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Abstract— In the currently-used electrical drive systems, bearings are increasingly widely applied owing to its 

capability of minimizing friction during operation, allowing rotating shafts to smoothly and easily rotate, as well as 

suffer from almost no mechanical wear. Recently with the development of control techniques and semiconductor 

components, magnetic bearings, mainly Active Magnetic Bearing (AMB), gradually substitute original bearings in 

numerous applications, typical high-speed rotation systems, and high-accuracy-demanding systems. In addition, 

magnetic bearings result in long life without the use of any lubrication system, thereby eliminating the complexity of 

lubricant systems and encouraging green operations of rotating systems. Therefore, an appropriate control system is 

essential for an AMB system to utilize its positive characteristics and improve working efficiency. In this study, based 

on the Lyapunov Stability, a nonlinear Adaptive Backstepping Controller is applied to the AMB system, so that it is 

possible to maintain the rotor - a rotating shaft - at equilibrium point during operation. Besides, an exponentially 

convergent nonlinear observer is also introduced into the system to estimate the unmeasured variables - displacement 

velocity of the rotating shaft since this is unavailable for measurement and feedback as well. The reliability of all 

methods applied is verified and confirmed by simulation results. 

 
Keywords— Active magnetic bearing, barrier Lyapunov function, nonlinear observer, backstepping. 
 

1.  INTRODUCTION 

The requirement of a supporting mechanism replacing 

conventional mechanical bearings is essential in modern 

manufacturing industry. Possessing non-contact and non-

lubrication properties, an active magnetic bearing (AMB) 

has been a potential candidate recently [1][2][3]. The 

pivot problem of magnetic bearing system is to maintain 

rotor shaft in the face of the nonlinearity in the system. 

In recent years, various control approaches have been 

proposed to AMB systems. In [4] and [5], various linear 

controller structures for AMBs such as PI/PD, PID, LQ, 

LQ/LTR have been considers. Genetic algorithm is also 

used for parameter optimization. In order to improve the 

operational performance of AMB with linear controller 

structures, Linear Quadratic Gaussian Controller with 

Extended Kalman Filter is also applied to AMB in [6].  

In [7], four degrees of freedom  AMB with gyroscopic 

impacts is considered, and due to the lack of velocity 

feedback information, the authors employ robust control 

with rotor position output feedback. In [8], the state 

feedback controller is proposed to control the AMB. Five 

explicit sets of stability constraints had been proposed to 

guarantee the state feedback loop is not over-designed. 

Adaptive control with nonlinear observer is also used in 

[9] to overcome the nonlinear and parametric 
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uncertainties in AMB.  In addition, to attenuate the 

disturbance and increase the robustness to model 

uncertainties, sliding mode control is applied to control 

the AMBs in [10] and [11]. In [12], a robust Takgi-

Sugeno model based fuzzy control has been proposed to 

stabilize the AMB system with parameter uncertainties 

and voltage saturation. To increase the robustness and 

improve the performance of the AMB system subject to 

disturbances, a hybrid  control scheme including a 

feedback H∞ controller and disturbance observer-based 

control is proposed in [13]. In addition, to reject the 

influence of moving gimbal effect and parameter 

variation, feedback linearization and extend state 

observer are used in [14]. Although various problems 

have been considered in the aforementioned works, there 

still some limitations such as the motor shaft is 

considered as a mass point, or the output limitation has 

not taken into account. 

To overcome the above-mentioned limitation, in this 

paper, we consider the 4DOF Active Magnetic Bearing 

in which the motor shaft is not a mass point but a 

cylindrical shaft. Due to only output feedback is 

available, an exponentially convergent nonlinear 

observer is used to estimated unmeasured rotor speed. To 

guarantee the system stability and keep the rotor shaft of 

AMBs at the equilibrium point during operation, a 

nonlinear adaptive controller with backstepping design 

strategy is introduced. In order to avoid multi-input 

situation, a current switching scheme is utilized. 

Moreover, the paper introduces barrier term in Lyapunov 

candidate function to control system output in a limit 

which bear a practical meaning since it prevents the rotor 

from coming into contact with the stator.  

This paper is organized as follows. First, in the section 

2, the model of 4DOF Active Magnetic Bearing is 

presented. Then, the nonlinear adaptive controller is 
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designed using backstepping strategy in Section 3. 

Simulations is done in Section 4. Finally, Section 5 

concludes this paper.         

2. SYSTEM MODELLING  

Considering a 4DOF Active Magnetic Bearing as in 

Figure 1, this model can be divided into 2 parts - upper 

part composed of magnet 1 and 2 while lower 

counterpart comprising magnet 3 and 4. The upper part 

includes two identical magnets that are placed opposite 

to each other, creating two forces (F1, F2) of opposite 

direction. These two forces keep the rotor remained at 

equilibrium point between two magnets and can be 

adjusted by adjusting voltage u1 and u2 applied to the 

coils  so as to adjust current i1 and i2. Similarly, the lower 

part includes two identical magnets that are placed 

opposite to each other, creating two forces (F3, F4) of 

opposite direction These two forces keep the rotor 

remained at equilibrium point between two magnets and 

can be adjusted by adjusting voltage u3 and u4 applied to 

the coils  so as to adjust current i3 and i4. It is supposed 

that the effect rotational motion is negligible, i.e, it is 

totally decoupled from transverse motions. 

 

 

Fig.1. Vertical model of 4-degree-of-freedom AMB. 

 

Now, let’s consider the upper part. According to 

Newton’s law: 

𝑚𝑥�̈� = 𝐹1 − 𝐹2 , (1) 

where xu is the displacement of upper part from 

equilibrium point.  Two electromagnetic force F1 and F2 

can be calculated as [15]:  

𝐹1 =
𝜇𝑔𝑁

2𝑖1
2𝐴𝑔

4(𝑥0−𝑥𝑢)
2 =

𝐾

4
(

𝑖1

𝑥0−𝑥𝑢
)
2

, 
(2) 

𝐹2 =
𝜇𝑔𝑁

2𝑖2
2𝐴𝑔

4(𝑥0+𝑥𝑢)
2 =

𝐾

4
(

𝑖2

𝑥0+𝑥𝑢
)
2

 ,  
(3) 

with x0 is the nominal position of the rotor at equilibrium 

point,  𝐾 = 𝜇𝑔𝑁
2𝐴𝑔, µg is flux factor of air gap, N is 

number of coil round, Ag is the cross-section area. It is 

noted that, the force and current/displacement equation 

exhibits a nonlinear relationship which causes difficulites 

in control design.  According to Kirchoff’s Voltage Law: 

𝑢1 = 𝑅𝑖1 + 𝐿𝑠
𝑑𝑖1

𝑑𝑡
+𝑁

𝑑𝜙1

𝑑𝑡
 , (4) 

𝑢2 = 𝑅𝑖2 + 𝐿𝑠
𝑑𝑖2

𝑑𝑡
+ 𝑁

𝑑𝜙2

𝑑𝑡
 , (5) 

where R is coil resistor and Ls is coil inductance.  

From (1) – (5) we have the equations representing the 

AMB dynsmics for upper part is: 

{
  
 

  
 
�̇�𝑢 = 𝑣𝑢

�̇�𝑢 = 𝑎𝑢 . (
𝑖1

𝑥0−𝑥𝑢
)
2

− 𝑎𝑢. (
𝑖2

𝑥0+𝑥𝑢
)
2

𝑑𝑖1

𝑑𝑡
=

2.(𝑥0−𝑥𝑢)

2𝐿𝑠.(𝑥0−𝑥𝑢)+𝐾
. (𝑢1 − 𝑅. 𝑖1 −

𝐾.𝑣𝑢.𝑖1

2.(𝑥0−𝑥𝑢)
2)

𝑑𝑖2

𝑑𝑡
=

2.(𝑥0+𝑥𝑢)

2𝐿𝑠.(𝑥0+𝑥𝑢)+𝐾
. (𝑢2 − 𝑅. 𝑖2 +

𝐾.𝑣𝑢.𝑖2

2.(𝑥0+𝑥𝑢)
2)

  (6) 

in which 𝑎𝑢 =
𝐾

4𝑚
. Similarly, the equations representing 

the AMB motions for lower part is: 

{
  
 

  
 
�̇�𝑙 = 𝑣𝑙

�̇�𝑙 = 𝑎𝑙 . (
𝑖3

𝑥0−𝑥𝑙
)
2

− 𝑎𝑙 . (
𝑖4

𝑥0+𝑥𝑙
)
2

𝑑𝑖3

𝑑𝑡
=

2.(𝑥0−𝑥𝑙)

2𝐿𝑠.(𝑥0−𝑥𝑙)+𝐾
. (𝑢3 − 𝑅. 𝑖3 −

𝐾.𝑣𝑙.𝑖3

2.(𝑥0−𝑥𝑙)
2)

𝑑𝑖4

𝑑𝑡
=

2.(𝑥0+𝑥𝑙)

2𝐿𝑠.(𝑥0+𝑥𝑙)+𝐾
. (𝑢4 − 𝑅. 𝑖4 +

𝐾.𝑣𝑙.𝑖4

2.(𝑥0+𝑥𝑙)
2)

  (7) 

where xl is the displacement of lower part from 

equilibrium point, 𝑎𝑙 =
𝐾

4𝑚
. 

3. CONTROLLER DESIGN 

Practically, almost every parameter of AMB system can 

be measured, and the only exception is velocity. Since 

the feedback of velocity is needed for controller design, 

an exponentially convergent nonlinear speed observer [9] 

is introduced into the system as: 

�̂�𝑢 = 𝜁1 + 𝐴𝑢𝜉1 + 𝑘𝑢𝑥𝑢 , (8) 

�̂�𝑙 = 𝜁2 + 𝐴𝑙𝜉2 + 𝑘𝑙𝑥𝑙 ,  (9) 

in which 𝜁1̇ = −𝑘𝑢𝜁1 − 𝑘𝑢
2𝑥𝑢,  𝜁2̇ = −𝑘𝑙𝜁2 − 𝑘𝑙

2𝑥𝑙 , and  

𝜉1̇ = −𝑘𝑢𝜉1 +
𝑖1
2

(𝑥0−𝑥𝑢)
2 −

𝑖2
2

(𝑥0+𝑥𝑢)
2, 

𝜉2̇ = −𝑘𝑙𝜉2 +
𝑖3
2

(𝑥0−𝑥𝑙)
2 −

𝑖4
2

(𝑥0+𝑥𝑙)
2,  

the initial states 𝜁𝑢(0) = 𝜁𝑙(0) = 0, 𝜉𝑢(0) = 𝜉𝑙(0) = 0, 

and ku, kl are positive factors.  

Substituting (8) into (6) and (9) into (7), the equations 

representing the system for the upper part can be 

rewritten as: 
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{
 
 
 
 

 
 
 
 
�̇�𝑢 = 𝑣𝑢
�̂�𝑢 = 𝜁1 + 𝐴𝑢𝜉1 + 𝑘𝑢𝑥𝑢

�̈�𝑢 = 𝑎𝑢 [
𝑖21

(𝑥0−𝑥𝑢)
2 −

𝑖22

(𝑥0+𝑥𝑢)
2]

𝑑𝑖1

𝑑𝑡
=

2.(𝑥0−𝑥𝑢)

2𝐿𝑠.(𝑥0−𝑥𝑢)+𝐾
. (𝑢1 − 𝑅. 𝑖1 −

𝐾.𝑣𝑢.𝑖1

2.(𝑥0−𝑥𝑢)
2)

𝑑𝑖2

𝑑𝑡
=

2.(𝑥0+𝑥𝑢)

2𝐿𝑠.(𝑥0+𝑥𝑢)+𝐾
. (𝑢2 − 𝑅. 𝑖2 −

𝐾.𝑣𝑢.𝑖2

2.(𝑥0+𝑥𝑢)
2)

  (10) 

And for the lower part  
 

{
 
 
 
 

 
 
 
 
�̇�𝑙 = 𝑣𝑙
�̂�𝑙 = 𝜁2 + 𝐴𝑙𝜉2 + 𝑘𝑙𝑥𝑙

�̈�𝑙 = 𝑎𝑙 [
𝑖23

(𝑥0−𝑥𝑙)
2 −

𝑖24

(𝑥0+𝑥𝑙)
2]

𝑑𝑖3

𝑑𝑡
=

2.(𝑥0−𝑥𝑙)

2𝐿𝑠.(𝑥0−𝑥𝑙)+𝐾
. (𝑢3 − 𝑅. 𝑖3 −

𝐾.𝑣𝑙.𝑖3

2.(𝑥0−𝑥𝑙)
2)

𝑑𝑖4

𝑑𝑡
=

2.(𝑥0+𝑥𝑙)

2𝐿𝑠.(𝑥0+𝑥𝑙)+𝐾
. (𝑢4 − 𝑅. 𝑖4 −

𝐾.𝑣𝑙.𝑖4

2.(𝑥0+𝑥𝑙)
2)

  (11) 

Since in this model, two parts of the system are 

identical to each other, design controller will be designed 

for one side, and applied similarly to the other 

counterpart. The system is in of strict feedback form, the 

control design is based on backstepping strategy as 

follows. 

Considering z1 the displacement between rotor and 

equilibrium point: z1 = xu. The derivative of z1 can be 

written:  

�̇�1 = �̇�𝑢 = 𝜁1 + 𝐴𝑢𝜉1 + 𝑘𝑢𝑥𝑢 + �̃�1  (12) 

Practically, the displacement needs being limited to a 

certain extent, or collision between hardware 

components can make the system collapsed. Therefore, 

in this paper, Lyapunov stability is used to design the a 

controller and the Barrier Lyapunov function is applied 

in order to avoid this incident. 

Here, Barrier Lyapunov function V1 was used: 

 𝑉1 =
1

2
𝑙𝑛

𝑘𝑏
2

𝑘𝑏
2−𝑧1

2 +
1

2𝑘𝑢𝑑1
�̃�1
2  (13) 

in which kb is the limitation of displacement (-kb ≤ z1 ≤ 

kb), d1 is a positive factor, and �̃�1 = 𝑣𝑢 − �̂�𝑢. Different 

from conventional Lyapunov candidate functions taking 

a form of quadratic of system errors, the logarithm term 

in 𝑉1is used to limit z1 in a predefined value kb [16] and 

[17]. 

Taking the derivative of V1:  

�̇�1 =
𝑧1(𝜁1+𝐴𝑢𝜉1+𝑘𝑢𝑥𝑢+�̃�1)

𝑘𝑏
2−𝑧1

2 −
1

𝑑1
�̃�1
2  (14) 

It is noted that �̇̃�1 = �̇�𝑢 − �̇̂�𝑢 = 𝑘𝑢�̃�1. 

To achieve �̇�1 ≤ 0, a virtual controller ξ1ctrl can be 

chosen as: 

𝜉1𝑐𝑡𝑟𝑙 =
1

𝐴𝑢
[−(𝑘𝑏

2 − 𝑧1
2) 𝑘1 𝑧1 − 𝑑1

𝑧1

𝑘𝑏
2−𝑧1

2 −
(15) 

𝑘𝑢𝑥𝑢 − 𝜁1]  

in which k1 and d1 are positive factors. Substituting 

this into (14), the derivative V̇1 is obtained as: 

�̇�1 = −𝑘1 𝑧1
2 − 𝑑1 [

𝑧1

𝑘𝑏
2−𝑧1

2 −
1

2𝑑1
�̃�1]

2

−
3

4𝑑1
�̃�1
2 ≤

0 
(16) 

Here, it is proved that V1 exponentially converges to 

zero if ξ1 = ξ1ctrl. Since the global stability condition is 

not achieved yet, the control design needs expanding to 

include the error variable z2:  

𝑧2 = 𝜉1 − 𝜉1𝑐𝑡𝑟𝑙 = 𝜉1 − 𝛼1. (17) 

Then,  

�̇�2 = 𝜉1̇ −
𝜕𝛼1

𝜕𝑧1
(�̂�1 + �̃�1) −

𝜕𝛼1

𝜕𝜁1
. 𝜁1  (18) 

Substituting (17) into (12), the derivative of z1 can be 

rewritten as: 

�̇�1 = 𝐴𝑢𝑧2 − (𝑘𝑏
2 − 𝑧1

2) 𝑘1 𝑧1 − 𝑑1.
𝑧1

𝑘𝑏
2−𝑧1

2 + �̃�1  (19) 

Considering the Barrier Lyapunov function V2: 

𝑉2 = 𝑉1𝑛𝑤 +
1

2
𝑧2
2 +

1

2𝑘𝑢𝑑2
�̃�2  (20) 

in which d2 is a positive factor and �̇�1𝑛𝑤 = 𝐴𝑢
𝑧1𝑧2

𝑘𝑏
2−𝑧1

2 +

�̇�1. Taking the derivative of V2, it is obtained that: 

�̇�2 = �̇�1 + 𝐴𝑢
𝑧1𝑧2

𝑘𝑏
2−𝑧1

2 + 𝑧2(𝜉1̇ −
𝜕𝛼1

𝜕𝑧1
(�̂�1 + �̃�1) −

𝜕𝛼1

𝜕𝜁1
𝜁1̇) −

1

𝑑2
�̃�1
2  

(21) 

To render 𝑉2̇ ≤ 0, 
1  is defined as: 

𝜉1̇ = 𝛼2 = −𝑘2𝑧2 − 𝐴𝑢
𝑧1

𝑘𝑏
2−𝑧1

2 − 𝑑2𝑧2 (
𝜕𝛼1

𝜕𝑧1
)
2

+

𝜕𝛼1

𝜕𝑧1
�̂�1 +

𝜕𝛼1

𝜕𝜁1
𝜁1̇  

(22) 

in which k2 and d2 are positive factors. With this control 

variable, we have 

�̇�2 = �̇�1 − 𝑘2𝑧2
2 − 𝑑2 [𝑧2

𝜕𝛼1

𝜕𝑧1
+

1

2𝑑2
�̃�1]

2

−

3

4𝑑2
�̃�1
2 ≤ 0  

(23) 

From (8), it is clear that 𝜉1̇ can be demonstrated as a 

function of i1 and i2, then 𝛼2 = 𝜉1̇ can also be 

demonstrated as: 

𝛼2 = 𝜉1̇ = −𝑘𝑢𝜉1 +
𝑖1
2

(𝑥0−𝑥𝑢)
2 −

𝑖2
2

(𝑥0+𝑥𝑢)
2  (24) 

Setting 𝛼𝑢 = 𝑘𝑢𝜉1 + 𝛼2, then,  

𝛼𝑢 =
𝑖1
2

(𝑥0−𝑥𝑢)
2 −

𝑖2
2

(𝑥0+𝑥𝑢)
2 . (25) 

Ultimately, the controlling purpose becomes adjusting 

the actual current value i stick to the desired current 

value id. As it can be seen, virtual control function 𝜉1̇is 
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defined based on i1 and i2 - current generated by magnet 

1 and magnet 2, respectively. However, letting both 

currents flowing simultaneously leads to high 

consumption of electricity, as well as make it difficult to 

design control function for u1 and u2 to control the 

current flowing in both coils. Therefore, in this research, 

the currents are alternatively switched on and off. To be 

more specific: when the rotor part is displaced towards 

magnet 2, i2 is switched off. Then: 𝛼𝑢 =
𝑖21

(𝑥0−𝑥𝑢)
2  , and 

𝑖1𝑑 = (𝑥0 − 𝑥𝑢)√𝛼𝑢  (26) 

Considering z3 the error variable of i1 and i1d: 

𝑧3 = 𝑖1 − 𝑖1𝑑  (27) 

Taking the derivative: 

�̇�3 =
2(𝑥0−𝑥𝑢)

2𝐿𝑆(𝑥0−𝑥𝑢)+𝐾
(−𝑅𝑖1 −

𝑘𝑖1

2(𝑥0−𝑥𝑢)
2 �̇�𝑢 +

𝑢1) −
𝑑𝑖1𝑑

𝑑𝑡
  

(28) 

Setting 𝐴1 =
2(𝑥0−𝑥𝑢)

2𝐿𝑆(𝑥0−𝑥𝑢)+𝐾
 and 𝐵1 = −

𝐴1𝑘𝑖1

2(𝑥0−𝑥𝑢)
2 −

𝜕𝑖1𝑑

𝜕𝑧1
, 

equation (28) can be rewritten: 

�̇�3 = 𝐴1𝑅𝑖1 + 𝐵1(�̂�1 + �̃�1) + 𝐴1𝑢1 −
𝜕𝑖1𝑑

𝜕𝜉1
𝜉1̇ −

𝜕𝑖1𝑑

𝜕𝜁1
𝜁1̇  

(29) 

Considering the Lyapunov candidate function: 

𝑉3 = 𝑉2 +
1

2
𝑧3
2 +

1

2𝑘𝑢𝑑3
�̃�1
2 , (30) 

in which d3 is a positive factor. Derivative of V3 is 

obtained as:  

�̇�3 = �̇�2 + 𝑧3 [−𝐴1𝑅𝑖1 + 𝐵1(�̂�1 + �̃�1) +

𝐴1𝑢1 −
𝜕𝑖1𝑑

𝜕𝜉1
𝜉1̇ −

𝜕𝑖1𝑑

𝜕𝜁1
𝜁1̇] −

1

𝑑3
�̃�1
2  

(31) 

At this point, to make 𝑉3̇ ≤ 0, the control function for 

u1 can be defined as: 

𝑢1 =
1

𝐴1
[𝐴1𝑅𝑖1 − 𝐵1�̂�1 − 𝑘3𝑧3 − 𝑑3𝑧3𝐵1

2 +

𝜕𝑖1𝑑

𝜕𝜉1
𝜉1̇ +

𝜕𝑖1𝑑

𝜕𝜁1
𝜁1̇]  

(32) 

in which k3 and d3 are positive constants. Substituting 

(32) into (31), we can achieve: 

�̇�3 = �̇�2 − 𝑘3𝑧3
2 − 𝑑3 [𝑧3𝐵1 −

1

2𝑑3
�̃�1]

2

−
3

4𝑑3
�̃�1
2 ≤ 0  

(33) 

When the rotor part is displaced towards magnet 1, i1 

is switched off, then 𝛼𝑢 = −
𝑖2
2

(𝑥0+𝑥𝑢)
2 

Control function for u2 is obtained as:  

𝑢2 =
1

𝐴2
[𝐴2𝑅𝑖2 − 𝐵2�̂�1 − 𝑘4𝑧4 − 𝑑4𝑧4𝐵2

2 +

𝜕𝑖2𝑑

𝜕𝜉1
𝜉1̇ +

𝜕𝑖2𝑑

𝜕𝜁1
𝜁1̇]  

(34) 

in which k4 and d4 are positive factors, and 

𝑧4 = 𝑖2 − 𝑖2𝑑 = 𝑖2 − (𝑥0 + 𝑥𝑢)√−𝛼𝑢 . (35) 

Here the design procedure for upper part of rotor is 

completed. To design controller for the lower one, it is 

possible to identically follow the steps for the upper, and 

finally obtain: 

𝑢3 =
1

𝐴3
[𝐴3𝑅𝑖3 − 𝐵3�̂�2 − 𝑘7𝑧7 − 𝑑7𝑧7𝐵3

2 +

𝜕𝑖3𝑑

𝜕𝜉2
𝜉2̇ +

𝜕𝑖3𝑑

𝜕𝜁2
𝜁2̇]  

(36) 

𝑢4 =
1

𝐴4
[𝐴4𝑅𝑖4 − 𝐵4�̂�2 − 𝑘8𝑧8 − 𝑑8𝑧8𝐵4

2 +

𝜕𝑖4𝑑

𝜕𝜉2
𝜉2̇ +

𝜕𝑖4𝑑

𝜕𝜁2
𝜁2̇]  

(37) 

4. SIMULATIONS 

With the acquired the AMB equations of motion and 

control, a simulation model is constructed to assess the 

stability and reliability of the controller for a 4-DOF 

AMB system. Parameters of the system as below: 

 

Table 1. System’s parameters for simulations 

Parameter Symbol Value 

Rotor weight m 5kg 

Coil rounds N 400 rounds 

Nominal air gap x0 0.004m 

Displacement limit kb 0.001m 

Initial position of rotor 

upper part  

xu 0.0004m 

Initial position of rotor 

lower part  

xl 0.0004m 

Coil inductance Ls 0.001H 

Cross-section area Ag 0.001m 

Air gap factor µg 1.256 x 10-6 

Inertia Ir 2.90 x 10-2 kgm2 

Distance from shaft 

center to upper magnet 

Du 4.166 x 10-2m 

Distance from shaft 

center to lower magnet 

Dl 7.602 x 10-2m 

 

Control gains are selected as below: 

- For the upper part: k1=75; k2=250; k3=160; k4=160; 

d1=9.5x10-6; d2=10-10
; d3=3x10-15; d4=3x10-15; ku=7.75. 

- For the lower part: k5=65; k6=300; k7=180; k8=180; 

d5=9x10-6; d6=5x10-10; d7=4x10-15; d8=4x10-15; kl = 5. 
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Fig. 2. Rotor displacement. 

 

 

Fig. 3. Rotor angle. 

 

 

Fig. 4. Upper rotor displacement velocity. 

 

 

At the initial condition, the AMB rotor is attached to 

one side of the stator and then the control is activated to 

drive the rotor to the center of the two stators. Fig. 2 

shows that after 1s, the control successfully steers the 

rotor to zero position, consequently the rotor angle also 

reaches zero degree. The effectiveness of introducing 

barrier term in selection of the Lyapunov is presented in 

Fig. 1 where the displacement overshoot is limited below 

the nominal airgap (kb=0.004). Fig. 4 and 5 indicatives 

that the estimated speed closely track the actual values. 

Electrical signals in the AMB in Fig. 6, 7, 8, and 9 

clearly demonstrate complementarily switching nature of 

two opposite magnets. In addition, the control input 

voltage is practical for the AMB under consideration. 

 
 

 

Fig. 5. Lower rotor displacement velocity. 

 

 

Fig. 6. Upper rotor currents in magnet coils. 

 

 

Fig. 7. Lower rotor currents in magnet coils. 

 



 

 N. H. Le et al. / GMSARN International Journal 14 (2020) 195 - 201  

 

200 

 

Fig. 8. Upper rotor voltages applied to magnet coils. 

 

 

Fig. 9. Lower rotor voltage applied to magnet coils. 

5. CONCLUSIONS AND FUTURE WORKS 

This study introduces the procedures in designing a 

nonlinear controller based on the Backstepping method 

and with the use of Barrier Lyapunov function for Active 

Magnetic Bearings (AMB). With the feedback of rotor 

displacement, current and voltage of the magnets, as well 

as estimated velocity of displacement, the controller 

succeeds in not only maintaining the shaft at equilibrium 

point but also restricting movement range during 

initiation. As can be seen in the simulation results, the 

usage of the Lyapunov method leads to the effectiveness 

and robustness of the control system, hence the stability 

of the AMB system. Besides, the convergent nonlinear 

observer introduced is proved to bring high-accuracy 

estimation of velocity, allowing us to overcome the 

difficulties of unknown parameters in the system. 

Experimental results are found satisfactory and 

promising for the active magnetic bearing system. 

Nevertheless, there still stand some shortcomings 

within this study. One is, the controller factors 

significantly affect the outcomes of the controller, and 

even minor changes in these factors can lead to 

completely different results. Therefore, a clear study to 

discover and tune these coefficients should be found, or 

else this process is conducted without basing on any 

basis, hence taking a considerable amount of time. 

Certain methods such as genetic algorithm or particle 

swarm might be the potential to handle this difficulty. 

Another point is that AMB system, as well as the 

backstepping method, stands a great chance of being 

applied widely in the real world, meaning that its 

reliability should be ensured as much as possible. 

Therefore, some ignored conditions, such as power loss 

or environmental affection, can be taken into 

consideration to make the entire system more practical 

and applicable. 
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