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Abstract— This paper proposes a linear quadratic regulator to stabilize the rotor speed of the doubly-fed induction 

generator which oscillates as a result of noises in the input speed. The speed loop in the conventional vector control is 

reduced ignoring doubly-fed induction generator converter dynamics. Laplace transform of the closed-loop speed 

control is used to design an optimal controller based on the linear quadratic regulator to damp oscillations of the speed 

caused by measurement noise in the reference input. The state-space linearization of the system is presented. The 

strategy is aimed at reducing variations in rotor speed and electromagnetic torque during fault and achieve stable 

operation thereafter. In the paper linear quadratic regulator is compared with vector control and pole placement 

controller in terms of performances. The proposed controller improves the transient behavior of the induction machine 

when subjected to measurement noise. The recommended procedure maintains the stability of the wind generator 

during and after measurement noise. Results show the robustness of the linear quadratic regulator over other methods 

in tracking the reference values. 
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1. 
INTRODUCTION 

The doubly-fed induction generator (DFIG) [1]-[2] is 

widely used in wind energy conversion systems (WECS) 

as standalone [3]-[5] or in grid-connected mode [6]-[7]. 

In some cases, it is connected with some other renewable 

energy sources like solar photovoltaic to create a hybrid 

generation system supported by battery energy 

management system (BEMS) [8]-[10]. This is due to its 

ability to operate in variable speed, control active and 

reactive power, bidirectional power flow, low converter 

rating, high system efficiency, stator constant frequency, 

operate at sub-and super-synchronous modes and fault 

ride through (FRT) capability  [8], [11]-[12]. 

In the past classical proportional integral (PI) 

controllers were used to control the DFIG in vector 

control and other methods. Nowadays modern controllers 

like optimal controllers are incorporated in the control of 

the DFIG. One of these optimal controllers is the linear 

quadratic regulator (LQR). There is an extensive 

application of LQR for DFIG control. The recent 

application is comparing the performance and costs of 

LQR and power system stabilizer in oscillations 

damping. In this work, Uncedented Kalman filter (UKF) 

is used to estimate unobservable states [13]. Particle 

swarm optimization is used to tune LQRI weighting 

matrices Q and R in [14]. The authors in [15] present a 

new method known as heightened state feedback control 
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(HSFC). This method is based on predictive control 

which is used to regulate rotor currents. The technique 

counteracts the dynamics caused by grid faults. Optimal 

preview based on LQR (LQR-OPC) is applied to damp 

power pulsations in a grid-connected DFIG [16]. To 

show its robustness the method is compared with sliding 

mode field-oriented control (SM-FOC) and direct torque 

control (SM-DTC). Results show that LQR-OPC has the 

best performance. Trajectory sensitivity analysis (TSA) 

is employed to find a suitable state weighting matrix for 

the LQR. The optimal controller obtained through this 

method significantly improves the settling of oscillation 

damping and makes the DFIG support grid voltage in the 

event of a fault [17]. Truncated Taylor series expansion 

is used to linearize a seven-order model of the DFIG to 

be used to obtain an optimal controller based on LQR. 

This controller controls the pitch, hence improve low 

voltage ride through capability of the DFIG and system 

damping even under severe disturbances [18]. Linear 

quadratic regulator's 18 weights of the diagonal matrix Q 

are tuned using PSO in [19], LQR is applied to damp 

sub-synchronous interaction in a farm of DFIGs [20].  

The contributions of this paper are the improvement in 

the damping of the oscillations of DFIG using an optimal 

control approach and comparison between LQR Pole 

Placement in the stability enhancement. The linearization 

and the formulation of the state model of the system 

dynamics to form the state-feedback control law using 

LQR and Pole placement method is also explained in 

detail.  

2. METHODOLOGY  

First conventional vector control is explained in detail. 

Then a speed control loop for the DFIG is presented. 

From this loop, a transfer function representation of the 

system is obtained and used to find gains for optimal 
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controllers. Simulations are done for all three cases, that 

is, vector control, pole placement control and finally 

linear quadratic regulator control. 

Direct and quadrature axes machine voltages and 

fluxes are given by, [21]: 
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Where 
dsv and qsv  are the d-axis and q-axis of the 

stator and rotor voltages; Rs and Rr are the stator and 

rotor resistances;s is the constant angular velocity of the 

synchronously rotating reference frame;r is the rotor 

angular velocity; 
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where 
dsi , qsi ,

dri and
qri are the d-axis and q-axis of the 

stator and rotor currents; 
ds , qs ,

dr  and 
qr  are 

the d-axis and q-axis of the stator and rotor fluxes. 

Conditions for machine fluxes are: 
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Stator active and reactive powers are: 
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In terms of rotor currents and synchronous speed, [22] 
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where 
msi is the magnetizing current.  

The electromagnetic torque is given by, 
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The mechanical motion equation that describes the 

rotor speed behavior is, 
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where J is the inertia of the rotor and Tm is turbine 

aerodynamic torque. 

Reference torque and rotor current can be generated 

from a given reference speed [23]. The error obtained is

m

ref

m   processed by the proportional and integral 

controllers to give reference torque ref

emT . This is 

multiplied with the gain G1 to generate reference rotor 

current ref

qri . Then the transfer function TF1 is used to 

obtain measured quadrature axis rotor current iqr. This 

current is multiplied with the gain G2 to obtain the 

required electromagnetic torque Tem. The error between 

electromagnetic torque Tem and the load torque Tm is 

multiplied by TF2 to produce rotational mechanical speed 

m. Mechanical speed m is multiplied by the pole pairs 

p to obtain the required rotor speed m. 
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Fig.  1.  The speed control loop of the RSC. 
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The torque constant is given by: 
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The transfer function between the reference rotor 

current ref

qri and its measured value 
qri is [24]: 
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The transfer function between measured 

electromagnetic torque Tem and rotational mechanical 

speed m is given by, 
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Closing the speed loop as shown in Figure 1 using the 

measured speed m feedback and ignoring converter 

dynamics, it is obtained the closed loop transfer function 

G(s) for speed using the proportional gain
pnk and 

integral gain ink . The overall transfer function from 

ref

m to m is given by [23], 
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The parameters of the PI controller are given by, 
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where: 

               1
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  and is torque constant. 

Pole placement method 

This method is used to obtain the gains of the controller 

for the speed loop of the RSC of the DFIG shown in 

Figure 1. The state variables are fed back to the system 

through a regulator with constant gains [25]. This damps 

oscillations in the system.  

In state variable form the system is, 

    ( )x t Ax t Bu t   (20) 

 

  tCxy   (21) 

Equations (20) and (21) can be diagrammatically 

represented by Figure 2 where A is the state matrix B is 

the input matrix, C is the output matrix, K is the 

controller, r is the system input and y is the output. 
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Fig. 2. System representation in state space.  

 

The state feedback control, 
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where K is 1n vector of constant feedback gains.  

With controller K, the system state-variable form 

becomes: 
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The compensated system characteristic equation is, 
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The design objective is to find K in (24) which is the 

Pole Placement controller shown in Figure 3. Using 

Matlab function “placepol” the state feedback gain 

 6251.23843.2 K is obtained. 
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Fig. 3. The system with the pole placement controller. 

 

Linear quadratic regulator 

From the plant described by (20). The problem is to 

find the vector  tK  of the control law: 

   )()( txtKtu   (25) 

 

Which minimizes the value of a quadratic performance 

index J [13]-[15], [17]-[18], [25] of the form: 

 



 

A. Oonsivilai, O. A. Zongo, and R. Oonsivilai / GMSARN International Journal 13 (2019) 194 - 201 

 
197 

 
 






ft

t
dtRuuQxxJ

0
 (26) 

 

Subject to the dynamic plant (20).  

Using n-vector Lagrange multipliers , the problem 

can be written as: 
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Equating the partial derivatives to zero, 
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Let:  

        xtp2     (31) 

 

Substituting (22) into (29) gives the optimal closed-

loop control law, 
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 (32) 

 

Obtaining the derivative of (30) gives, 
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Finally, equating (30) with (33), we obtain: 
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Equation (34) is the matrix Riccati equation. Once the 

solution to (34) is obtained, the solution of the state 

equation (28) in conjunction with the optimum control 

equation (32) is obtained. 

Implementation of LQR 

Step 1: Parameters of the DFIG are substituted into the 

transfer function (19).  

Step 2: The transfer function is converted to state 

space model using MATLAB to obtain the following 

matrices: 
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  2500.60000.10C   

 

 0D   

 

Step 3: MATLAB function lqr is used to search for 

the controller gains  9125.08423.2 K .  

The developed control system with noise in the input 

signal is as shown below: 
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Fig. 4. The system with a linear quadratic regulator. 

3. RESULTS, VERIFICATION AND 

DISCUSSION 

The simulation experiment was conducted using the 

DFIG with the parameters shown in Table 1. 

 
Table 1.  Ratings and parameters of the DFIG 

Parameter Value 

Real Power P  2 MW 

Rotor Speed m  1800 rpm 

Number of Poles p  2 

Stator Voltage
sV  690 V 

Rotor Resistance
rR  0.0029 ohms 

Stator Resistance
sR  0.26 ohms 



 

 A. Oonsivilai, O. A. Zongo, and R. Oonsivilai / GMSARN International Journal 13 (2019) 194 - 201  

 

198 

 
Fig. 5. Rotor speed of the DFIG with Vector control, with Pole placement controller and with LQR controller before fault, 

during fault and after the fault. 

 

 
Fig. 6. Electromagnetic torque of the DFIG during the fault. 

 

 
Fig. 7. Electromagnetic torque of the DFIG after the fault. 
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Fig. 8. Step response of the DFIG with Vector control, Pole placement and LQR. 

 
Table 1.  Step response results 

Method Overshoot Settling Time Rise Time Steady State Error 

LQR 12.5 0.0666 0.00853 0.948 

Pole Placement 13.6 0.0674 0.00941 1.02 

Vector Control 14.7 0.0686 0.0956 1.06 

 

The efficacy of the proposed LQR controller to 

enhance stability has been found and compared with the 

vector control and pole placement. The control gains of 

the pole placement and LQR have been found by solving 

(24) and (34) with the help of the MATLAB. 

Results 

Simulations were done using the state space model of the 

system, with the pole placement controller and with the 

linear quadratic regulator. Noise in the input signal was 

added to check the stability of the system against 

disturbances.   

With these controllers systems shown in Figure 3 and 

Figure 4 are run. Results are shown in Figure 5, Figure 6 

and Figure 7. 

Verification 

The results are verified by step responses of the system 

as shown in Table 1 and Figure 8. 

Discussion 

Results in Figure 5, Figure 6 and Figure 7 show that 

LQR is robust compared to pole placement and vector 

control. During the fault, the speed of the DFIG with 

vector control has damaging oscillations when the input 

signal has noise from T=4s to T=4.5s. With the addition 

of optimal controllers, the speed plot has very small 

oscillations during fault, with LQR showing the best 

performance. The same situation is also experienced by 

electromagnetic torque during the fault. This shows that 

the stability of the studied system is improved with 

optimal controllers.  

The step response of the system with the three 

methods shown in Figure 8 and Table 1 verify the results 

shown in Figures 5, 6 and 7. Step response show that 

LQR has the best performance with lowest overshoot, 

settling time, rise time and steady state error.    

This study applies optimal controllers without the 

Kalman filter because all states are observable. In [13] 

UKF is applied to estimate unobservable states. But in 

both cases, the results show that LQR has the best 

performance in tracking the reference speed and 

stabilizing the torque during and after the fault. Although 

the studies have taken different approaches in both cases, 

this experiment and the experiment conducted by [17]-

[18] the deviation of the speed for the conventional 

controller is very big during the fault. In [26] the electric 

torque and speed with and without LQR have similar 

behavior as results obtained in this study. That is there is 

a deviation during fault and stable before the fault. One 

of the significant achievements of this study is that all 

three controllers have fast response after fault, that rotor 

speed and torque track the reference values very fast 

after the occurrence of the measurement noises compared 

to the results obtained in [13], [15], [17]-[18]. 

4. CONCLUSION 

In this paper, optimal controllers have been developed, 

which accounts for the noises in the reference speed of 

the doubly-fed induction generator wind turbine. Its 

development is based on applying optimal control design 

techniques of pole placement and linear quadratic 

regulator. The control strategy has been tested by a 
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disturbance from measurement noise. Simulation results 

have shown that the proposed scheme not only 

effectively controls the speed but also ensures stable 

electromagnetic torque after the occurrence of 

measurement noise in the reference input speed. 

Therefore, the proposed controller may be recommended 

as a candidate for wind turbine control. 
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