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Abstract— In this paper, a comprehensive framework for estimating the probability distribution of wind power 

generation is proposed. The proposed approach is mainly based on the combination of data pre-processing and 

clustering techniques to form an appropriate distribution characterizing the stochastic nature of the wind for the 

considered wind farm site. The proposed model of wind is tested on real wind data at different wind farm sites showing 

a good performance in comparison with popular probability distributions for wind speed and wind power. In order to 

illustrate the applicability of the proposed wind distribution, probabilistic power flow calculation and analysis are 

carried out on the modified IEEE 57-bus test power system. 
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1. 
INTRODUCTION 

Renewable energy, especially wind, has attracted global 

attention in recent years. Wind is considered as one of 

the cleanest renewable energy resources. However, in 

addition to the environmental benefits and its 

contribution to providing electricity to meet the 

increasing demand of the load, wind power generation 

causes several difficulties in power system planning, 

operation, and security assessment due to its highly 

uncertain, time-varying, and intermittent characteristics 

[1]. Wind power generation has added additional 

uncertainty to power systems. In order to manage 

uncertainties in planning, operation, and security 

assessment of the system with integrated wind resources, 

probabilistic approach has been introduced and can serve 

as an effective tool in which uncertainty from wind is 

represented by a probability distribution.  

Wind power probability distribution can be estimated 

from either wind power data or wind speed data. Wind 

power data are sometimes neither available nor reliable 

[1]. In such a case, wind speed distribution is first 

obtained and then wind power distribution is drived via a 

power curve, i.e., wind power-wind speed relationship. 

Many types of probability distributions have been used 

in the literature to model wind speed [2, 3]. In general, a 

distribution may has only one peak, two peaks, three or 

more peaks corresponding to unimodal, bimodal, 

multimodal distribution, respectively [4, 5]. For a 

unimodal distribution, it can be characterized by a 

generic distribution function such as Weibull, Beta, 

Gamma, Rayleigh, Lognormal, etc. Among them, the 

                                                 

Tung Le-Duc is with School of Electrical Engineering, Hanoi 

University of Science and Technology, 1 Dai Co Viet St., Ha Noi, 

Vietnam. 

Dinh Duong Le and Nhi Thi Ai Nguyen are with Faculty of 

Electrical Engineering, The University of Danang – University of 
Science and Technology, 54 Nguyen Luong Bang St., Da Nang city, 

Vietnam. 

*Corresponding author: Tung Le-Duc; Phone: +84-943842803; E-
mail: tung.leduc1@hust.edu.vn. 

Weibull distribution is the most widely used and 

accepted distribution. However, in practice wind speed at 

different wind farms can have different patterns, thus the 

Weibull distribution cannot represent well for some wind 

farms. Generally, several different distributions need to 

be estimated to eventually select the most appropriate 

one for the considered wind data. In case the wind speed 

distribution follows a multimodal shape of its 

histograms, the aforementioned distributions cannot 

characterize the wind speed well and mixture 

distributions need to be used. Several mixture 

distributions have been introduced including mixture of 

two Gaussian distributions, mixture of two Weibull 

distributions, mixture of Gaussian and Weibull 

distributions and so on [2]. Estimation of parameters for 

a mixture distribution is much more complicated than 

that for a unimodal distribution. 

When wind power data are available, wind power 

distribution can be estimated directly from these data. In 

practice, the output power of a wind farm is often 

distributed according to complicated shapes and less 

obeying the common distributions as mentioned above. 

Moreover, probability distribution regularity of the 

power output is usually poor. Therefore, in general 

fitting power output of a wind farm to a distribution 

function are often more challenging than that for wind 

speed. 

In order to overcome the above-mentioned difficulties, 

in this paper we propose a framework for estimation of 

wind probability distribution in which clustering 

techniques are used to form a discrete distribution for 

wind data. The proposed model can be applied for both 

wind speed and wind power data. In addition, it is 

suitable for any type of distribution including unimodal, 

bimodal, and multimodal distributions. 

In this paper, the wind power probability distribution 

obtained above is used for the purpose of calculation and 

analysis of the power system by a probabilistic power 

flow approach. We make use of the technique proposed 

in [6] which can effectively account for the discrete 

probability distribution of wind together with other types 
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of probability distributions which represent uncertainties 

in the power system such as from loads, contingencies 

due to random branch and generating unit outages. 

The proposed model of wind is tested on real wind 

speed and wind power observed at different wind farms 

in Italy while probabilistic power flow calculation and 

analysis are carried out on modified IEEE 57-bus test 

power system. 

The rest of the paper is outlined as follows: Section 2 

presents the proposed framework for estimating 

distribution of wind power generation. In Section 3, the 

probabilistic power flow is described. Simulations results 

are presented and discussed in Section 4. Concluding 

remarks are provided in Section 5.  

2. PROPOSED FRAMEWORK FOR 

ESTIMATING DISTRIBUTION OF WIND 

POWER GENERATION 

In this section, a methodology developed to effectively 

estimate probability distribution of wind speed and wind 

power generation based on observed wind data at a wind 

farm is presented. As discussed above, probability 

distribution of wind power output can be estimated 

directly from wind power data or indirectly via wind 

speed data as shown in Fig. 1. 

It is worth noticing that the proposed framework can 

be appropriately used for both wind speed and wind 

power data and for either a unimodal or a multimodal 

distribution. This is a particularly attractive feature of the 

proposed model that makes it widely applicable to 

various types of wind data in practice. 

 

 

Fig.1. Flowchart of two ways for estimating wind power 

generation distribution. 

 

The proposed approach for estimation of wind 

probability distribution is mainly based on the 

combination of data pre-processing and clustering 

techniques. 

First, outlier detection [7, 8] is performed 

to find values which significantly deviate from the 

underlying wind data distribution. Detecting outliers is of 

major importance for the next steps of the estimation 

because outliers can cause errors and decrease accuracy 

in the estimation of the distribution function. The 

methods of identifying and eliminating outliers can be 

found in [7, 8], including the following groups of 

methods: Z-Score or Extreme Value Analysis, 

Probabilistic and Statistical Modeling, Linear Regression 

Models, Proximity Based Models, Information Theory 

Models, etc. Generally, each method has its own 

advantages and disadvantages. In this paper, we apply 

the method used effectively in practice presented in [9] 

in which outliers are detected and removed from the data 

set based on its distribution function and significance 

level. 

Next, we make use of a clustering technique to form 

all impulses for a discrete distribution characterizing the 

stochastic nature of the wind.  Clustering partitions wind 

data into distinct groups (or clusters), then data points in 

each group are used to build an impulse for the discrete 

distribution. The probability of each cluster (impulse) is 

calculated proportionally to the total number of data 

points. 

In the literature, many clustering techniques have been 

developed [10]. Among them, K-means is one of the 

most popular ones. The method is easy to execute in 

practice; however, there are several drawbacks. It is 

stochastic and does not guarantee to converge to the 

global optimum solution for clustering. The result 

obtained is highly dependent on the position of the initial 

cluster centroids. In addition, it is difficult to select 

optimal number of clusters for K-means algorithm. 

Clustering algorithms divides the set of wind data into 

distinct clusters by minimizing the dissimilarities 

between different clusters and maximizing the 

similarities among members within the same clusters. As 

a result, the problem can be considered as an 

optimization one. Hence, it can be solved by using 

optimization algorithms such as Genetic Algorithms 

(GA) [11, 12], Particle Swarm Optimization (PSO) [13, 

14], and Differential Evolution (DE) [15–17]. Different 

from K-means, the above algorithms provide globally 

optimal solution and among them, DE is simple to 

implement and requires little or no parameter tuning so 

we propose to use it in this paper. 

In order to evaluate the performance of the discrete 

distribution proposed in this paper compared to the 

common distributions discussed above, criteria such as 

Chi-squared Statistic (χ
2
), Kolmogorov-Smirnov (K-S), 

Coefcient of Determination (R
2
), Akaike Information 

Criterion (AIC), Bayseian Information Criterion (BIC), 

Log-likelihood (LL), etc., can be used [18–20]. 

As previously mentioned, the proposed estimation 

method can be applied to both wind speed as well as 

wind power data; however, we prefer to estimate wind 

power distribution using wind speed data via an 

aggregate power curve of the wind farm because of its 

flexibility in practical application. In such a case, an 

aggregate power curve for the entire wind farm is needed 

for mapping wind speed into wind power. There are 

several techniques to fit the power curve of a single wind 

turbine or an entire wind farm, which can be classified 

into parametric and nonparametric methods [21]. 

Nevertheless, in this paper, we aim to develop a new 

methodology for estimating the wind distribution rather 

than studying techniques to fit the power curve. Instead, 

we adopt the method of bins [1] using measurement data 

of wind power–wind speed pairs of a wind farm site. 

3. PROBABILISTIC POWER FLOW 

CALCULATION 

In this section, we present the technique developed in [6] 
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that can effectively account for different types of 

probability distributions representing uncertainties in the 

power system from nodal power injections such as loads, 

wind power generation and contingencies due to random 

branch and generating unit outages. 

The well-known basic power flow equations can be 

expressed by matrix form as: 

( )gw x  

( )hz x  

where, 

w:  vector of nodal power injections; 

x:  vector of state variables; 

z:  vector of line power flows; 

g(x):  the power flow equations; 

h(x): the functions to compute line power flows. 

After solving a conventional deterministic power flow 

for the system to obtain solution denoted as 
_

x , Taylor 

series expansion is used to linearize the power flow 

equations around the solution point gives: 

_|  S
x

x w  

_|  T
x

z w  

where, 

_|S
x

: the inverse of the Jacobian matrix, computed at 

_

x ; 

_|T
x

: the sensitivity matrix of power flows with respect 

to nodal power injections, computed at 
_

x . 

At this point, each element of w, x and z is considered 

as the realization of the random variable associated with 

each nodal power injection, state variable and power 

flow, respectively. 

Based on the linear relationships in (3) and (4), 

cumulant-based probabilistic power flow can be adopted. 

In [6], discrete and continuous distributions of input 

random variables are separately treated. First, self and 

joint cumulants of nodal power injections for both 

discrete and continuous distributions are calculated. 

Next, cumulants of state variables and line power flows 

are obtained by using (3) and (4). Then, Von Mises 

method is used to represent discrete part, while series 

expansion method such as Gram-Charlier is used to 

approximate continuous part. Eventually, the probability 

distributions of output random variables are constructed 

by combining the resulting approximation of both 

discrete and continuous parts [6]. 

4. SIMULATION RESULTS AND DISCUSSIONS 

In this section, we apply the proposed approach to 

estimate probability distribution for wind data observed 

at different wind farm sites in Italy. We use hourly wind 

speed and wind power data from September 2011 to 

August 2012. Wind speed data are used for estimation of 

wind speed distribution, whereas wind power-wind speed 

pairs are used for estimating the aggregate power curve 

for the wind farm site. 

Wind speed at different wind farms has different 

patterns depending on the climate, weather conditions at 

the sites. In this study, we choose three wind farms with 

three different types of distribution to test the 

performances of the proposed distribution in comparison 

with popular distributions for wind speed, i.e., Weibull, 

Gamma, Rayleigh, Loglogistic, Lognormal, Nakagami, 

Generalized Extreme Value (GEV), etc. 

In Fig. 2, wind speed distributions for wind farm site 1 

are estimated by using the proposed model and eight 

popular distributions. It can be seen from the figure that 

the histograms of the wind speed show a clear peak, so 

most probability distributions provide good results as 

shown in Table 1. In Fig. 2, to make it clear, we plot only 

three most suitable common distributions for the data 

and the proposed distribution. In Table 1, the distribution 

functions are arranged in order of accuracy from highest 

to lowest based on criteria AIC and LL. Both Fig. 2 and 

Table 1 show that the proposed distribution function 

gives very accurate estimation results.  

 

 

Fig.2. Estimated wind speed distributions for wind farm 

site 1. 

 
Table 1. Comparison of performances of estimated 

distributions for wind farm site 1  

Rank Distribution AIC 

(10
4
) 

LL 

(10
4
) 

1 Proposed 

Distribution 

4.270 -2.136 

2 GEV 4.291 -2.145 

3 Gamma 4.298 -2.149 

4 Weibull 4.315 -2.157 

5 Nakagami 4.328 -2.164 

6 Loglogistic 4.336 -2.168 

7 Rayleigh 4.343 -2.172 

8 Lognormal 4.398 -2.199 

9 Normal 4.520 -2.260 
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For wind farm site 2, the peak of wind speed is not 

very clear, and its probability distribution regularity is 

poorer than that of wind speed at site 1. Therefore, 

estimation by using common distribution functions gives 

less accurate results than the estimation for wind speed at 

site 1. However, the proposed distribution function still 

gives very good results as shown in Fig. 3 and Table 2. 

 

 

Fig.3. Estimated wind speed distributions for wind farm 

site 2. 

 
Table 2. Comparison of performances of estimated 

distributions for wind farm site 2 

No. Distribution AIC (10
4
) LL (10

4
) 

1 Proposed 

Distribution 

4.351 -2.215 

2 Weibull 4.815 -2.407 

3 Gamma 4.820 -2.410 

4 Nakagami 4.821 -2.410 

5 GEV 4.843 -2.421 

6 Rayleigh 4.844 -2.422 

7 Loglogistic 4.905 -2.452 

8 Lognormal 4.917 -2.458 

9 Normal 4.991 -2.495 
 

Different from two cases above, the wind speed at 

wind farm site 3 has a distributed shape obeying a 

bimodal distribution. In this case, the above common 

distributions cannot be used because they are just 

suitable for a unimodal distribution. Nevertheless, the 

proposed distribution maintains good performance 

compared to a most popular bimodal distribution, i.e., 

Gaussian mixture as indicated in Table 3 and Fig. 4. 

 
Table 3. Comparison of performances of estimated 

distributions for wind farm site 3 

No. Distribution AIC (10
4
) 

1 Proposed Distribution 4.401 

2 Gaussian mixture 4.665 
 

 

 

 

Fig.4. Estimated wind speed distributions for wind farm 

site 3. 

 

For application in the calculation and analysis of 

power systems, the distribution function of wind power 

output is required. Based on wind power-wind speed 

pairs at site 2, for example, aggregate power curve for 

the site can be obtained as in Fig. 5 [1], then wind power 

output distribution for site 2 is achieved as in Fig. 6 as 

well. 

 

 

Fig.5. Aggregate power curve estimated for wind farm site 

2. 

 

 

Fig.6. Wind power output distribution for wind farm site 2. 

 

To illustrate the applicability of the proposed 

distribution, the wind power distribution of a wind farm 

site, i.e., site 2, obtained is then used as an input for 

probabilistic power flow calculation and analysis to 
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assessing the security of the modified IEEE 57-bus test 

power system (see Fig. 7). The test system is modified 

by adding wind farm 2 with a rated capacity of 60 MW 

to bus 39 and a 40 MW solar PV power plant to bus 45. 

In this test, we consider uncertainties of wind power 

generation, solar PV power generation and loads. For the 

sake of simplicity and without loss of generality, load at 

each bus is represented by a Gaussian distribution with 

its expected value equal to the base value and standard 

deviation of 10% of the expected value. Solar PV power 

output at bus 45 is assumed to have Weibull distributions 

with scale and shape parameters equal to 20 and 2, 

respectively, while distribution of wind power output at 

bus 39 is provided in Fig. 6. 

We carry out cumulant-based probabilistic power flow 

method (denoted as CPPF) in [6] together with Monte 

Carlo simulation (MCS) with 10.000 samples. Both these 

approaches can easily take into account the proposed 

distribution of wind as well as other types of 

distributions representing uncertainties in the power 

system. 

 

 

Fig.7. Modified IEEE 57-bus test power system. 

 

The obtained results in terms of probability 

distributions of power flows and voltages allow assessing 

security of the system. For example, Fig. 8 and Fig. 9 

show probability distributions for power flow through 

line 39-37 and voltage at bus 45, respectively. 

Probabilistic security assessment can be carried out to 

evaluate the probability of line overloading, over-/under-

voltage, etc. In Fig. 8, suppose that the upper limit of the 

power flow of line 39-37 is 60 MVA (the vertical line in 

Fig. 8), the probability being greater than the limit is 

3.2%. In this system, voltages at all buses are within the 

operating range (i.e., [0.95, 1.05] p.u.). 

 

 

Fig.8. Distribution of power flow through branch 39-37.  

 

 

 

Fig.9. Distribution of voltage at bus 45. 

5. CONCLUSIONS 

In this paper, we propose a methodology to estimate the 

probability distribution of wind power generation. The 

proposed discrete probability distribution is built based 

on the combination of data pre-processing and clustering 

techniques. It can be appropriately used for both wind 

speed and wind power data and either a unimodal or a 

multimodal distribution. This is a particularly attractive 

feature of the proposed model allowing it widely 

applicable to various types of wind data in practice. The 

proposed model of wind is tested on different types of 

distributions of wind data at different sites. The obtained 

results demonstrate that our developed 

distribution outperforms other probability distributions 

widely used to estimate wind speed in the literature such 

as Weibull, Gamma, Rayleigh, Loglogistic, Lognormal, 

Nakagami, Generalized Extreme Value (GEV), etc., for 

unimodal distributions and Gaussian mixture for bimodal 

distributions. Probabilistic power flow calculation and 

analysis using both the cumulant-based method and 

Monte Carlo simulation are carried out on the modified 

IEEE 57-bus test power system to illustrate the 

applicability of the proposed wind distribution. 
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