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Abstract— Hydrologic models for river basins are important tools to describe water and sediment transport in 

watersheds. Important input data are soil related parameters, such as texture, water holding capacity, hydraulic 

conductivity, and others. However, good quality soil information is rarely available in Thailand, especially in 

mountainous areas. Therefore, two different open source global soil data were used in this study, i.e. FAO World Soil 

Map and the Soilgrids data. Aim of this research was to evaluate the performance of the SWAT hydrological model with 

respect to the simulation of streamflow and suspended sediments in a mountainous region in northern Thailand with 

special consideration of differences in the results based on the different soil data sets. After model calibration, 

streamflow and suspended sediments were simulated sufficiently well with both soil data. However, the low-resolution 

FAO data gave slightly better results than the high-resolution Soilgrids data, which generally was not expected. Mean 

clay, silt and sand content derived from FAO and Soilgrids data are very similar, while other soil parameters showed 

significant differences. The ranges of the soil information, i.e. the span between the lowest and highest value, were 

always much larger for the FAO data compared to those of the Soilgrids data. These differences are the possible reason 

for the difference in simulation quality using these soil data with SWAT. 
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1. 
INTRODUCTION 

Soil information is one of the crucial model inputs of any 

hydrological modelling. Soil information like soil texture 

and soil hydraulic conductivity have an effect on infiltra-

tion, surface runoff, and pollutants processes [1]. How-

ever, according to [2], detailed soil information is barely 

accessible, especially for a large watershed in Thailand. 

Therefore, the open source soil data, such as FAO [3] 

and Soilgrids [4], were used for this study. 

Few researchers studied the effect of soil data with 

different quality and scale on hydrological process by 

using SWAT (Soil and Water Assessment Tool). Refer-

ence [5] used SSURGO data with high spatial resolution  

and STATSGO data with very low resolution for a 

water-shed in Colorado, USA. High resolution soil data 

predict-ed more streamflow than low resolution data and 

less sediment and sediment attached nutrients. Another 

study [6] showed that the same two soil data sources 

caused a change in the position of critical sources areas 

for sedi-ments and differences in sediment yield (higher 

when simulated with low resolved data). However, no 

general statement could be derived.  

Soilgrids [4] is a new source of soil information 

globally available since 2016, but few researchers used it 
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so far to simulate hydrological processes with SWAT, 

e.g. [7].  

Objective of this investigation was to test differences 

in streamflow and sediment yield simulated with SWAT 

based on FAO and Soilgrids soil information for the 

Upper Yom Basin in Thailand.  

2. MATERIALS AND METHODS 

2.1 SWAT model  

SWAT (Soil and Water Assessment Tool) is a public 

domain model developed by the United States 

Department of Agriculture (USDA) and Agricultural 

Research Service (ARS) [8]. SWAT is a model on river 

basin level, constantly timing, spatial physically 

distributed, and developed to estimate the effect of land 

utilization on hydrology, sediment yield, and water 

quality. SWAT is generally used for huge complicated 

watersheds with variable soil, land use and management 

conditions over long time periods [8]. 

The SWAT model can simulate small as well as large 

watersheds by dividing the area into uniform sub regions. 

SWAT uses Hydrologic Response Units (HRUs) to take 

the spatial heterogeneity into account with respect to 

land use, soil properties, and slope in a basin. Fig. 1 

shows a flowchart of SWAT processing. A SWAT 

extension integrated to a Geographic Information System 

(GIS) organizes input of different spatial data, such as 

soil, land use, and climate data model data. Presently, 

SWAT is integrated in an ArcGIS interface named 

ArcSWAT [9]. 

The simulation of the hydrology of a watershed is 

done in two separate divisions. One is the land phase of 

the hydrological cycle that controls the amount of water, 

sediment, nutrient and pesticide load to the main channel 

Leak Ngeang, Sarintip Tantanee
*
, and Ruediger Anlauf 

Comparison of FAO and SOILGRID Data Application on 

Streamflow and Sus-pended Sediment Study Using SWAT 

Model: A Case Study of Upper Yom Basin, Thailand 

 

mailto:sarintipt@nu.ac.th


 

L. Ngeang, S. Tantanee, and R. Anlauf / GMSARN International Journal 13 (2019) 104 - 111 

 
105 

in each sub-basin. Hydrological components simulated in 

the land phase of the hydrological cycle are infiltration, 

redistribution, evapotranspiration, canopy storage, lateral 

subsurface flow, surface runoff, ponds, tributary 

channels and return flow. The second division is the 

routing phase of the hydrologic cycle that can be defined 

as the movement of water, sediments, nutrients and 

organic chemicals through the channel network of the 

watershed to the outlet [9]. In the land phase of 

hydrological cycle, SWAT simulates the hydrological 

cycle based on the water balance equation as shown in 

equation (1). 
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where SWt is the final soil water content (mm), SWo is 

the initial soil water content on day i (mm), t is the time 

(days), Rday is the amount of precipitation on day i (mm), 

Qsurf is the amount of surface runoff on day i (mm), Ea is 

the amount of evapotranspiration on day i (mm), Wseep is 

the amount of water entering the vadose zone from the 

soil profile on day i (mm), and Qgw is the amount of 

return flow on day i (mm) [9]. 

 
Fig.1. SWAT methodology flowchart. 

 

Surface runoff occurs whenever the rate of 

precipitation exceeds the rate of infiltration. SWAT 

offers two methods for estimating surface runoff: the 

SCS curve number procedure [10] and the Green & 

Ampt infiltration method [11]. Using daily or sub daily 

rainfall, SWAT simulates surface runoff volumes and 

peak runoff rates for each HRU. In this study, the SCS 

curve number method was used to estimate surface 

runoff because of the unavailability of sub daily data for 

the Green & Ampt method. The runoff is calculated as 

shown in equation (2). 
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where Qsurf is the accumulated runoff or rainfall excess 

(mm), Rday is the rainfall depth for the day (mm), S is the 

retention parameter (mm). 

Soil erosion and sediment yield are computed in the 

SWAT model using the Modified Universal Soil Loss 

Equations (MUSLE) [12] as shown in equation (3). 
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where sed is the sediment yield on a given day (metric 

tons), Qsurf is the surface runoff volume (mm ha
-1

), qpeak is 

the peak runoff rate (m
3
s

-1
), areahru is the area of the 

HRU (ha), KUSLE is the soil erodibility factor, CUSLE is the 

cover and management factor, PUSLE is the support 

practice factor, LSUSLE is the topographic factor and 

CFRG is the coarse fragment factor. 

2.2 Study area  

The study area is in central northern Thailand between 

18
o
27’N-19

o
24’N latitude and 99

o
44’E-100

o
41’E 

longitude, having a catchment area of 5321 km
2
 (Fig. 2). 

The topography of the basin varies from hilly areas in the 

northern part, with a maximum elevation of about 1734 

m above mean sea level to lowland flat areas in the 

center of the region, with minimum elevation of about 

181 m above mean sea level. 

 

 

Fig.2. Location of study area, the Upper Yom River Basin, 

Thailand. 

 

2.3 Datasets  

The SWAT model requires meteorological data, digital 

elevation model (DEM), soil information, and land use 

as input data. 

The meteorological data composed of rainfall, 

maximum and minimum temperature, wind speed, solar 

radiation, and relative humidity were obtained from the 

Royal Irrigation Department, Thai Meteorological 

Department [13], and Global Weather Data [14]. Daily 

meteorological data were used for the period 2000 to 

2013. 

The digital elevation data with 30 m resolution used in 

this study was taken from the Thai Land Development 

Department [15]. The catchment area of the upper Yom 

Basin was delineated, and the drainage pattern of the 

land surface analyzed by ArcSWAT based on the 30-m-

resolution Digital Elevation Model (DEM) (Fig. 3). 

Land use data with a resolution of 250 m was taken 

from Land Develop Department of Thailand [15]. The 

land use in the Upper Yom Basin characterized by 

forests (82.8%), agriculture (11.8%) and paddy fields 

(3.2%); the remaining 2.2% is represented by various 
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land use types, such as orchards, villages, water bodies 

and rangeland (Fig. 4). 

 

 

Fig. 3. Digital Elevation Model for the Upper Yom River 

Basin. 

 

 
Fig.4. Land use classification for the Upper Yom Basin.  

The codes used in the ArcSWAT database are: WATR (Water bodies), 

URMD (urban areas), RNGB (range-brush), RICE (paddy fields), ORCD 

(orchards), FRSE (evergreen forests), FRSD (deciduous forests), AGRR 

(agriculture row crops), AGRC (general agriculture). 

Good quality soil information is rarely available in 

Thailand. Therefore, two different sources of soil data 

are used for this study: FAO World Soil Map and 

Soilgrid-250-m.  

The FAO World Soil Map in the scale of 1:5.000.000 

[3] was provided in digital form by [16]. The soil 

properties of the dominant soil type were processed and 

made directly useable with SWAT by [17]. Fig. 5 shows 

the FAO soil map of the Upper Yom Basin. Soils are 

classified as Orthic Acrisols with fine texture (60.93%), 

Ferric Acrisols (22.73%), Gleyic Luvisols (10.25%), 

Dystric Nitosols (6.07%) and Orthic Acrisols with 

medium texture (0.01%). Most of the soil units fall in the 

hydrological group D, some in hydrological group C. 

 

 
Fig.5. FAO Soil classes for Upper Yom Basin. 

 

Soilgrids is a soil mapping system based on global soil 

data using machine learning algorithms [18]. Soilgrids 

data are available worldwide at 250 m spatial resolution 

in 7 depths from 0 to 200 cm. Gridded data for clay, silt 

and sand content, bulk density, organic carbon, soil depth 

and stone content were used. Due to limitations in 

calculation time, SWAT cannot run for every 250-m grid 

cell in larger regions. Therefore, the Soilgrids data must 

be aggregated to space units having homogeneous 

properties. As soil texture (particularly clay content) and 

soil depths are very important soil parameters for water 

and sediment flux, these parameters were used to group 

the data into new units. This was done with a python 

script in ArcGIS in the following sequence [19]: 

● The clay content of the first 4 Soilgrids layers (0-30 

cm depths) was averaged for each grid cell to get an 

average topsoil clay content; 

● The topsoil clay content was reclassified into three 
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groups (lowest third, medium third, and highest third); 

● The rooting depth was classified into three classes: 

shallow (<110 cm) medium (110-150 cm) and deep 

(>150 cm); 

● The reclassified topsoil clay content and rooting 

depth were intersected in ArcGIS 

● Zones of adjoining grid cells were constructed 

having the same reclassified topsoil clay content and 

rooting depth; these zones were considered as 

homogenous soil units 

● For each of these homogeneous zones the average 

values of clay, silt, sand content, available water content 

and Ksat were calculated as averages for the topsoil (0-

30 cm) and the subsoil (30 – 100 cm). Also, the depth 

was calculated for each soil unit. 

The resulting map classifies soils in different soil 

entities, where the most dominant types are the units 

YOM0023 (75.76%), the YOM1024 (7.6%), and the 

YOM1149 (3.75%). The remaining soil units have a very 

small percentage (Fig. 6). Most of the soil units fall in 

the hydrological group D (about 85%) followed by group 

C (about 15%). The procedure to extract relevant data for 

ArcSWAT from the SOILGRID data is described by 

[19].  

2.4 Model performance 

Three statistical measures were employed to evaluate the 

performance of SWAT in terms of the accuracy and 

consistency on the prediction of discharge and sediment 

load: the coefficient of determination (R
2
), Nash-Sutcliff 

efficiency (NSE), and Root Mean Squared Error 

(RMSE). 

 

 
Fig. 6. Soilgrid classes for Upper Yom Basin. 

 

The coefficient of determination (R
2
) describes the 

degree of collinearity between simulated and measured 

data. R
2
 has been widely used for model evaluation. R

2
 

ranges from 0 to 1, with higher values indicating less 

error variance, and typically values greater than 0.5 are 

considered acceptable [20]. 
Nash-Sutcliffe coefficient (NSE) is a statistical 

measure that determines the relative magnitude of the 

residual variance compared to the measured data 

variance by [21]. NSE ranges between -∞ and 1.0, with 

NSE = 1 being the optimal value. Values between 0.0 

and 1.0 are generally viewed as acceptable levels of 

performance, whereas values <0.0 indicates that the 

mean observed value is a better predictor than the 

simulated value, which indicates unacceptable 

performance [21]. 

The root mean square error (RMSE) has been used as a 

standard statistical metric to measure model prediction 

error in meteorology, air quality, and climate research 

studies; a smaller RMSE value indicates better model 

performance [22]. RMSE is one of the commonly used 

error index statistics according to [23]. 

3. RESULTS AND DISCUSSIONS 

3.1 Sensitivity Analysis 

A sensitivity analysis for the simulation period from 

2003 to 2013 was conducted for streamflow and 

suspended sediments.  Since streamflow is the main 

controlling variable, sensitivity analysis and calibration 

were done first [24] followed by suspended sediments. 

13 parameters for streamflow and 9 parameters for 

sediment were selected based on studies of [25] and [26] 

using default simulations based on FAO and Soilgrids 

data. From the 13 parameters for streamflow, 8 and 10 

parameters for FAO and Soilgrids data (Table 1), 

respectively, were identified as statistically significant 

and were finally used to calibrate and validate 

streamflow. 

For suspended sediments, 4 parameters for FAO and 

Soilgrids were statistically significant and finally used to 

calibrate and validate suspended sediments (Table 2). 

3.2 Model Calibration and Validation 

The SWAT model was calibrated for streamflow for 7 

years from 2003 to 2009 for both FAO and Soilgrids data 

separately. Validation was carried out for 4 years from 

2010 to 2013. Monthly measured streamflow data at 

basin outlet was used for calibration and validation. 

Default values and calibration results for streamflow 

based on FAO and Soilgrids data are given in table 2. 

Fig. 7 shows the calibration results for streamflow for 

the calibration period. Simulated streamflow after model 

agreed very well with the measured data based on the 

two soil datasets. However, statistical measures show 

that the streamflow simulated with FAO soil data were 

slightly better than those based on Soilgrids (equal R
2
 

and slightly better NSE and RMSE for FAO (Table 3). 

Fig. 8 shows the streamflow for the validation period. 

The statistical results show that R
2
 is slightly better for 

Soilgrids data, but NSE and RMSE are again slightly 

better for FAO data. However, both data sources provide 
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a satisfactory validation although FAO data generally 

give a slightly better results 

Suspended sediments simulation show that the model 

predicted very similar monthly suspended sediments 

both soil data, both for the calibration period (Fig. 9) and 

the validation period (Fig. 10). Similar to streamflow 

simulation, the results for suspended sediments 

simulation were slightly better based on FAO data 

compared to Soilgrids data (Table 4). Similar to 

streamflow, the results for suspended sediments show 

that both data provide a satisfactory validation, although 

FAO data gave a slightly better results (NSE 0.87 for 

FAO and 0.77 for Soilgrids data for the validation 

period, Table 4).  

 
Table 1. Sensitive parameters for streamflow for FAO (8) 

and Soilgrids (10) soil data with their default and calibrated 

values 

No Parameter Default Calibrated value 

FAO SoilGrid 

1 CN2 77 79.54 68.24 

2 ALPHA_BNK 0 0.28 0.48 

3 ESCO 0.95 Not used 0.92 

4 SOL_K 3.83 5.36 5.18 

5 SOL_BD 1.34 1.30 0.96 

6 SOL_AWC 0.2 0.66 0.11 

7 GWQMN 1000 220.50 493.50 

8 CH_K2 0 Not used 166.75 

9 GW_REVAP 0.02 0.17 0.02 

10 GW_DELAY 31 5.25 4.25 

 

Table 2. The 4 sensitive parameters for suspended sediment 

with their default and calibrated value using FAO & 

Soilgrid 

No Parameter Default Calibrated value 

FAO Soilgrid 

1 SPCON 0.0001 0.0001 0.0002 

2 SPEXP 1.0000 1.0009 1.0016 

3 CH_COV2 0.0000 0.0015 0.0024 

4 CN2 77.0000 77.1444 81.5623 

 

Table 3. The performance indexes for calibration and 

validation streamflow for both FAO and Soilgrid 

  Calibration Validation 

FAO Soilgrid FAO Soilgrid 

R
2
 0.90 0.90 0.87 0.91 

NSE 0.83 0.72 0.78 0.69 

RMSE 0.42 0.53 0.46 0.56 

 

 

 

Table 4. The performance indexes for calibration and 

validation suspended sediment for both FAO and Soilgrid 

  Calibration Validation 

FAO Soilgrid FAO Soilgrid 

R
2
 0.90 0.86 0.87 0.77 

NSE 0.88 0.81 0.87 0.74 

RMSE 0.34 0.44 0.37 0.51 

 

 

Fig. 7. Comparison of simulated monthly streamflow based 

on FAO and Soilgrid for calibration period. 

 

 

Fig. 8. Comparison of simulated monthly streamflow based 

on FAO and Soilgrid for validation period. 

 

 

Fig. 9. Comparison of simulated monthly suspended sedi-

ment based on FAO and Soilgrid for calibration period. 

 

 

Fig. 10. Comparison of simulated monthly suspended sedi-

ment based on FAO and Soilgrid for validation period. 
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3.3 Differences between FAO and Soilgrids soil data 

Generally, one would expect better results using soil 

information with a higher resolution. In this study, 

however, the low-resolution FAO data (about 7 km grid 

size) proved to give slightly better results with SWAT 

model than the high-resolution Soilgrids data (250 m 

grid size). The spatial delineation of the FAO soil data is 

based on FAO soil units, and the soil information used 

by SWAT is derived for these soil units by [17]. The 

FAO soil data have been used together with SWAT and 

the derived soil information has possibly been optimized 

for the use with SWAT. The Soilgrids data are relatively 

new, have rarely been used with SWAT and the spatial 

delineation of soil units to be used with SWAT must be 

done by the user. In this study, topsoil clay and soil 

depths were used as main factors to delineate soil units, 

and some filter procedure was used to eliminate very 

small soil units. The resulting maps of the soil 4 

parameters clay, sand, available water capacity (AWC) 

and Ksat for the topsoil is shown in Fig. 11. Clay and 

sand maps for the Upper Yom basin derived fom FAO 

and Soilgrids data are similar, but the FAO maps show 

bigger differences for different parts of the basin. The 

AWC of the Soilgrids data is generally higher compared 

to the FAO data, and the Ksat is generally lower (Fig. 

11). Comparing the mean values of bulk density (DB), 

AWC, Ksat and Rock fragments (> 2 mm size) for FAO 

and Soilgrids data for the Upper Yom Basin showed 

significant differences (Table. 5). Mean values for sand, 

silt and clay were very similar (Table. 5). The ranges of 

the soil information, i.e. the span between the lowest and 

highest value of the selected parameters, were always 

much larger for the FAO data compared to those of the 

Soilgrids data (Fig. 11). These differences are the 

possibly reason for the difference in simulation quality 

using these soil data with SWAT. 

4. SUMMARY AND CONCLUSIONS 

This investigation used soil data with different spatial 

resolutions, i.e. FAO soil data (7 km raster size) and the 

Soilgrids data (250 m raster size) as the inputs to the 

SWAT model for simulating streamflow and suspended 

sediment. After model calibration, streamflow and 

suspended sediments were simulated sufficiently well 

with both soil data. Thus, both soil data (FAO and 

Soilgrids) can be successfully used with SWAT for the 

Upper Yom Basin.  

However, the low-resolution FAO data gave slightly 

better results than the high-resolution Soilgrids data, 

which generally was not expected and needs further 

investigations.  

Two strategies for further investigations are proposed: 

It is necessary to compare FAO and Soilgrids 

parameters, especially those, which SWAT is sensitive 

to, with good quality measured soil information to show 

if there might be a general bias in one of the data sets. 

This should be done in different catchments with 

different land uses and different topographic conditions. 

As mentioned before, we used clay content and soil 

depths as main parameters to delineate homogeneous soil 

units. Another way to optimize the use of Soilgrids data 

for SWAT is the test of different strategies to produce 

soil units for SWAT from the Soilgrids data. The basis 

for the delineation could be WRB soil units (also 

available in Soilgrids), available water capacity, slope, or 

other parameters which SWAT is sensitive to. This might 

result in possibly better results of the Soilgrids data due 

to its higher resolution. 

 

Fig. 11 a-b-c-d. Differences of the soil information derived 

from FAO and SoilGrids information for Upper Yom 

Basin. 
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Table 5. Mean and range of soil parameters of FAO and 

SoilGrids soil information 

Para-

meter 

unit FAO SoilGrids 

    mean range mean range 

DB g cm
-3

 1.28 1.10-1.40 1.34 1.20-

1.43 

AWC cm
-3

cm
-3

 0.11 0.07-0.18 0.20 0.19-

0.20 

Ksat cm day
-1

 12.57 7.3-23.5 3.90 2.6-9.2 

Sand %mas 43.8 27.0-63.0 40.9 38.9-

63.0 

Silt %mas 27.4 19.0-32.0 29.8 26.2-

33.2 

Clay %mas 28.2 18.0-41.0 29.4 25.4-

31.9 

Rock %mas 0.000 0.000 23.2 10.2-

32.4 

 

Lack of good quality soil data is an important problem 

related to hydrologic modeling in many parts of the 

world. The availability of data, often downloadable from 

the internet, such as land use and weather data, is 

steadily increasing. The demand for hydrologic modeling 

also steadily increased in the last decades and will very 

possibly further increase in the fields of drought 

management and flood disaster control, also due to 

climate change effects. Good quality soil data are 

necessary for any simulation. Therefore, further 

investigations in this respect should be an important field 

of research.     
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