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Abstract— This study proposes the Self-Learning Cuckoo search algorithm (SLCSA) and applies it for solving optimal 

power flow problems in large-scale power systems. The proposed method is an improvement of the Cuckoo search 

algorithm by employing a new strategy to focus Cuckoo eggs on the global optima. Cuckoo eggs have to learn and 

modify themselves to enhance their performance. The learning strategy of Cuckoo eggs is also controlled by a learning 

factor to prevent the search engine falling into local optima. The proposed method is applied for solving optimal power 

flow problems to figure the effectiveness out. The aim of the problem is to determine the minimized fuel cost while 

satisfying equal and unequal operating constraints of elements. The proposed SLCSA is also evaluated the problem on 

three IEEE 57-, 118- and 300-bus systems. According to numerical results, the proposed method is more efficient than 

the conventional Cuckoo search algorithm and other compared algorithms in literature. 

 
Keywords— Cuckoo search algorithm, optimal power flow, teaching-learning based optimization, tie-line constraints. 
 

1. 
INTRODUCTION 

Optimal power flow (OPF) is a conventional and useful 

tool to analyze the system. This problem focuses on 

controlling the power flow to minimize the total 

operation costs of the power system. The OPF is really a 

non-convex problem. because its controlled variables 

consist of continuous discrete or binary values. Nodal 

voltage and generating power are usually continuous 

variables, while tap changers of transformers or shunt 

capacitors can be discrete or binary values. On another 

hand, the solution of the OPF has to satisfy many 

operating constraints to keep the power system working 

in stable. Some frequent constraints needed to be handled 

are the balance of real and reactive powers, limitation of 

equipments, for instance: generators, transformers, 

transmission lines... In addition, when the power system 

is much more interconnected, the OPF is also more 

complicated.  

In literature, many proposed methods are applied to 

solve the OPF problems. Since 1973, O. Alsac and B. 

Scott employed the gradient method to solve the problem 

on the 30-bus system[Error! Reference source not 

found.], they also considered the system in normal case 

and in contingent case. Later works, Yuryevich J. and 

Wong K. P. proposed the OPF problems considering 

different fuel cost functions and evaluated it on the 30-

bus system by the Evolutionary Programming 

(EP)[Error! Reference source not found.]. Since the 

development of computer science, heuristic methods has 

skyrocketed to employ for the OPF problems and the 
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scale of the problem is also expended. In 2012, Duman 

S. et al. solved the optimal power flow problem on the 

57-bus system by the Gravitational Search Algorithm 

(GSA). On another hand, Bouchekara, H.R.E.H et al. 

proposed the Teaching-learning based optimization 

(TLBO) for the problem on the 118-bus system [Error! 

Reference source not found.]. However, they neglected 

the controlled VAR compensators on the evaluated case 

studies. As an expansion of the OPF problem, R.H. 

Liang et al. proposed the optimal power flow combining 

with the emission of thermal units and solved it by the 

Fuzzy based hybrid Particles Swarm optimization 

[Error! Reference source not found.]. All mentioned 

methods have been successful in solving the OPF 

problems with various types of objective functions and 

scales of systems. However, most of case studies have 

been evaluated on the 118-bus or smaller systems. 

Hence, the require to develop a powerful computation 

tool to apply for large-scale systems continues 

increasingly. 

Since 2009, the Cuckoo Search Algorithm developed 

by Yang and Deb succeeds in solving many engineering 

problems [Error! Reference source not found.]. For 

example, Gandomi A. H. et al. employed the CSA to 

solve 12 structural problems [Error! Reference source 

not found.]. The CSA is also used to give the optimal 

parameters for milling operations[Error! Reference 

source not found.]. In the power system, many 

applications has employed the CSA. For instance, V. N. 

Dieu et al. applied the CSA for the non-convex economic 

dispatch [Error! Reference source not found.], or 

Ahmed, J., and Salam, Z. used the CSA to give the 

solution for a maximum power point tracking of photo-

voltaic systems[Error! Reference source not found.]. 

A deep survey made by Civicioglu, P. and Besdok, E. on 

50 different benchmark functions shows that the CSA is 

better than the Particle Swarm Optimization and the 

Artificial Bee Colony algorithms[Error! Reference 

source not found.]. However, the applications of the 
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CSA for the OPF problems have been few. 

In this study, we introduce the Self-Learning Cuckoo 

Search Algorithm (SLCSA) to evaluate the OPF 

problems in large-scale systems. According to our 

experiments, the conventional CSA is not effective on 

OPF problems. Thus, the proposed SLCSA leads Cuckoo 

eggs to follow the better solutions. The proposed SLCSA 

employs a learning factor p
l
 to control the rate of Cuckoo 

eggs following other solutions. In order to investigate the 

effects of the learning factor p
l
, the proposed SLCSA has 

been evaluated on three IEEE standard 57-, 118- and 

300-bus systems. Furthermore, the proposed SLCSA is 

also tested on various values of the learning factor p
l
 to 

identify its effective range. Numerical results on various 

systems show that the proposed SLCSA is totally better 

than the conventional CSA and others in literature. 

This paper has been divided into six sections. The 

second section gives the formulas of the optimal power 

flow problem. The proposed SLCSA has been discussed 

in the third section. The next section is the 

implementation of the proposed SLCSA including its 

overall procedure. Numerical results are given in the fifth 

section, and the final is the conclusion and future works. 

2. PROBLEM FORMULATION 

2.1 Fitness function 

The essential purpose of the optimal power flow is to 

minimize total fuel cost of generating units while 

satisfying operating constraints and limitations of 

installed elements on the power system. In this study, the 

fuel cost function is represented by the quadratic 

function of generating real power. Generally, the 

mathematical formula and the fuel cost function of the 

OPF problem as follows: 

 

min ( , )F x u  (1) 

   
2

.G G G

i i iFC P a b P c P    (2) 

subject to: 

( , ) 0g x u   (3) 

( , ) 0h x u   (4) 

2.2  Operational constraints 

2.2.1  Power balance constraint 

As the primary constraint of operating the electric 

system, both of generating real and reactive powers have 

to satisfy load powers. This constraint is represented by 

the equal constraint g(x,u) in the general formulas. The 

power balance constraints are given by: 

   
1

cos sin
bN

G D

i i i j ij i j ij i j
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2.2.2  Limited constraints of generators 

In order to keep generators work in stable, the terminal 

voltage 
G

iV  and generating powers of a generator have 

to be in a range as follows: 

 

,min ,max

G G G

i i iV V V   (7) 

,min ,max

G G G

i i iP P P   (8) 

,min ,max

G G G

i i iQ Q Q   (9) 

 

2.2.3 Shunt-VAR compensators capacity 

Each shunt-VAR compensator has a limit to 

inject/absorb reactive power 
C

iQ  into the system as 

follow: 

 

,min ,max

C C C

i i iQ Q Q   (10) 

 

2.2.4  Limitation of tap changers of transformers 

The tap changer of a transformer only works in restricted 

upper and lower limits as shown below: 

 

,min ,max

T T T

i i iV V V   (11) 

 

2.2.5  Limitation of voltages at load buses 

In order to guarantee the quality of system, magnitude 

voltages at loads must be maintained around nominal 

values. 

 

,min ,max

L L L

i i iV V V   (12) 

 

2.2.6  Capacity of transmission lines 

All transmission lines have to satisfy limited thermal 

condition represented by an upper bound as follow: 

 
max

li liS S  (13) 

3. SELF-LEARNING CUCKOO SEARCH 

ALGORITHM 

3.1 Cuckoo search Algorithm 

Since 2009, Yang and Deb have developed the Cuckoo 

search algorithm, a few-parameter heuristic optimization 

technique [Error! Reference source not found., Error! 

Reference source not found.]. In nature, Cuckoo 

species are very lazy to build their own nests and raise up 

their children. The Cuckoo bird usually lays its eggs into 

a neighbor’s nest by learning and adjusts the pattern and 

color. However, if the neighbor detects the Cuckoo 

bird’s eggs, she will abandon her own nest. 

Basing on the behavior of Cuckoo species, the original 

Cuckoo search algorithm proposed by Yang and Deb 

includes two probability-generating stages. In the first 

stage, the Lévy flight generates random Cuckoo eggs, 

and then these eggs will be laid into the neighbors nests 

to create new solutions. On another hand, the second 

stage describes the action of the host birds to abandon 

Cuckoo eggs in their nests probably. 

3.2 Proposed Self-learning Cuckoo Search Algorithm 
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The Self-learning Cuckoo search algorithm proposes an 

improvement to complement the behavior of Cuckoo 

eggs. The proposed strategy helps the Cuckoo eggs 

modify themselves and avoid being abandoned by the 

host bird. The Cuckoo eggs learn from other better 

solutions and modify to follow them. Following 

equations describe the proposed idea: 
1 ().t t improve

i i iX X rand X     (14) 

   , if 

,  otherwise

i j i jimprove

i

j i

X X f X f X
X

X X

  
  



 (15) 

 

The proposed process gives a gradient to let Cuckoo 

eggs follow the better eggs and helps the search engine 

converge faster. We employ a learning factor p
l
 to 

control the convergence of search engine. If the learning 

factor p
l
 is near to 1, the proposed method will converge 

faster but it may fall into local solutions. If the learning 

factor p
l
 is near to 0, the proposed method will become 

the conventional Cuckoo search algorithm. In this 

research, the effectiveness of the factor p
l
 has been 

investigated.  

Cuckoo Search Algorithm is a modern and powerful 

optimization technique and is the best choice for the 

problems on small dimension as [Error! Reference 

source not found.]. However, for the large-scale 

problems, Cuckoo Search Algorithm can be worse than 

other methods as the numerical results. The proposed 

SLCSA forces solutions to follow the better ones and 

improves the search engine. 

4. IMPLEMENTATION OF THE SLCSA FOR 

THE OPTIMAL POWER FLOW 

4.1 Controlled and dependent variables: 

Controlled variables x consists of generating power of 

generators 
G

iP , nodal voltages of generators 
G

iV , 

injected reactive powers of shunt VAR compensators Q
C

i  

and positions of tap changers of transformers V
T

i . In 

addition, dependent variables u include output of the 

generator at the slack bus P
G

1 , reactive powers of 

generators Q
G

i , voltages at load buses V
L

i  and apparent 

powers of transmission lines S
i
. 

2 1 1 1... , ... , ... , ...
g g c t

G G G G C C T T

N N N Nx P P V V Q Q V V 
 

 (16) 

1 1 1 1, ... , ... , ...
g l br

G G G L L

N N Nu P Q Q V V S S 
 

 (17) 

4.2 Fitness function 

According to the objective of OPF problem, the fitness 

function F(x,u) is a combination of the fuel cost function 

FC(P
G

i ) and operational constraints. The limitations of 

controllable variables, e.g. ( 

2.2.2),  (Error! Reference source not found.),  ( 

2.2.3),  (2.2.4), are self-modified during the optimizing 

process. The limited function X
lim

(x) written as  (19) 

combines to the fitness function via penalties factors to 

handle limitations of dependent variables, 

e.g. (2.2.5), (Error! Reference source not 

found.), (2.2.6). The penalty factors K
P
,K

Q
,K

S
 are set at 

1000. The penalty factor K
V
 is set at 10

6
 for small scale 

systems and at 10
10

 for the 300-bus system. For the 

power balance constraints  (2.2.1),  (Error! Reference 

source not found.), the power flow algorithm 

completely satisfies them when calculating. Finally, the 

fitness function can be written as follows: 

   
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 

2
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2 2
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1 1
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1
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g br
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N
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i i P slack slack

i

N N
G

Q i i S li li

i i

N
L

V i i

i

F x u FC P K P P

K Q Q K S S

K V V



 



   

    

 



 
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 (18) 

max max

lim

min max

min min

, if 

( ) , if 

, if 

x x x

X x x x x x

x x x




  
 

 (19) 

4.3 Overall procedure: 

The overall procedure for the implementation of the 

SLCSA to solve the optimal power flow is following:  

Step 1: Choose controlling parameters for algorithm, 

which include the probability of discovering 

Cuckoo eggs p
a
, the learning factor p

l
, the 

number of nests NP and the number of 

iterations Itmax.  

Step 2: Create randomly initial nests X and evaluate 

value of the fitness function F(x,u) in (18).  

Step 3: Determine the best value of the fitness 

function F
best

 and the best nest X
best

. Set 

the iteration counter it=1. 

Step 4: Create Cuckoo eggs via Lévy flight and the 

new nests X
new

, modify the eggs that violate 

the limitations. 

Step 5: Evaluate the fitness function F
new

 for new 

nests. Update the solutions X, the best value 

of fitness function F
best

 and the best nest 

X
best

. 

Step 6: Randomly decide either discovering alien 

eggs or improving alien eggs. Modify the 

eggs that violate the limitations. 

Step 7: Once again, evaluate the fitness function 

F
new

 for new nests X
new

. Update the 

current nests X, the best value of fitness 

function F
best

 and the best nest X
best

. 

Step 8: Check if the iteration counter it is lower than 

the maximum iteration Itmax, increase it and 

return step 4. Otherwise, stop. 
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5. NUMERICAL RESULTS 

The proposed Self-learning Cuckoo search algorithm is 

evaluated on the IEEE 57-, 118- and 300-bus systems to 

solve the optimal power flow problems. In the 57- and 

118-bus systems, the proposed method are compared 

with other algorithms in literature; for the 300-bus 

system, all compared methods are programmed and run 

on a personal computer with an Intel 3.0GHz Core 2Duo 

processor and 4Gb RAM. Numerical results of each 

benchmark are obtained through 50 independent trials in 

order to compared the effectiveness of the proposed Self-

learning Cuckoo search algorithm. The power flow of 

each benchmark is calculated by the Newton-Raphson 

method via the MATPOWER toolbox [Error! 

Reference source not found.]. 

The optimal power flow is a complex and non-convex 

problem that combines various types of controllable 

variables. In the 57- and 118-bus systems, the real 

powers P
G

i
 and the terminal voltages V

G

i
 of generators 

and the tap changers of transformer V
T

i
 are continuous 

values, and the capacities of transmission lines are 

neglected. In the 300-bus system, tap changers of 

transformer V
T

i
 are discrete numbers with 0.01p.u. step 

size and tie-line constraints are obtained. Reactive 

powers of shunt-VAR compensators Q
C

i
 are continuous 

values for all case studies.The total number of controlled 

variables and set parameters of the SLCSA for each case 

study are given in Tab. 1. 

 
Table 1:  Number of controlled variables and setting 

parameters of the SLCSA for evaluated benchmarks 

Case 

study 

Total of 

variables 

Factor Factor Number 

of nests 

NP 

Number of 

iteration 

Itmax 
p

a
 p

l
 

 1 33 0.3 0.7 50 500 

2 128 0.1 0.7 50 1000 

3 213 0.2 0.8 150 1000 

 

5.1 Case study 1: IEEE 57-bus system: 

The standard IEEE 57-bus system consists of seven 

generators, 17 transformers and three shunt capacitors. 

Among the transformers, two parallel transformers in the 

line (24,25) are fixed taps and others have tap changers. 

The bus data, line data, fuel cost coefficients and 

operational constraints are taken from MATPOWER 

Toolbox  [Error! Reference source not found.]. The 

maximum reactive power of three capacitors is 30 MVar, 

and the minimum is zero. The numerical results have 

been compared with other algorithms in literature such 

as: Improved Teaching-learning based optimization 

(ITLBO), Gravitational Search Algorithm (GSA) and 

Artificial Bee Colony algorithm (ABC).  

According to Tab. 2, the conventional CSA is worse 

than other compared methods on search the global 

solution. When employing the new strategy, the 

proposed SLCSA improves the search engine and gives 

the best solution. The best solution of the proposed 

method is slightly worse than the ABC; however, the 

mean value of the fitness function is clearly better. The 

ITLBO gives the best solution, but it violates the 

limitation of voltage at load buses as Fig. 1. 

 

 

 

 

 
 

Table 2: Comparison of numerical results proposed by the 

proposed SLCSA and other methods for IEEE 57-bus 

system with continuous values of capacitors 

Methods  Best [$] Mean [$] Worst [$] Std. dev. 

GSA [18] 41695.9 - - - 

ABC [19] 41694 41778.7 41867.9 - 

ITLBO [20] 41679.5 - - - 

CSA 41717.4 41740.4 41765.6 16.3616 

SLCSA 41694.2 41707.1 41721 8.1918 

 

 
Fig. 1. Examining limits of voltages at load buses the IEEE 

57-bus system. 

 

5.2 IEEE 118-bus system: 

The IEEE 118-bus system includes 54 generators, 9 

transformers with load tap changers and 14 installed 

shunt VAR compensators. Two of compensators are 

reactors and the others are capacitors. In this study, we 

focus on setting up injected reactive powers of capacitors 

and keep amount of absorbed reactive powers of 

reactors. The upper and the lower bounds of capacitors 

are 30MVA and zero, respectively. The upper and limits 

of magnitude voltages at all buses are 1.1 and 0.95 p.u., 

respectively. The data of the IEEE 118-bus system, 

coefficients of fuel cost functions and other operational 

constraints are also given in MATPOWER Toolbox 

[Error! Reference source not found.]. 

The proposed SLCSA has been evaluated on various 
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parameters of the probability p
a
 and the learning factor 

p
l
 to investigate its effectiveness. The conventional CSA 

only solves the problem successfully when the the 

probability rate of discovering alien eggs p
a
=0.1. When 

using the learning factor p
l
, the search engines has 

clearly been enhanced. The proposed SLCSA is 

successful in solving this problem with any setting 

parameters. However, the SLCSA gives better solutions 

when the learning factor p
l
 is over 0.3, and the best 

performance of the SLCSA is at p
l
=0.7.  

 

 

 
Table 3: Comparison of numerical results proposed by the 

proposed SLCSA and other methods for IEEE 118-bus 

system 

Methods  Best solution [$] 

SLCSA 129,536 

CSA 129,746 

GSA [22] 129,565 

TLBO [3] 129,682 

DE [23] 129,582 

GWO [23] 129,720 
 

The best solution proposed by SLCSA has been 

compared with the conventional CSA and other 

optimization techniques in literature as Tab. 3. Table  3 

shows that the proposed method gives better solution and 

higher performance than both of other methods. On 

another hand, the TLBO also is better than the 

conventional CSA on searching global optima. The 

optimal solution also satisfies limits of voltages at all 

buses as Fig. 2. 
 

 
Fig. 2 Examining limits of voltages at load buses the IEEE 

118-bus system. 

 

5.3 IEEE 300-bus system: 

The last tested system is the huge IEEE 300-bus system, 

which includes 69 generators and the total of controlled 

variables is up to 213. Similarly, the data of the IEEE 

300-bus system is taken from the MATPOWER Toolbox 

[Error! Reference source not found.], while the lower 

bounds of generating real powers and the capacities of 

transmission lines are conducted from the IEEE testbed 

[Error! Reference source not found.].  

 
Table 4: Numerical results of the SCLCSA and the 

conventional CSA for IEEE 300-bus system 

Methods Best [$] Mean [$] Worst [$] Std. dev. 

 SLCSA 722,899 728,712 759,860 6,955 

CSA 1,963,015 3,964,877 7,229,361 1,342,516 

TLBO 724,166 776,090 1,003,903 96,945 

 

Fig. 3. Voltage profiles of the optimal solution on the IEEE 

300-bus system. 

 

 

Fig. 4. Generating reactive powers of generators on the 

IEEE 300-bus system. 
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Fig. 5. Apparent power through transmission lines of the 

optimal solution on the IEEE 300-bus system. 

 

Numerical results in Tab. 4 show that the conventional 

CSA unsuccessfully solves this problem while the 

proposed SLCSA succeeds in searching the optimal 

solution. On the other hand, the Teaching-learning based 

optimization (TLBO) also gives favorable solutions. 

However, TLBO has a rate that falls into the local 

optima. Furthermore, the solution proposed by TLBO is 

worse than SLCSA’s one. The optimal solution is in 

Appendix, and it also satisfies all of required operating 

constraints as Fig. 3, 4 and 5. 

6. CONCLUSION 

The proposed Self-learning Cuckoo search algorithm 

successfully solves the optimal power flow problems in 

large-scale power systems. The proposed strategy to 

enhance Cuckoo eggs is clearly effective. According to 

the numerical results on four evaluated systems, the 

SLCSA is much better than the conventional CSA in 

finding optimal solutions with higher performance. The 

conventional CSA is unsuccessful in solving the problem 

in the large-scale 300-bus system, while the proposed 

SLCSA handles all operating constraints and gives the 

optimal solution. Comparing with other algorithms in 

literature, the proposed method is also better than 

Evolution Programing, Differential Evolution, 

Gravitation Search Algorithm and Teaching-learning 

based optimization on the IEEE 57- and 118-bus tested 

systems. The proposed method also improves the global 

solutions on the problems, which consist of various types 

of variables and handle a huge of equal and unequal 

constraints. Discussing the effectiveness of learning 

factor p
l
, when the factor p

l
 is over 0.5, the search engine 

gives better solutions than the lower value. However, 

when the factor p
l
 is near to 1.0, the Cuckoo eggs can be 

too excited and its performance is not good. Thus, we 

propose the learning factor p
l
 around 0.8 to give the 

better solution. On summary, the proposed SLCSA is 

favorable to non-convex and large-scale problems like 

the optimal power flow problem. In future, the proposed 

method should be continued evaluating on various 

benchmarks to identify its effectiveness on engineering 

problems. 

NOMENCLATURE 

F(x,u), FC(P
G

i ) the fitness and fuel cost functions, 

respectively  

x, u  controlled and dependent variables, 

respectively  

a, b, c fuel cost coefficients  

P
G

i  output real powers of generators  

g(x,u),h(x,u) equal and unequal constraints, 

respectively  

Q
G

i  generating reactive power  

P
D

i , Q
D

i  demanded real and reactive powers, 

respectively  

V
i
, δ

i
 magnitude and angle of voltage, 

respectively  

G
ij
, B

ij
 real and imaginary components taken 

from the admittance matrix, 

respectively  

N
b
 number of buses 
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APPENDIX 

Table A1. Optimal solution for the IEEE 300-bus system 

Variables Solution Variables Solution 

P
G

8
(MW) 40.3068 V

G

8
(p.u.) 1.0030 

P
G

10
(MW) 44.8642 V

G

10
(p.u.) 1.0058 

P
G

20
(MW) 44.3019 V

G

20
(p.u.) 0.9991 

P
G

63
(MW) 49.5046 V

G

63
(p.u.) 0.9558 

P
G

76
(MW) 54.1091 V

G

76
(p.u.) 0.9759 

P
G

84
(MW) 373.2180 V

G

84
(p.u.) 1.0234 

P
G

91
(MW) 152.0334 V

G

91
(p.u.) 1.0202 

P
G

92
(MW) 280.1124 V

G

92
(p.u.) 1.0462 

P
G

98
(MW) 87.0508 V

G

98
(p.u.) 0.9965 

P
G

108
(MW) 125.4805 V

G

108
(p.u.) 0.9859 

P
G

119
(MW) 1867.3113 V

G

119
(p.u.) 1.0527 

P
G

124
(MW) 256.5403 V

G

124
(p.u.) 1.0169 

P
G

125
(MW) 54.1564 V

G

125
(p.u.) 1.0102 

P
G

138
(MW) 31.8129 V

G

138
(p.u.) 1.0384 

P
G

141
(MW) 281.7596 V

G

141
(p.u.) 1.0378 

P
G

143
(MW) 681.6624 V

G

143
(p.u.) 1.0599 

P
G

146
(MW) 91.6161 V

G

146
(p.u.) 1.0348 

P
G

147
(MW) 210.4158 V

G

147
(p.u.) 1.0352 

P
G

149
(MW) 99.2045 V

G

149
(p.u.) 1.0585 

P
G

152
(MW) 322.5976 V

G

152
(p.u.) 1.0409 

P
G

153
(MW) 205.7379 V

G

153
(p.u.) 1.0348 

P
G

156
(MW) 49.5701 V

G

156
(p.u.) 0.9756 
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P
G

170
(MW) 187.9672 V

G

170
(p.u.) 0.9655 

P
G

171
(MW) 73.1298 V

G

171
(p.u.) 0.9772 

P
G

176
(MW) 208.3053 V

G

176
(p.u.) 1.0598 

P
G

177
(MW) 90.7954 V

G

177
(p.u.) 1.0132 

P
G

185
(MW) 207.9606 V

G

185
(p.u.) 1.0348 

P
G

186
(MW) 1174.2478 V

G

186
(p.u.) 1.0521 

P
G

187
(MW) 1208.6181 V

G

187
(p.u.) 1.0522 

P
G

190
(MW) 487.7060 V

G

190
(p.u.) 1.0544 

P
G

191
(MW) 1909.3309 V

G

191
(p.u.) 1.0370 

P
G

198
(MW) 452.4902 V

G

198
(p.u.) 1.0119 

P
G

213
(MW) 288.7926 V

G

213
(p.u.) 1.0081 

P
G

220
(MW) 129.6215 V

G

220
(p.u.) 1.0160 

P
G

221
(MW) 499.3277 V

G

221
(p.u.) 1.0125 

P
G

222
(MW) 258.6833 V

G

222
(p.u.) 1.0068 

P
G

227
(MW) 330.7820 V

G

227
(p.u.) 1.0118 

P
G

230
(MW) 360.8058 V

G

230
(p.u.) 1.0165 

P
G

233
(MW) 323.1361 V

G

233
(p.u.) 1.0095 

P
G

236
(MW) 571.6399 V

G

236
(p.u.) 0.9987 

P
G

238
(MW) 242.0424 V

G

238
(p.u.) 1.0161 

P
G

239
(MW) 564.0645 V

G

239
(p.u.) 1.0059 

P
G

241
(MW) 623.2231 V

G

241
(p.u.) 1.0255 

P
G

242
(MW) 176.9308 V

G

242
(p.u.) 1.0063 

P
G

243
(MW) 92.2649 V

G

243
(p.u.) 1.0376 

P
G

7001
(MW) 440.7553 V

G

7001
(p.u.) 1.0496 

P
G

7002
 (MW) 575.0587 V

G

7002
 (p.u.) 1.0322 

P
G

7003
 (MW) 1058.4121 V

G

7003
 (p.u.) 1.0326 

P
G

7011
 (MW) 246.8336 V

G

7011
 (p.u.) 1.0098 

P
G

7012
 (MW) 393.7651 V

G

7012
 (p.u.) 1.0327 

P
G

7017
 (MW) 305.5999 V

G

7017
 (p.u.) 1.0413 

P
G

7023
 (MW) 192.6768 V

G

7023
 (p.u.) 1.0299 

P
G

7024
 (MW) 363.7661 V

G

7024
 (p.u.) 1.0192 

P
G

7039
 (MW) 484.5276 V

G

7039
 (p.u.) 1.0435 

P
G

7044
 (MW) 43.9926 V

G

7044
 (p.u.) 1.0142 

P
G

7049
 (MW) 78.5143 V

G

7049
 (p.u.) 1.0229 

P
G

7055
 (MW) 49.3134 V

G

7055
 (p.u.) 1.0011 

P
G

7057
 (MW) 171.5392 V

G

7057
 (p.u.) 1.0251 

P
G

7061
 (MW) 384.3697 V

G

7061
 (p.u.) 1.0188 

P
G

7062
 (MW) 369.2490 V

G

7062
 (p.u.) 1.0026 

P
G

7071
 (MW) 132.6656 V

G

7071
 (p.u.) 0.9954 

P
G

7130
 (MW) 1210.0413 V

G

7130
 (p.u.) 1.0530 

P
G

7139
 (MW) 673.9895 V

G

7139
 (p.u.) 1.0402 

P
G

7166
 (MW) 603.1292 V

G

7166
 (p.u.) 1.0182 

P
G

9002
 (MW) 44.4260 V

G

9002
 (p.u.) 0.9907 

P
G

9051
 (MW) 54.4227 V

G

9051
 (p.u.) 1.0050 

P
G

9053
 (MW) 42.2456 V

G

9053
 (p.u.) 1.0076 

P
G

9054
 (MW) 69.4099 V

G

9054
 (p.u.) 1.0113 

P
G

9055
 (MW) 32.4047 V

G

9055
 (p.u.) 1.0069 

Q
C

117
(MVar) 253.8616 T

87−94
(p.u) 0.99 

Q
C

120
(MVar) 18.2194 T

114−207
(p.u) 1.01 

Q
C

154
(MVar) 17.4322 T

116−124
(p.u) 0.94 

Q
C

164
(MVar) -63.5705 T

121−115
(p.u) 0.99 

Q
C

166
(MVar) -29.1361 T

130−131
(p.u) 1.05 
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Q
C

173
(MVar) 39.1623 T

130−150
(p.u) 1.06 

Q
C

179
(MVar) 44.8799 T

132−170
(p.u) 1.02 

Q
C

190
(MVar) -30.5400 T

141−174
(p.u) 0.97 

Q
C

231
(MVar) -58.3959 T

143−144
(p.u) 0.97 

Q
C

238
(MVar) -36.6317 T

143−148
(p.u) 0.97 

Q
C

240
 (MVar) -40.4169 T

151−170
(p.u) 0.99 

Q
C

248
 (MVar) 18.9005 T

153−183
(p.u) 1.03 

Q
C

9003
 (MVar) 0.9558 T

155−156
(p.u) 1.04 

Q
C

9034
 (MVar) 0.9300 T

159−117
(p.u) 1.01 

T
37−9001

(p.u) 1.00 T
160−124

(p.u) 1.00 

T
9001−9006

(p.u) 0.95 T
163−137

(p.u) 0.93 

T
9001−9012

(p.u) 0.99 T
164−155

(p.u) 0.96 

T
9005−9051

(p.u) 1.09 T
182−139

(p.u) 1.06 

T
9005−9052

(p.u) 0.92 T
189−210

 (p.u) 1.01 

T
9005−9053

(p.u) 1.07 T
193−196

 (p.u) 1.04 

T
9005−9054

(p.u) 1.06 T
195−212

 (p.u) 0.98 

T
9005−9055

(p.u) 1.01 T
201−69

 (p.u) 1.04 

T
9053−9533

(p.u) 1.00 T
202−211

 (p.u) 1.02 

T
3−1

(p.u) 1.00 T
204−2040

 (p.u) 1.07 

T
3−2

(p.u) 0.96 T
209−198

 (p.u) 1.03 

T
3−4

(p.u) 0.97 T
218−219

 (p.u) 1.04 

T
7−5

(p.u) 0.94 T
229−230

 (p.u) 0.98 

T
7−6

(p.u) 0.97 T
234−236

 (p.u) 1.03 

T
10−11

(p.u) 1.03 T
238−239

 (p.u) 1.02 

T
12−10

(p.u) 0.98 T
119−1190

 (p.u) 1.07 

T
15−17

(p.u) 0.98 T
120−1200

 (p.u) 0.92 

T
16−15

(p.u) 0.98 T
7062−62

 (p.u) 0.94 

T
21−20

(p.u) 0.94 T
7017−17

 (p.u) 0.98 

T
24−23

(p.u) 1.02 T
7039−39

 (p.u) 0.95 

T
36−35

(p.u) 0.97 T
7057−57

 (p.u) 0.97 

T
45−44

(p.u) 0.94 T
7044−44

 (p.u) 0.96 

T
62−61

(p.u) 0.95 T
7055−55

 (p.u) 0.94 

T
63−64

(p.u) 0.97 T
7071−71

 (p.u) 0.96 

 

 


