.4966 32.4289 

Rate of success (%) 100 98 98 
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Table 33: The best result for line 1-3 outage case with valve point loading effects of fuel cost and stability index    

Method Min. fuel cost Min. stability 

index 

Min. combined fuel cost and 

stability index 

DE 

Fuel cost ($/h) 995.8053 1.0761e+03 998.5109 

Stability index (pu) 0.1445 0.1401 0.1495 

Avg. CPU (s) 10.5809 10.3507 10.7659 

Rate of success (%) 16 26 18 

PSO 

Fuel cost ($/h) 956.7811 1.0212e+03 956.7622 

Stability index (pu) 0.1458 0.1374 0.1388 

Avg. CPU (s) 19.7357 20.5806 20.3837 

Rate of success (%) 98 92 96 

HPSO-DE 

Fuel cost ($/h) 953.8760 1.0927e+03 954.8022 

Stability index (pu) 0.1411 0.1366 0.1379 

Avg. CPU (s) 28.7591 30.3200 30.4813 

Rate of success (%) 100 98 98 

 

Table 34: The best result for line 3-4 outage case with valve point loading effects of fuel cost and stability index    

Method Min. fuel cost Min. stability 

index 

Min. combined fuel cost and 

stability index 

DE 

Fuel cost ($/h) 993.6127 1.0675e+03 1.0017e+03 

Stability index (pu) 0.1436 0.1403 0.1455 

Avg. CPU (s) 10.3647 10.7663 10.7550 

Rate of success (%) 20 20 26 

PSO 

Fuel cost ($/h) 956.4927 1.0806e+03 956.6893 

Stability index (pu) 0.1435 0.1379 0.1387 

Avg. CPU (s) 20.8096 20.5191 20.9750 

Rate of success (%) 94 92 96 

HPSO-DE 

Fuel cost ($/h) 954.1112 1.0809e+03 954.2330 

Stability index (pu) 0.1449 0.1372 0.1377 

Avg. CPU (s) 31.2376 31.2673 31.5724 

Rate of success (%) 98 98 100 

 
Table 35: The best result for line 2-5 outage case with valve point loading effects of fuel cost and stability index    

Method Min. fuel cost Min. stability 

index 

Min. combined fuel cost and 

stability index 

DE 

Fuel cost ($/h) 987.8837 1.0612e+03 987.9997 

Stability index (pu) 0.1505 0.1396 0.1545 

Avg. CPU (s) 10.9968 10.9828 10.6252 

Rate of success (%) 28 28 40 

PSO 

Fuel cost ($/h) 968.4729 1.0628e+03 971.7530 

Stability index (pu) 0.1392 0.1373 0.1396 

Avg. CPU (s) 20.6252 20.4271 20.5382 

Rate of success (%) 98 98 96 

HPSO-DE 

Fuel cost ($/h) 964.8336 1.1085e+03 968.7722 

Stability index (pu) 0.1547 0.1368 0.1383 

Avg. CPU (s) 29.6701 30.9893 30.5459 

Rate of success (%) 94 100 100 
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Table 36: The best result for line 4-6 outage case with valve point loading effects of fuel cost and stability index    

Method Min. fuel cost Min. stability 

index 

Min. combined fuel cost and 

stability index 

DE 

Fuel cost ($/h) 1.0074e+03 1.0046e+03 988.1132 

Stability index (pu) 0.1443 0.1386 0.1467 

Avg. CPU (s) 10.5266 10.4979 10.5135 

Rate of success (%) 22 32 28 

PSO 

Fuel cost ($/h) 923.6711 1.0524e+03 922.9424 

Stability index (pu) 0.1511 0.1378 0.1399 

Avg. CPU (s) 20.4321 20.9644 20.5001 

Rate of success (%) 96 96 100 

HPSO-DE 

Fuel cost ($/h) 921.7702 1.0582e+03 922.6878 

Stability index (pu) 0.1451 0.1369 0.1385 

Avg. CPU (s) 30.4177 30.7990 31.1294 

Rate of success (%) 98 96 100 

 

Similar to other cases, the average CPU time from DE 

method is also faster than that of PSO and HPSO-DE for 

all the considered cases. In the contrary, the successful 

rate of DE method is very low compared to that from 

PSO and HPSO-DE while the HPSO-DE method usually 

reaches the highest rate of success among the methods 

for all cases. The convergence curves of DE, PSO, and 

HPSO-DE methods for the outage cases with the 

combined objective are given in Figures 25 to 29 and the 

rate of success of DE, PSO, and HPSO-DE methods are 

also shown in Figure 30. As observed from the figures, 

the proposed method is stable during convergence 

process to the optimal solution. Therefore, the proposed 

method is also very effective for combined objective of 

fuel cost and stability index accompanying with different 

outage lines. 

 

 

Fig. 25: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 1-2 outage case with valve point loading 

effects of fuel cost and stability index. 

 

Fig. 26: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 1-3 outage case with valve point loading 

effects of fuel cost and stability index. 

 

 

Fig. 27: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 3-4 outage case with valve point loading 

effects of fuel cost and stability index. 
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Fig. 28: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 2-5 outage case with valve point loading 

effects of fuel cost and stability index. 

 

 

Fig. 29: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 4-6 outage case with valve point loading 

effects of fuel cost and stability index. 

 

Fig. 30: Successful rate of DE, PSO, and HPSO-DE for 

outage cases with combined valve point loading effects of 

fuel cost and stability index. 

 

4.2.2.3 Fuel cost and voltage deviation objective 

The problem with the objective of fuel cost and voltage 

deviation is considered with five different outage cases 

in this section. The best results from each of DE, PSO, 

and HSPO-DE corresponding to the outage cases are 

given Tables 37 to 41. As seen from these tables, the 

proposed method has obtained better total cost than that 

from DE and PSO for the case with single objective of 

fuel cost and better voltage deviation than that from DE 

and PSO methods for the single objective of voltage 

deviation. For the combined objective of fuel cost and 

voltage deviation, the proposed method has also obtained 

dominated solutions to those from DE and PSO methods 

except for the PSO method for the outage case of line 4-

6. Like many previous cases, the computational time 

from DE method is usually faster than that from PSO and 

HPSO-DE methods for all cases with different 

objectives. The successful rate of DE for all cases is less 

than 30% while that of PSO is from 92% and HPSO-DE 

from 96%.  

 

Table 37: The best result for line 1-2 outage case with valve point loading effects of fuel cost and voltage deviation 

Method Min. fuel cost Min. voltage 

deviation 

Min. combined fuel cost and 

voltage deviation 

DE 

Fuel cost ($/h) 1.0566e+03 1.1062e+03 1.0637e+03 

Voltage deviation (pu) 0.3915 0.2654 0.3679 

Avg. CPU (s) 10.4583 10.3167 10.0262 

Rate of success (%) 18 22 30 

PSO 

Fuel cost ($/h) 1.0366e+03 1.1253e+03 1.0387e+03 

Voltage deviation (pu) 0.3362 0.1546 0.1718 

Avg. CPU (s) 19.8174 19.2430 19.6034 

Rate of success (%) 94 92 94 

HPSO-DE 

Fuel cost ($/h) 1.0358e+03 1.1210e+03 1.0392e+03 

Voltage deviation (pu) 0.7852 0.1383 0.1418 

Avg. CPU (s) 29.4957 28.4939 29.0920 

Rate of success (%) 100 98 98 
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Table 38: The best result for line 1-3 outage case with valve point loading effects of fuel cost and voltage deviation 

Method Min. fuel cost Min. voltage 

deviation 

Min. combined fuel cost and 

voltage deviation 

DE 

Fuel cost ($/h) 978.1773 1.0665e+03 1.0125e+03 

Voltage deviation (pu) 0.4364 0.2788 0.4213 

Avg. CPU (s) 9.7513 10.5241 9.9541 

Rate of success (%) 14 22 8 

PSO 

Fuel cost ($/h) 958.0084 1.0521e+03 957.1436 

Voltage deviation (pu) 0.2829 0.1576 0.1894 

Avg. CPU (s) 18.4702 18.7410 18.5754 

Rate of success (%) 100 96 100 

HPSO-DE 

Fuel cost ($/h) 953.8069 1.1351e+03 956.5392 

Voltage deviation (pu) 0.3491 0.1402 0.1494 

Avg. CPU (s) 27.6970 26.2671 27.4268 

Rate of success (%) 98 100 98 

 
Table 39: The best result for line 3-4 outage case with valve point loading effects of fuel cost and voltage deviation 

Method Min. fuel cost Min. voltage 

deviation 

Min. combined fuel cost and 

voltage deviation 

DE 

Fuel cost ($/h) 996.0560 1.0928e+03 1.0561e+03 

Voltage deviation (pu) 0.2665 0.2613 0.3050 

Avg. CPU (s) 10.0156 9.9666 10.1061 

Rate of success (%) 26 28 16 

PSO 

Fuel cost ($/h) 957.3019 1.0772e+03 964.6208 

Voltage deviation (pu) 0.4128 0.1590 0.1786 

Avg. CPU (s) 18.9685 18.6967 19.5070 

Rate of success (%) 98 96 94 

HPSO-DE 

Fuel cost ($/h) 953.6579 1.1187e+03 958.1908 

Voltage deviation (pu) 0.5951 0.1402 0.1490 

Avg. CPU (s) 29.3273 28.5644 28.7697 

Rate of success (%) 96 98 100 

 

Table 40: The best result for line 2-5 outage case with valve point loading effects of fuel cost and voltage deviation 

Method Min. fuel cost Min. voltage 

deviation 

Min. combined fuel cost and 

voltage deviation 

DE 

Fuel cost ($/h) 1.0102e+03 1.0276e+03 1.0271e+03 

Voltage deviation (pu) 0.2909 0.2682 0.2805 

Avg. CPU (s) 10.5132 9.6930 10.0355 

Rate of success (%) 24 28 20 

PSO 

Fuel cost ($/h) 970.4563 1.0885e+03 980.2773 

Voltage deviation (pu) 0.3092 0.1566 0.1759 

Avg. CPU (s) 18.1719 18.1610 18.7498 

Rate of success (%) 96 98 98 

HPSO-DE 

Fuel cost ($/h) 965.3996 1.1536e+03 974.8435 

Voltage deviation (pu) 0.4246 0.1386 0.1545 

Avg. CPU (s) 28.1485 26.5077 27.1863 

Rate of success (%) 100 100 100 
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Table 41: The best result for line 4-6 outage case with valve point loading effects of fuel cost and voltage deviation 

Method Min. fuel cost Min. voltage 

deviation 

Min. combined fuel cost and 

voltage deviation 

DE 

Fuel cost ($/h) 1.0086e+03 1.0766e+03 988.6897 

Voltage deviation (pu) 0.2892 0.3026 0.5128 

Avg. CPU (s) 9.7663 9.8203 9.9120 

Rate of success (%) 16 14 20 

PSO 

Fuel cost ($/h) 926.1876 1.0857e+03 927.1626 

Voltage deviation (pu) 0.3299 0.1541 0.1810 

Avg. CPU (s) 19.4090 19.0683 18.7922 

Rate of success (%) 96 94 86 

HPSO-DE 

Fuel cost ($/h) 922.5569 1.1678e+03 926.1991 

Voltage deviation (pu) 0.3084 0.1379 0.1868 

Avg. CPU (s) 27.1333 26.5935 29.1853 

Rate of success (%) 96 98 98 

 

The convergence characteristics of DE, PSO, and 

HPSO-DE methods for the problem with the combined 

objective for the five outage cases are given in Tables 31 

to 35 and the successful rate from these methods from 

many independent runs is also given in Figure 36. For 

the convergence process, the value of fitness function 

from these methods can reach a stable state in early 

iterations. Therefore, the proposed HPSO-DE method is 

also very effective for dealing with the non-convex 

problem with two objectives of fuel cost and voltage 

deviation for different outage cases. 

 

 

Fig. 31: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 1-2 outage case with valve point loading 

effects of fuel cost and voltage deviation. 

 

 

Fig. 32: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 1-3 outage case with valve point loading 

effects of fuel cost and voltage deviation. 

 

 

Fig. 33: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 3-4 outage case with quadratic fuel cost 

and voltage deviation. 
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Fig. 34: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 2-5 outage case with valve point loading 

effects of fuel cost and voltage deviation. 

 

 

Fig. 35: Convergence characteristic of DE, PSO, and 

HPSO-DE for line 4-6 outage case with valve point loading 

effects of fuel cost and voltage deviation. 

 

Fig. 36: Successful rate of DE, PSO, and HPSO-DE for 

outage cases with combined valve point loading effects of 

fuel cost and voltage deviation.. 

5. CONCLUSION 

In this paper, the proposed HPSO-DE method has been 

effectively implemented for solving a very complex MO-

SCOARPD problem in power systems. The considered 

problem is a non-linear large-scale problem of multiple 

objectives for both normal and outage cases satisfying 

several constraints. This paper is a real challenge for 

solution methods to deal with it. The proposed HPSO-

DE is hybrid between PSO and DE methods to utilize the 

advantages of each method for effectively dealing with 

large-scale and complex optimization problems. The 

proposed method has been tested on the IEEE 30-bus 

system for many cases. The considered test cases on the 

system include quadratic cost and valve point loading 

effects of fuel cost in different two-objective cases 

consisting of fuel cost and power losses, fuel cost and 

stability index, and fuel cost and voltage deviation 

associated with one of five most serve outage lines. The 

results from the test cases have indicated that the 

proposed HPSO-DE method is more effective than both 

DE and PSO methods with better solution quality with a 

trade-off for computational time. Therefore, the proposed 

HPSO-DE method can be very favorable method for 

solving the MO-SCOARPD problem as well as other 

large-scale and complex problems in power systems. 
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APPENDIX 

The power flow solution for the base case and 

transmission limits of the IEEE 30-bus system are given 

in Table A1.  

 
Table A1: Power flow solution for the IEEE 30-bus system 

in the base case 

Line 

No. 
From To 

Line flow 

(MVA) 

Line flow limit 

(MVA) 

1 1 2 175.0588 180 

2 1 3 87.7545 130 

3 2 4 43.9103 65 

4 3 4 82.2323 130 

5 2 5 82.4083 130 

6 2 6 60.3956 65 

7 4 6 73.8616 90 

8 5 7 19.8974 130 

9 6 7 38.2334 130 

10 6 8 30.4264 32 

11 6 9 29.3751 65 

12 6 10 15.8775 32 

13 9 11 16.0574 65 

14 9 10 28.3384 65 

15 4 12 46.4832 65 

16 12 13 10.4507 65 

17 12 14 8.2160 32 

18 12 15 19.1368 32 

19 12 16 7.9804 32 

20 14 15 1.7098 16 

21 16 17 3.9594 16 

22 15 18 6.2247 16 

23 18 19 2.8459 16 

24 19 20 7.3125 32 

25 10 20 9.7580 32 

26 10 17 6.9315 32 

27 10 21 18.6923 32 

28 10 22 8.8994 32 

29 21 22 2.3194 32 

30 15 23 5.8147 16 

31 22 24 6.5049 16 

32 23 24 2.1916 16 

33 24 25 2.3476 16 

34 25 26 4.2621 16 

35 25 27 4.8051 16 

36 28 27 18.7576 65 

37 27 29 6.4110 16 

38 27 30 7.2843 16 

39 29 30 3.7529 16 

40 8 28 3.8422 32 

41 6 28 18.6739 32 
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