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Abstract— This paper proposes an improved cuckoo search algorithm (ICSA) for optimizing the operation of thermal 

power plants and hydrothermal power plants in a cascaded system. The major purpose of the problem is to reduce the 

total electricity generation cost of thermal power plants thank the most appropriate water discharge from hydropower 

plants in the cascaded system. The proposed ICSA method together with its original method, cuckoo search algorithm 

(CCSA) and another modified version, modified cuckoo search algorithm (MCSA) are implemented for two systems in 

which the second system considers valve effects on thermal units during the operation process. Different settings to 

iterations are tried to survey the improvement of ICSA over CSA and MCSA, and results are also compared to other 

existing methods. The proposed method can reach a lower cost but its search procedure is faster for the two systems. 

Consequently, ICSA is a powerful method for the optimal operation of the hydrothermal systems with cascaded 

reservoirs. 

 
Keywords— Cuckoo search algorithm, cascaded hydropower plants, thermal power plants, hydrothermal system. 
 

1.  INTRODUCTION 

Nowadays, many hydropower plants are built in the same 

rivers where operation mode of upstream plants 

influence power energy of downstream plants 

significantly. In fact, inflow into upstream plants is from 

nature river and the flow is not influenced by electricity 

generation action of any companies or plants; however, 

inflow into downstream plants is dependened by 

upstream plants’ water discharge via turbines or flood 

discharge. The operation of the hydropower plants is also 

a major contribution to the reduction of electricit 

generation cost from thermal power plants. The problem 

has a major meaning on power system. As considering 

high cost from thermal power plant and very low cost 

from hydropower plant, the purpose of the hydrothermal 

system is to reduce the cost of thermal power plants and 

satisfy all hydraulic constraints from reservoir of 

hydropower plants. 

In recent decades, many researchers concerned the 

reduction of cost from thermal power plants in 

hydrothermal power system and applied optimzation 

tools for the problem.  These methods are Two-phase 

neural network (TPNN) [1], Cultural algorithm (CA) [2], 
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Real coded genetic algorithm (RCGA) [3], Binary coded 

genetic algorithm (BCGA) [3], Cuckoo search algorithm 

(CSA) [4], Chaotic hybrid differential evolution (CHDE) 

[5], Hybrid differential evolution and sequential 

quadratic programming (HDE–SQP) [6], Honey-bee 

Mating Optimization Algorithm (HBMOA) [7], 

Biogeography-Based Optimization (BBO) [8], 

Differential real-coded quantum-inspired evolutionary 

algorithm (DRQEA) [9], Gravitational Search Algorithm 

(GSA) [10], Improved self-adaptive PSO (ISPSO) [11], 

Mixed-binary evolutionary  particle  swarm  optimizer 

(MB-EPSO) [12], Teaching learning based optimization 

(TLBO) [13], Quasi-oppositional teaching learning based 

optimization (QOTLBO) [13], Adaptive Chaotic Real 

Coded Genetic Algorithm (ACRCGA) [14], Improved 

differential evolution (IDE) [15], Quadratic Migration of 

Biogeography based Optimization (QMBBO) [16], Real 

coded chemical reaction based optimization (RCCRO) 

[17], Modified chaotic differential evolution algorithm 

(MCDEA) [18], and Modified dynamic neighborhood 

learning based particle swarm optimization (MDNLPSO) 

[19]. In Ref. [1], a two-phase neural network-based 

method was developed for dealing with the problem and 

compared to the standard augmented Lagrange method 

(ALM). Comparison of fuel cost has led to a conclusion 

that TPNN could obtain higher quality solution than 

ALM; however, there has not been evidence to conclude 

if TPNN could be faster for convergence than ALM once 

the information of tolerance and the number of iterations 

has not been reported. In addition, there has not been any 

conclusion of the performance of TPNN compared to 

other applied methods in the study. In Ref. [3], binary 

coded genetic algorithm (BCGA) and real coded genetic 

algorithm (RCGA) have been successfully applied. 

Comparison of yielded results has shown the superiority 

of RCGA over BCGA in terms of quality of solution for 

two systems; however, the two algorithms have not been 

compared to other applied methods and there have not 

been any conclusions of the performance of the better 
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one, RCGA with other ones. An adaptive chaotic real 

coded genetic algorithm (ACRCGA) has been proposed 

to solve short-term hydrothermal scheduling (SHS) 

problem [14]. Crossover and mutation have been 

adaptive to improve the global search ability while the 

chaotic search and the RCGA have been combined to 

exploit the local search ability. The reported results 

including fuel cost and execution time have indicated 

that ACRCGA has been superior to RCGA and BCGA, 

and other ones; however, the verify of optimal solutions 

have pointed out that ACRCGA has violated the end 

volume constraint at reservoirs 3 and 4 and its optimal 

solution has been invalid to compare performance with 

others.  It has been stated in [5] that Differential 

evolution (CDE) has coped with the difficulty of setting 

control parameter because mutation factor and crossover 

factor have been set to large range. Therefore, Chaotic 

hybrid differential evolution (CHDE) has been proposed 

by using chaos theory to set self-adaptive parameters 

automatically. Due to the improvement, the CHDE could 

reduce a huge number of trials for selecting the values 

for the two control parameters. Despite the advantage, 

the CHDE has not shown its potential persuasively when 

only one small system has been run to implement the 

proposed method. A hybrid method based on the 

combination of one heuristic algorithm, differential 

evolution and one deterministic algorithm, sequential 

quadratic programming (HDE–SQP) has been applied to 

hydrothermal system scheduling problem and presented 

in [6]. In the method, the DE has played a main role to 

search solution meanwhile the SQP has enabled the 

search process closed to the global optimal solution or 

near global optimum. Several study cases were 

performed to test the efficiency of the method 

considering nonconvex objective and prohibited zone of 

hydro units. Ref. [15] has used Gaussian distribution for 

improved DE (IDE) method in aim to reduce a large 

number of trials for mutation factor and to improve the 

local search for CDE. The improvement of the IDE has 

been verified via testing on two systems with valve point 

loading effects. In [4], the result comparisons have 

indicated the CSA has outperformed GA, PSO, DE and 

TLBO; however, the study have also reported invalid 

solutions. Modified chaotic differential evolution 

algorithm (MCDEA) [18] has been developed by 

integrating an adaptive dynamic control mechanism for 

crossover factor and chaotic local search operation to 

avoid premature convergence effectively. Compared to 

other versions of DE, the MHDE was the best version 

obtaining the high solution quality and fast 

computational time. A novel teaching learning-based 

optimization (TLBO) [13] was mainly based on teaching 

phase and learning phase, and did not need any algorithm 

determining the control parameters. A combination of 

Modified dynamic neighborhood learning and particle 

swarm optimization (MDNLPSO) has been proposed in 

[19]. In the MDNLPSO, all particles were integrated into 

one group of neighborhoods and each individual one 

learnt experience from any another one available in the 

group. The method has been tested on three systems and 

the obtained results compared to other methods such as 

TLBO, QOTLBO, ALM and TPNN have revealed that 

the method was capable of searching high quality 

solution. 

In this paper, Cuckoo search algorithm (CSA) [20], its 

modified version (MCSA) [21] and the proposed ICSA 

method are employed to find the most appropriate 

solutions for two hydrothermal systems. The results are 

also compared to other methods for concluding the real 

performance of CSA, MCSA and ICSA methods. In 

summary, the contributions of the paper are as follows: 

1) Survey the real performance of CSA, MCSA and 

ICSA for two systems in order to show the best method 

for the hydrothermal systems. 

2) Point out a strong method for hydrothermal 

systems and recommend its use for other problem in 

power system. 

3) Find solutions with high quality resulting in low 

electricity cost for thermal power plants 

4) Introduce a high-performance method with simple 

application 

2. PROBLEM FORMULATION 

The problem considers Ntp thermal power plants and Nhp 

hydropower in a hydrothermal system supplying 

electricity to loads. The period of time for optimizing the 

system is 24 hours and divided into 24 intervals in which 

each interval is one hour. So, the purpose is to reduce 

total electricity generation cost (EGC) as shown in the 

following model: 

,

1 1

Minimize 
tpNT

tp t

t tp

EGC F
= =

=   (1) 

where Ftp,t is the electricity generation cost of the tpth 

thermal power plant at the tth considered interval. 

 

( )( )2 min

, 1, 2, , 3, , 4, 5, ,sintp t tp tp tp t tp tp t tp tp tp tp tF a a P a P a a P P = + + +   −
  

 (2) 

In addition, all following constraints must be exactly 

met. 

- Constraint of power balance: Total power of all 

hydropower plants, total power of all thermal power 

plants, power loss and load power must satisfy the 

following constraint:

 

 

, , ,

1 1

0
tp hpN N

tp t j t t Load t

i j

P P P P

= =

+ −  − =   (3) 

where ΔPt and PLoad,t are power loss and power of load at 

the tth interval;  Pj,t is the power generated by the jth 

hydropower plant at the tth interval and is calculated by: 

2 2
, , , , , , ,5,1, 2, 3, 4, 6,( ) ( )j t j t j t j t j t j t j tjj j j j jP b V b W b W V b V b W b= + + + + +

 (4) 

where b1,j , b2,j, b3,j, b4,j, b5,j, b6,j are the known 

coefficients. 

- Constraints of reservoir volume: Reservoir volume 

at the beginning and the end of the scheduled process 
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must follow the constraints below: 

,0 ,j j startV V=  (5) 

, ,j T j endV V=  (6) 

where Vj,0 and Vj,start  are the reservoir volume at the 

beginning of operation process; Vj,T and Vj,end are the 

reservoir volume at the end of the operation process. 

Vj,start and Vj,end are predetermined factors while Vj,0 and 

Vj,T are operation factors, which must be equal to Vj,start 

and Vj,end, respectively.     

- Balance of water in reservoirs: Reservoir volume, 

inflow and water discharge of considered reservoir and 

upstream reservoir must satisfy the following constraint.  

,, 1 , , , ,
1 1

( ) 0
i j

NoU T

j t j t j t j t i t
i t

V V Inf W W− −
= =

− + − + =  
 (7) 

where Vj,t  and Infj,t are reservoir volume and water 

inflow of the jth hydropower plant at the tth interval. τi,j 

is the traveling time of water from the ith upstream 

reservoir to the jth downstream reservoir; NoU is the 

number of upstream reservoir of the jth considered 

reservoir. 

- Reservoir and discharge limits: Two main 

operation factors of hydropower plants are volume of 

reservoir and discharge via turbines. The constraints of 

the two factors can guarantee safety for reservoir and 

turbines. The constraints are follows:  

min max

, ; 1, ..., ; 1, ...,j j t j hpV V V j N t T  = =  (8) 

min max

, ; 1, ..., ; 1, ...,j j t j hpW W W j N t T  = =  (9) 

where min
jV and max

jV are the lower limit and upper limit of 

the jth reservoir, respectively; min
jW and max

jW are the 

lower limit and upper limit of water discharge of the jth 

reservoir, respectively. 

- Constraint of generated power: Generator of 

hydropower plants and thermal power plants must 

operate within lower and upper generation as follows:  

min max

,j j t jP P P   (10) 

min max

,tp tp t tpP P P   (11) 

where min
tpP and max

tpP , and min
jP and max

jP are the lowest 

and highest power of the tpth thermal power plant and the 

jth hydropower plant.  

3. THE PROPOSED METHOD 

3.1. Lévy flight technique of CCSA 

Lévy flights technique is applied for producing new 

solutions as the following equation:  

( ) ( )k k k bestS S S S Levy= + −    (12) 

where α is positive factor, which can be selected higher 

than 0 and less than 1; Sbest is the best solution of the 

current solutions; and Levy(β) is Lévy distribution [20]. 

 

3.2 Mutation operation of CCSA  

Similar to DE, CSA also uses mutation technique as 

follows:  

1 1 2 2.( )k

k

k

S r S S if r MF
S

S otherwise

 + − 
= 


 (13) 

where MF is mutation parameter which can be selected 

between 0 and 1; r1 and r2 are random numbers within 0 

and 1; S1 and S2 are randomly selected solutions from the 

whole solutions.    

3.3 The proposed mutation technique 

The proposed ICSA method still applies Lévy flight 

technique of CCSA but mutation technique is proposed 

to be modified by applying the following steps:   

( )

( )
k

k

best

F S

F S
F =  (14) 

( )

( )
1

NoP

k

k

mean

best

F

F S

F S

= =


 (15) 

where NoP is population; F(Sk) and F(Sbest) are fitness 

function of the kth solution and the best solution. 

The mutation technique is modified and performed by 

using the following equation (16): 

 

 

( ) ( )

( ) ( )

( )

1 1 2 2

1 2

1 2

3 4

1 2 3 4

1

5 6

2

.( ) &

. & & ( )

.

k k mean

k k mean k best

k

best k best

k

S r S S if r MF F F

S S
S r if r MF F F S S

S S
S

S S S S
S r if S S

S S

S if r MF

 + −    


 −
+        + −  

= 
 − + −

+ =   + − 
 

 (16) 

 

where S1, S2, S3, S4, S5 and S6 are randomly selected solutions from the current solutions.   
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4. THE APPLICATION OF THE PROPOSED 

METHOD FOR THE PROBLEM 

4.1 Initialization and constraint handling method 

Each solution is represented by Sk= [Ptp,t,k , Wj,t,,k], where 

tp = 2, …, Ntp and t=1, …, T for Ptp,t,k and j=1, …, Nhp 

and t=1, …, T-1 for Wj,t,k. In addition, Ptp,t,k , Wj,t,,k must 

satisfy constraints shown in formulas (9) and (10). As a 

result, reservoir volume of the jth hydropower plant at the 

tth interval can be reached by:  

,, , 1 , , ,
1

( ); 1, ..., 1
i j

NoU

j t j t j t j t i t
i

V V Inf W W t T− −
=

= + − + = − 

 (17) 

where Vj,0 and Vj,T are obtained by using equations (5) 

and (6), respectively.  

As a result Wj,T,,k can be obtained by: 

,

1

, , ,0 , , , , , ,

1 1 1 1

( )
i j

T T NoU T

j T k j j T j t k j t i t k

t t i t

W V V W Inf W 

−

−

= = = =

= − − + +   

 (18) 

Power output of hydropower plants can be calculated 

by using equation (4) and power output of the first 

thermal power plant P1,t,k is obtained by using equation 

(3). As a result, fitness function of the kth solution is 

evaluated by calculate F(Sk) in the following equation: 

( )
1 22 2

, , 1 1, , 2 , , 3 , ,

1 1 1 1 1 1

( ) ( ) ( ) ( )
tp hp hpN N NT T T

k tp t k t k j t k j T k

t tp t j t j

F S F P P V W  
−

= = = = = =

 
 = +  +  + 
 
 
     

 (19) 

 

Start

Select NoP, Gmax and MF

- Initialize Ptp,t,k , Wj,t,,k randomly satisfying constraints (9) and (10) 

- Calculate Vj,t,k and Wj,T,k using (17) and (18)

- Calculate generation of hydropower plant using (4) 

- Calculate generation of the first thermal power plant using (3)

- Calculate fitness using  (19)

- Determine the best solution, Sbest

- Set  G=1

- Produce new Ptp,t,k , Wj,t,,k  using (12)

- Check and correct if new Ptp,t,k , Wj,t,,k violate limits

- Calculate Vj,t,k and Wj,T,k using (17) and (18)

- Calculate generation of hydropower plant using (4) 

- Calculate generation of the first thermal power plant using (3)

- Calculate fitness using  (19)

- Keep  Ptp,t,k , Wj,t,,k for better solutions with lower fitness

- Produce new Ptp,t,k , Wj,t,,k  using (16)

- Check and correct if new Ptp,t,k , Wj,t,,k violate limits

- Calculate Vj,t,k and Wj,T,k using (17) and (18)

- Calculate generation of hydropower plant using (4) 

- Calculate generation of the first thermal power plant using (3)

- Calculate fitness using  (19)

- Keep  Ptp,t,k , Wj,t,,k for better solutions 

- Determine the best solution, Sbest

G=Gmax

Stop

G=G+1
No

Yes

Calculate ΔFk and ΔFmean using (14) and (15)  

 

Fig. 1. The flowchart of using ICSA for solving the considered problem. 
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where φ1, φ2 and φ3 are factors for the violations of 

power output of the first thermal power plant, the 

violation of reservoir volume and the violation of water 

discharge;  ΔP1,t,k , ΔVj,t,k , ΔWj,t,k  are the violation of 

power output of the first thermal power plant, the 

violation of reservoir volume and the violation of water 

discharge at the Tth interval, respectively. 

4.2 The whole search process of the proposed ICSA  

The overall procedure of the proposed ICSA for 

optimizing operation of the hydrothermal system is 

shown in Figure 1. 

HP1

Inf2Inf1

Inf3

Inf4

W1 W2

W3

W4

HP2

HP3

HP4

 

Fig. 2. The cascaded hydropower plants configuration in 

two considered systems. 

5. NUMERICAL RESULTS AND DISCUSSIONS  

5.1 Result obtained by three CSA methods 

In this paper, we have considered two systems with the 

same number of hydropower plants and the same number 

of thermal power plant consisting of four cascaded 

hydropower plants and one thermal power plant. 

However, valve effects on thermal units have been only 

considered in system 2. The four cascaded hydropower 

plants in the two systems has the same configuration as 

shown in Figure 2. In the figure, hydropower plant 1 

(HP1) and hydropower plant 2 (HP2) are two upstream 

plants of hydropower plant 3 (HP3) whereas HP3 is the 

upstream plant of hydropower plant 4 (HP4) and HP4 is 

the downstream plant. The determination is 

accomplished by using the directions of the inflows and 

discharge between two nearby hydropower plants. As 

indicated from the figure, inflows into HP1 and HP2 are 

only natural inflows, which are, respectively, Inf1 and 

Inf2 whereas there are two inflows into HP3 and HP4 

consisting of natural inflow and discharge from upstream 

reservoir. In fact, HP3 has one natural inflow Inf3 and 

two discharges from HP1 and HP2, W1 and W2 

meanwhile R4 has one natural inflow Inf4 and one 

discharge from HP3, W3. Data of the two systems are 

respectively taken from [1] and [3].  For implementation 

of the three CSA methods, population size NoP and the 

maximum iteration Gmax are respectively set to 200 and 

3,000 meanwhile the mutation factor is set to ten values 

from 0.1 to 1.0. The three methods are run on Matlab 

2016b and personal computer with i7-2.0 Ghz processor 

and 4 Gb of ram. For each study case, 50 trial runs are 

executed for each method.  

 

 

 

Fig. 3. The best cost and computation time from three 

methods for system 1. 

 

 

Fig. 4. The worst cost and mean cost from three methods 

for system 1. 

 

 

Fig. 5. The best cost and computation time from three 

methods for system 2.  

 

 

Fig. 6. The worst cost and mean cost from three methods 

for system 2. 
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Table 1. Saving cost and improvement percentage of ICSA as compared to CCSA and MCSA  

System Method 
Best cost Mean cost Worst cost 

Saving cost ($) IP (%) Saving cost ($) IP (%) Saving  cost ($) IP (%) 

1 
CSA 35.28 0.02 41.54 0.03 102.06 0.07 

MCSA 39.95 0.03 56.19 0.04 108.99 0.07 

2 
CSA 1470.04 0.16 1679.18 0.18 2120.33 0.22 

MCSA 1783.37 0.19 2018.78 0.21 2204.16 0.23 

 

 
Fig. 7. Fitness convergence characteristics for system 1 

without valve-point loading effects. 

 

 

Fig. 8. Fitness convergence characteristics for system 2 with 

valve-point loading effects. 

 

The summaries of obtained results from the CSA 

methods for the two systems are given in Figure 3 and 

Figure 4 for system 1 and Figure 5 and Figure 6 for 

system 2. The best minimum costs for CCSA, MCSA 

and ICSA are respectively $154629.454, $154634.128 

and $154594.1766 for system 1, and $948211.1229, 

$948524.4587 and $946741.0872 for system 2. Clearly, 

ICSA has obtained the best optimal solutions among the 

three methods due to its lowest minimum cost. Similarly, 

ICSA has reached better mean cost and worst cost than 

CCSA and MCSA for the two systems. For better 

understanding of the real performance of ICSA, saving 

cost and improvement percentage of the best cost, mean 

cost and worst cost are reported in Table 1. As compared 

to CCSA and MCSA, the proposed ICSA method could 

reduce the best cost by $35.28 and $39.95 for system 1 

and $1470.04 and $1783.37 for system 2. The saving 

cost is corresponding to the improvement percent of 

0.02% and 0.03% for system 1 and 0.16% and 0.19% for 

system 2. The comparison of the mean cost and worst 

cost is approximately similar or better since the proposed 

method could reach IP up to 0.21% for mean cost and 

0.23% for the worst cost. Clearly, the proposed ICSA is 

more effective than CCSA and MCSA. In terms of 

execution time comparison, MCSA has revealed its weak 

point since it reports the longest time for both systems 

whereas CCSA and ICSA have shown competitive 

figures. In fact, CCSA and ICSA methods have used the 

approximate simulation time for these systems; however, 

ICSA is much faster in finding the promising solutions 

for these systems.  The convergence characteristics for 

the systems depicted in Figure 7 and Figure 8 have 

illustrated the different convergence figures obtained by 

the three methods. The ICSA has reached more effective 

solution than two others and the value is much less than 

that of CCSA and is extremely less than that of MCSA. 

5.2 Survey of real performance of the propose method 

In order to investigate the real performance of the 

proposed ICSA, we have run it together with CCSA and 

MCSA for the two systems with different settings for 

Gmax whereas population size is still 200. Figure 9 and 

Figure 10 indicate that the best cost of the proposed 

ICSA at Gmax=3,000 is still less than that of CCSA and 

MCSA at Gmax=3,000, Gmax=4,000 Gmax=5,000. So, the 

proposed method is very fast to converge to the high 

quality solutions as compared to its original method and 

another modified version.   

 

 

Fig. 9. Impact of iterations on the best cost of three methods 

for system 1. 
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Table 2. Comparison of results by ICSA and other methods for two systems 

System 1 System 2 

Method Best cost ($) CPU (s) Method Best cost ($) CPU (s) 

TPNN [1] 154,808.5 - BCGA [3] 952,618.00 66.3 

ALM [1] 154,739 - RCGA  [3] 951,559.24 57.32 

PSO [11] 154,705 - DE  [6] 947,497.85 - 

ISAPSO [11] 154,594 .9 - HDE–SQP [6] 945,293.81 - 

BBO [8] 154,670.7707 63 

ICSA 946,741.087 25.6 TLBO [13] 154,693.135 23.8 

ICSA 154594.1766 25.5 

 

Table 3. Optimal discharge and verification of volume obtained by the proposed method for system 2 

t 
 

Optimal discharge  Calculated reservoir volume  

W1,t 

(10
4 m3) 

W2,t 

(10
4 m3) 

W3,t 

(10
4 m3) 

W4,t 

(10
4 m3) 

V1,t 

(10
4 m3) 

V2,t 

(10
4 m3) 

V3,t 

(10
4 m3) 

V4,t 

(10
4 m3) 

1 9.790293 6.803944 30 13.00012 100.209707 81.19606 148.1 109.7999 

2 9.554395 6.02257 29.99896 13.00003 99.6553121 83.17349 126.301 99.19985 

3 9.525171 6.967059 29.99879 13.0003 98.1301412 85.20643 110.0925 87.79954 

4 10.93558 9.467846 16.95254 13.0009 94.1945639 84.73858 111.4983 74.79865 

5 10.84217 9.437955 29.99976 13.00087 89.3523941 83.30063 100.0463 91.79777 

6 9.882311 8.92085 15.23104 13.00043 86.4700826 81.37978 106.7179 108.7963 

7 5.000306 6.001407 30 13.00086 89.4697768 81.37837 100.0279 125.7942 

8 5.001968 6.000001 19.71246 13 93.4678083 82.37837 101.6357 129.7468 

9 10.7583 10.14952 12.74089 15.10405 92.7095117 80.22885 103.816 144.6425 

10 10.52177 9.401429 12.62226 14.04204 93.187744 79.82742 103.1971 145.8315 

11 9.663723 10.07866 12.93224 16.00145 95.5240212 78.74875 108.0232 159.83 

12 11.1345 11.77802 13.21157 19.56564 94.3895233 74.97073 117.4829 159.9768 

13 9.391926 10.15016 14.66581 16.43761 95.9975969 72.82057 125.8822 156.2801 

14 8.114572 7.854908 14.88693 14.81583 99.8830253 73.96567 135.2085 154.0866 

15 5 6.000103 18.96984 13.00039 105.883025 76.96556 140.4086 154.0184 

16 5.000972 6.027941 18.86394 13.00097 110.882053 78.93762 141.8094 154.229 

17 5 6.003674 18.05553 13.00012 114.882053 79.93395 138.6088 155.8947 

18 5.005276 6.000026 14.15238 13.00526 117.876777 79.93392 137.4575 157.7764 

19 8.392325 9.311518 13.74613 16.81897 116.484451 77.62241 135.7393 159.9272 

20 9.987449 12.79911 11.58146 19.96861 112.497002 72.8233 136.1668 158.8226 

21 7.263148 10.11735 10.00766 18.02745 112.233854 71.70595 142.5514 158.8506 

22 5 6.000234 10.00677 13.00402 115.233854 74.70571 153.8436 159.999 

23 7.995821 10.35979 10.00002 22.50046 116.238033 72.34592 164.9059 151.2447 

24 6.238033 10.34592 10.02323 22.82613 120 70 170 140 
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Table 4. Optimal discharge and verification of volume obtained by HDE-SQP for system 2 

t 
 

Optimal discharge  Calculated reservoir volume  

W1,t 

(10
4 m3) 

W2,t 

(10
4 m3) 

W3,t 

(10
4 m3) 

W4,t 

(10
4 m3) 

V1,t 

(10
4 m3) 

V2,t 

(10
4 m3) 

V3,t 

(10
4 m3) 

V4,t 

(10
4 m3) 

1 15 14.1574 10.4286 25 95 73.8426 167.6714 97.8 

2 9.6785 14.4767 10 25 94.3215 67.3659 165.8714 75.2 

3 14.1664 14.721 14.7978 23.3689 88.1551 61.6449 170.0736 53.4311 

4 12.3559 14.9439 10 25 82.7992 55.701 185.9095 28.4311 

5 13.7043 15 13.0694 25 75.0949 48.701 204.4832 13.8597 

6 15 15 15.1031 25 67.0949 40.701 220.457 -1.1403 

7 12.7767 15 11.707 25 62.3182 31.701 240.3982 -11.3425 

8 14.9233 14.9926 14.0539 25 56.3949 23.7084 258.3443 -26.3425 

9 14.3332 14.9524 13.4896 25 52.0617 16.756 273.6314 -38.2731 

10 15 14.0531 13.5601 25 48.0617 11.7029 290.9946 -48.17 

11 12.8343 13.1616 14.6854 25 47.2274 7.5413 306.635 -61.463 

12 15 14.8386 14.0709 25 42.2274 0.7027 324.5165 -72.4091 

13 14.7932 14.9996 14.4336 25 38.4342 -6.2969 340.9703 -83.9195 

14 14.6232 15 13.6017 25 35.811 -12.2969 358.5302 -95.3594 

15 14.7549 14.9967 14.0762 25 32.0561 -18.2936 377.0858 -105.674 

16 14.7232 15 14.3364 25 27.3329 -25.2936 394.3722 -116.603 

17 14.6576 15 14.4626 24.9991 21.6753 -33.2936 411.6645 -127.169 

18 14.5671 15 14.5195 24.9971 15.1082 -42.2936 428.8649 -138.564 

19 14.7613 14.9997 14.6386 25 7.3469 -50.2933 444.8839 -149.488 

20 13.9412 11.0033 13.2556 23.418 -0.5943 -53.2966 462.1954 -158.569 

21 7.1437 11.7499 14.4881 23.5978 -0.738 -56.0465 479.4686 -167.705 

22 13.6309 11.6679 17.8084 20.2347 -6.3689 -58.7144 492.6011 -173.42 

23 14.7468 15 14.6791 24.9963 -12.1157 -65.7144 497.069 -183.778 

24 14.9999 15 13.1333 25 -17.1156 -72.7144 509.3165 -195.522 

 

 

Fig. 10. Impact of iterations on the best cost of three 

methods for system 2. 

5.3 Comparisons of results from the proposed method 

and others 

The comparisons of the obtained results by CSA 

methods and other methods are reported in Table 2.  The 

cost indicates that ICSA can reach lower electricity 

generation cost than approximately all methods for two 

systems excluding HDE–SQP for system 2 but HDE-

SQP has reported violated solution. In order to show the 

violation of HDE-SQP for system 2, we have reported 

optimal discharge of the method and then reservoir 

volume at the end of each interval has been calculated 

for each hydropower plant. In addition, we have also 

reported the same data for the proposed method. Table 3 

and Table 4 summarize the information of the proposed 

method and HDE-SQP, respectively. The reservoir 

volume at the 24th interval of reservoirs 1, 2, 3 and 4 

shown in Table 3 is respectively 120, 70, 170 and 140 

but that from HDE-SQP shown in Table 4 is -17.1156, -

72.7144, 509.3165 and -195.522. Clearly, the values of 

the proposed method are the same as input data shown in 

[3] but the values from HDE-SQP are much different 
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from the input data. The exact calculation shows ICSA 

could reach less cost than other methods from $0.72 to 

$214.32 for system 1 and $1447.28 to $5876.91 for 

system 2. The less cost indicates that ICSA can improve 

performance up to 0.14% for system 1 and 0.62% for 

system 2. Furthermore, the computation time (CPU) of 

the proposed method is equal or shorter than that of 

compared methods excluding some methods have not 

reported the value. Obviously, the proposed ICSA is a 

promising method for the two systems. 

6. CONCLUSIONS 

In this paper, the conventional cuckoo search algorithm, 

its modified version, and the proposed ICSA have been 

employed to find the optimal solutions for hydrothermal 

optimization operation problems. In the considered 

problem, not only the reservoir volume constraints but 

also the cascaded reservoirs are taken into account in 

addition to the non-convex fuel cost function of thermal 

units. Therefore, the complicated problem is a challenge 

to the CSA methods. Two hydrothermal systems are 

employed including one system ignoring and another 

considering valve point loading effects on thermal units. 

The numerical comparison indicated that the proposed 

ICSA method has obtained very high-quality solutions 

for all systems and it has been faster than most methods, 

which obtain feasible solutions. Consequently, the ICSA 

method is a promising optimization tool for the problem 

where cascaded reservoirs with complex hydraulic 

constraints are considered. Among the three applied CSA 

methods, the proposed ICSA is the strongest since it can 

obtain the lowest objective function with the lowest 

maximum number of iterations whereas MCSA is the 

worst method with the highest value of the objective 

function and the longest simulation time as well as the 

highest maximum number of iterations. In addition, 

surveys of the impact of iterations on results from the 

three methods indicate ICSA can be at least two times 

faster than CCSA and MCSA. So, it concludes that the 

proposed ICSA is one of the most effective methods for 

the problem with hydropower plants located in cascaded 

systems. 
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