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Abstract— Correlation characteristics can bring many significant potential advantages for the development of efficient 

communication protocols for wireless sensor networks. To exploit the correlation in WSNs, it is necessary to build the 

correlation model and developed the correlation-based protocol using this correlation model. However, most of the 

present correlation-based protocols only consider the linear and distance dependence correlation or computation 

complexity. This paper proposes the Entropy Correlation Based Data Aggregation (ECODA) Protocol for wireless 

sensor networks with less computation complexity that could be applied practically. This protocol uses a general 

correlation model with less computation complexity. In addition, two energy-efficient aggregation schemes including an 

on-off scheme which offers an efficient way to choose representative nodes in a cluster with permitted distortion and 

compression scheme which reduces in-network message length suitable to high correlation data are used in this 

protocol. Simulations show the effectiveness of the proposed protocol. 

 
Keywords— Entropy correlation coefficient, correlation model, compression, representative node, distortion. 
 

1.  INTRODUCTION 

Because of low-cost, small in size of sensor nodes, 

wireless sensor networks (WSN), which expand sensing 

capabilities in space and time are widely used in various 

modern applications. However, since most of the sensor 

nodes are powered by no-replace batteries, energy 

conservation is commonly recognized as the key 

challenge in designing and operating the network. 

In typical WSNs applications, sensors are required 

spatially dense deployment in order to achieve 

satisfactory coverage [1]. As a consequence, their sensed 

data are correlated with each other. The existence of 

correlation characteristics can bring many significant 

potential advantages for the development of efficient 

communication protocols well-suited for the WSNs 

paradigm [2, 3]. 

To exploit the correlation in WSNs, there have been 

many research efforts to study the correlation model and 

develop correlation-based protocols in WSNs. In [3], 

correlated nodes are supposed to observe the same 

source. Thus, the correlation relation is distance’s 

dependence and could be classified into four groups 

including Spherical, Power exponential, Rational 

quadratic and Matérn. In [4], the correlation coefficient 

is also a function of distance among nodes. Other 

researches consider the correlation as the similarity of 

sensed data [5]. Some papers define the correlation 

relation in different ways such as a linear predictive 

model [6], node weight [7], data density correlation 

degree [8].  

All the above researches consider only the linear 
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correlation between data and distance-based. To solve a 

more general correlation relation, entropy-based 

correlation is considered [9- 12]. In [9], the joint entropy 

of a group of nodes is calculated using real data set and 

then a distance-based joint entropy function is built by 

approximation to the calculated joint entropy. Distance-

based joint entropy models are proposed in [9, 10]. In 

[11], instead of calculating directly from real data, the 

entropy correlation coefficient is chosen to be the 

Pearson linear correlation coefficient to reduce the 

computation complexity but reduce the generality of 

using entropy. In [12], joint entropy is calculated from 

real data and then the joint entropy of a node-set is 

approximated by an exponential function of a number of 

nodes in the set. The advantage of this model is a 

distance-independent model, but the disadvantage is the 

complexity in the determination correlation among 

nodes. Joint entropy values of all possible node groups 

have to be calculated in order to select correlated nodes. 

To overcome these above difficulties, the authors have 

proposed a novel correlation model using the concept of 

correlation ratio in [13, 14]. This model has been used to 

evaluate the impact of correlation to data aggregation in 

WSNs. In this paper, based on the result in [13, 14], we 

propose a novel routing protocol called ECODA 

(Entropy COrrelation Based Data Aggregation Protocol) 

for WSNs. In this protocol, the clustering is based on the 

correlation between collected data from sensors deployed 

in the observed field. After the clustering process, the 

sensor nodes are divided into various clusters in which 

their data is correlated with each other by an entropy 

correlation coefficient.  In each cluster, because of the 

high correlation of the data, there is redundant 

information if every node sends data to cluster head 

regularly which causes a shortage in network system 

lifetime. By deploying the aggregation methods which 

are presented in [13, 14], the network system lifetime is 

prolonged while satisfying the demand distortion. 

The rest of the paper is presented as follows. In section 
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2, the correlation model is presented. Data aggregation is 

presented in section 3.  The outline of the ECODA 

protocol is then shown in section 4. In section 5, the 

performance of the ECODA is shown. Conclusion and 

further study are shown in section 6. 

2. ENTROPY CORRELATION  

In this section, we review the results of the correlation 

that has been proposed in [13, 14]. These results will be 

used to build the proposed protocol. 

Correlation region definition 

Definition 1: A group of 𝑚 nodes {𝑋1, 𝑋2, … , 𝑋𝑚} is in 

a correlation region with correlation level 𝜌0 and this 

correlation region is the one in which the sensed data of 

all sensor nodes have the same entropy value. In 

addition, the entropy correlation coefficient between all 

pairs of nodes are also the same and equal to 𝜌0. 

𝐻0 = 𝐻(𝑋1) = 𝐻(𝑋2) = ⋯ = 𝐻(𝑋𝑚)           (1) 

𝜌0 = 𝜌𝑖𝑗 = 𝜌(𝑋𝑖 , 𝑋𝑗),  𝑖  𝑗.                        (2) 

However, in practical cases, it is difficult to obtain the 

same entropy value of nodes or the same entropy 

correlation coefficient of pairs of nodes. Then, the 

correlation region can be defined in a more practical way 

as bellows. 

Definition 2: A group of 𝑚 nodes {𝑋1, 𝑋2, … , 𝑋𝑚} is in 

a correlation region with correlation level 𝜌0 if entropies 

of all member nodes vary in a very small range and 

entropy correlation coefficients between all pairs of 

nodes are larger than or equal to 𝜌0.  

𝐻0 − ∆𝐻 ≤ 𝐻(𝑋1), 𝐻(𝑋2), … , 𝐻(𝑋𝑚) ≤ 𝐻0, (3) 

𝜌0 ≤ 𝜌𝑖𝑗 = 𝜌(𝑋𝑖 , 𝑋𝑗),  𝑖  𝑗    (4) 

in which ∆𝐻 is the entropy variation range, 𝐻0 is called 

“base entropy” and 𝜌0 is called the “correlation level” of 

the data collected in the region. The higher the 

correlation level is, the more the correlation of the 

collected data in this region is. In this paper, if a region 

has 𝜌0 ≥ 0.5, we call it is a highly correlated region. 

Correlation clustering algorithm 

Using the definition of correlation region, a sensor field 

can be divided into correlation regions with specified 

base entropy and correlation level. The clustering 

algorithm is described in Fig. 1. At first, an entropy 

range and correlation level is chosen. Next, nodes with 

their entropy values in entropy range are selected into a 

group. Then, the entropy correlation coefficients of all 

pairs in the group are calculated and a node with the 

highest number of pairs that satisfied the correlation 

level is chosen as a core node. Nodes in the group that 

their correlation coefficients with the core node are 

smaller than the correlation level will be removed from 

the group first. After that, the process of removing a 

node with the highest number of pairs that do not satisfy 

the correlation level is repeated until all pair in the group 

satisfies the correlation level. 

1 BEGIN 

2   REPEAT 

3   Choose H0, 0, H; (*) 

4   Initialize new group G = ; 

5   FOR each node Xi not belong to any 

group 

6      IF 𝑯𝟎 − ∆𝑯 ≤ 𝑯(𝑿𝒊) ≤ 𝑯𝟎 

7         Add Xi into G 

8      END_IF 

9    END_FOR 

10   FOR each node Xi in G 

11     B(Xi)= number of nodes Xj that 

       𝝆𝒊𝒋 ≥ 𝝆𝟎 

12   END_FOR 

13   X0 = argmax{B(Xi), XiG} 

14   FOR each node Xi in G 

15      IF 𝜌(𝑋𝑖 , 𝑋0) < 𝜌0 

16         Remove Xi from G 

17      END_IF 

18   END_FOR 

19   REPEAT 

20     FOR each node Xi in G 

21      C(Xi)= number of nodes Xj  

        that 𝝆𝒊𝒋 < 𝝆𝟎  

22     END_FOR 

23     FOR each node Xi in G 

24       IF  0 < C(Xi) = max{C(Xj), XjG} 

25          Remove Xi from G (**) 

26       END_IF  

27     END_FOR 

28   UNTIL max{C(Xj), XjG} =0 

29 UNTIL all nodes are grouped 

30 END 

Fig. 1. Correlation-based clustering algorithm. 

 

In this algorithm, G presented for a correlated group, 

and it is equivalent to a cluster of the network. This 

algorithm is implemented at the base station, and the 

base station records this group and then does the network 

clustering. 

3. DATA AGGREGATION 

Entropy correlation can allow efficient data aggregation. 

In this paper, we consider two types of data aggregations 

including data compression and representative types. 

According to [13] about data compression and [14] about 

representative aggregation, we conclude the results as 

follows. 

Compression aggregation 

In correlation networks, nodes are divided into correlated 

regions. In order to reduce the amount of data 

transmission, data compression can be done at some 

nodes in correlation regions during data transmission to 

the base station. And the optimal routing scheme in 

correlation networks can be established as follows: 
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• If compression along the transmission path to the 

cluster head is used, it is not necessary to divide a 

correlated region into smaller clusters to optimize the 

transmission cost. Instead, each correlated region 

becomes a cluster, and the optimal routing path in 

each cluster is the shortest path from nodes to their 

cluster head.  

• If compression is done at the cluster head only, not at 

intermediate nodes, the transmission path is the 

shortest path to the cluster head. To get optimal 

transmission costs, it is necessary to divide a 

correlated region into some smaller clusters. It is 

difficult to get the analytical solution of optimal 

cluster size. But we can draw the total transmission 

cost curves and find out the near-optimal value with a 

specified correlation coefficient and the number of 

network nodes.  

Representative aggregation 

In a correlation region with a high enough correlation 

level, it may not be necessary for every sensor node in a 

correlation group to transmit its data to the base station. 

Instead, a smaller number of sensor measurements might 

be adequate to communicate the event features to the 

base station within a certain reliability/fidelity level. 

These working sensors are called representative nodes of 

the region/group. To evaluate the reliability/fidelity 

level, the distortion function is used.  

In order to use representative aggregation, at first, the 

number of representative nodes of each correlation 

cluster is determined. This number depends on the 

entropy correlation coefficient of the correlation region 

and the desired distortion. The calculation of the number 

of representative nodes can be seen in [14]. 

After knowing the number of representative nodes, it is 

necessary to select these nodes in the cluster group. The 

selection can be based on different purposes such as 

maximizing the total information (the obtained 

information from representative nodes is maximum), 

maximizing coverage (total covered areas by 

representative nodes is maximum) or energy balancing 

(the nodes with highest remaining energy are chosen to 

be representative nodes).  

4. ENTROPY CORRELATION BASED DATA 

AGGREGATION PROTOCOL (ECODA) 

Because ECODA uses the entropy correlation-based 

clustering scheme, it is necessary to calculate the entropy 

of each node to estimate the joint entropy for the 

clustering process. However, calculating entropy requires 

a certain processing ability in which a single sensor node 

could not have response-ability. On the other hand, from 

the beginning, there are no data collected from sensor 

nodes providing for the entropy calculation. Therefore, 

ECODA has some following characteristics: 

• The clustering process is performed by the base 

station because of its high processing capacity with 

an unlimited energy resource. On the other hand, the 

base station knows the information of all nodes in the 

network which a single node does not have. 

• At least Ns samples are necessary to calculate 

entropies and correlation coefficients. Therefore, the 

operation of the protocol needs a period to collect 

data serving for correlation calculating. Then, the 

operation of ECODA is divided into 2 periods: initial 

data-collecting period and correlation clustering 

period. The correlation characteristics of the 

environment must be preserved in these periods. 

• At initial data-collecting period: ECODA performs 

distance-based clustering to collect Ns samples 

serving for the entropy calculation process. The more 

the number of samples is, the more accurate the 

calculations of entropies and correlation coefficients 

are. The value of Ns will be decided before the 

deployment of the network. In our case, the value of 

Ns is 256. The initial data-collecting period is only 

implemented at the beginning of network operation 

and when we want to collect data of all nodes in the 

network to check correlation characteristics (in case 

of the changed correlation).  

• After receiving enough Ns samples, BS begins to 

calculate entropy and entropy correlations 

coefficients. Based on the calculation results, the base 

station sends clustering information to sensor nodes 

to form clusters and then begins the correlation 

clustering period. 

• At the correlation clustering period: the clusters are 

fixed (because the correlation regions are fixed). 

However, the cluster heads of the clusters are chosen 

to guarantee energy balance in the clusters and the 

connection paths from nodes in the clusters to their 

cluster head are established. Then the data 

transmission is done. In this period, data aggregation 

is done. The base station may use collected data to 

check the correlation characteristics and if the 

correlation has changed, the network will switch to 

the initial data-collecting period to form new 

correlation clusters. The longer the correlation 

clustering period is, the more advantages of 

correlation are exploited.    

• Both the initial data-collecting period and correlation 

clustering period are separated into rounds. One 

round is comprised of a set-up phase and a steady-

state phase as shown in Fig. 2. These phases will be 

explained in more detail later.  

• In the set-up phase, the base station firstly determines 

the cluster formation and cluster head selection upon 

the initial data-collecting period or correlation 

clustering period. In this phase, the base station also 

specifies cluster heads with their members, shortest 

routing path from cluster members to their cluster 

heads (including intermediate nodes), active and 

nonactive nodes in a cluster (for representative 

aggregation).  

• After the set-up phase, the data transmission path is 

established, and the network moves to the steady-

state phase in which sensor nodes send data to their 

cluster heads and the cluster head sends data to the 

base station in a specified number of frames. 
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Fig. 2. Time scheduling for one round. 

Set-up phase 

In the initial data-collecting period, data is collected for 

discovering the correlation among nodes. This is done 

only at the beginning of network operation with full 

energy. The clustering process is performed by the base 

station with a possibility to use LEACH-C clustering 

[15]. However, LEACH-C is complicated, and because 

this period is implemented in a short period of time at the 

beginning of deploying the network, or when correlation 

relation has changed and we want to reform the cluster, 

we can simplify the implementation of this phase with 

distance-based clustering as follows.   

In the set-up phase of the initial data-collecting period, 

at first, the base station determines the number of cluster 

k. According to[15], 𝑘 can be chosen to be 5% of the 

total nodes in the network as the optimal value. Next, the 

sensed area is geographically divided into 𝑘 equal parts. 

Each part corresponds to a cluster. After dividing the 

network into 𝑘 clusters, the base station chooses the 

cluster head so that the total square of the distance from 

cluster head to cluster members is minimum. This 

selection ensures the minimization of the dissipated 

energy for transmitting data from cluster members to the 

cluster head. 

After the initial data collection period, all nodes in the 

network are divided into correlation clusters. Then, in the 

set-up phase of the correlation clustering period, the 

selection of a cluster head for each cluster is done. 

Because the cluster head will receive data from all nodes 

in the same cluster, process and send them to the BS, it 

will dissipate more energy than the other nodes in the 

cluster. Therefore, the remaining energy should be 

considered when assigning the cluster head. The cluster 

head is chosen so that the total square of the distance 

from cluster head to cluster members is minimum, and 

the cluster head’s remaining energy is larger than the 

average remaining energy of all nodes in the cluster. This 

minimizes the dissipated energy of data transmission 

from a cluster member to cluster head among available 

energy of nodes. 

If representative aggregation is chosen, then, in the 

correlation clustering period, the selection of 

representative nodes is done by the base station in this 

phase. The choice of the representative node selection 

algorithm depends on the operation purpose. It is noted 

that with the purpose of maximizing information or 

coverage area, the representative nodes are usually fixed. 

Thus, it is difficult to obtain balance energy. In this 

paper, we choose the representative nodes to get balance 

energy. In a correlation cluster, nodes with the highest 

energy are chosen to be representative nodes.        

 In both periods, after determining the cluster head and 

cluster member, it is necessary to find the routing path 

from cluster members to their cluster head. There are 

various SPT (shortest path tree) algorithms to determine 

the optimal path from one point to another point. In this 

paper, an optimal routing algorithm in [16] is used 

because of its simplicity and energy efficiency. To 

establish the route from one node to its cluster head, this 

algorithm tries to choose the intermediate nodes that 

satisfy the following conditions: 

• The intermediate node should have the maximum 

residual energy. 

• The intermediate node should be as close to the 

cluster head as possible. 

• The multi-hop path should be almost straight between 

the node and the cluster head. 

Steady-state phase 

After the set-up phase, the data transmission path is 

established, and the network moves to the steady-state 

phase in which sensor nodes send data to their cluster 

heads and the cluster head sends data to the base station.  

Because some nodes may not transmit data directly to the 

cluster head, but via intermediate nodes, the transmission 

process is the multi-hop type. In the steady-state phase, 

cluster head/intermediate nodes send a sending schedule 

to active nodes. With the initial data-collection period, 

nodes send data to intermediate/cluster head nodes and 

the intermediate/cluster head nodes forward the data to 

the next-hop/base station. With the correlation clustering 

period, the intermediate nodes collect sent data from 

other nodes, compress them with its sensed data and then 

send this compressed data to the upper intermediate 

nodes or cluster head. Cluster heads collect sensed data 

from their members, compress and send them to the base 

station. 

Once the intermediate nodes/cluster head receives all 

the data, in the steady-state phase of the correlation 

clustering period, it can operate on the data such as 

performing data decompression/compression and then 

send to the base station. In this paper, Huffman based 

lossless compression [17] is used for compression. The 

fixed Huffman dictionary can be created by the BS based 

on distributions of sensed data. This dictionary is then 

sent to all nodes so that every node can encode and 

decode the compressed data easily. Later, the resultant 

data is sent to upper-level intermediate nodes (or cluster 

head/ base station). 

5. Performance evaluation  

Simulation setup 

In order to obtain precise simulation results, the 

simulation model in [15] is used. The simulation model 

is implemented using MATLAB scripts. 

The simulated network includes 400 sensor nodes 

uniformly distributed randomly in an area [200𝑚 ×
200𝑚]. The simulation parameters are shown in Table 1. 

The distribution of network nodes is presented in Fig. 3. 
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Table 1. Simulation parameters 

Parameter Value 

Sensing area [𝑚 × 𝑚] 200 × 200 

Base station position [𝑥, 𝑦] [100, 275] 

Number of nodes 400 

Initial energy [𝐽] 0.5 

The energy dissipated per bit 

𝐸𝑒𝑙𝑒𝑐[𝐽/𝑏𝑖𝑡] 
50 × 10−9 

Free space loss 𝜖𝑓𝑠[𝐽/𝑏𝑖𝑡/𝑚2] 10−11 

Multipath fading loss 𝜖𝑚𝑝[𝐽/𝑏𝑖𝑡/𝑚4] 1.3 × 10−15 

Aggregated energy 𝐸𝐷𝐴[𝐽/𝑏𝑖𝑡] 5 × 10−9 

Packet size 𝑙[𝑏𝑖𝑡] 4000 

Correlation coefficient 0.6 

Desired distortion 0.1 

 

 

Fig. 3. Sensor node distribution in the 200mx200m sensing 

area. 

a. The setting of the compression-based scheme 

In this case, it is supposed that there are S correlation 

clusters. To simulate the situation of routing with SPT to 

the cluster head, in each cluster, the intermediate nodes 

are called group head. Nodes are in the same group if 

they are connected to the same intermediate node (or 

group head). Thus, a cluster is further divided into 𝐺 

groups. In each group, data is transmitted from group 

nodes to their group head. The group heads compress the 

obtained data and send it to the base station.  

In the situation of compression at cluster head only, in 

each cluster, again, nodes are further divided into 𝐺 

groups. But it is not the same as the previous situation, 

the group head only transfers the data to cluster head 

without any compression. The cluster head received all 

data, compressed and sent to the base station. The 

routing path is illustrated as in Fig. 4. 

b. The setting of the representative-based scheme 

In this case, it is obvious that the lower the number of 

representative nodes is, the higher the energy 

conservation is. Therefore, two structures are chosen for 

simulation. In the first structure, there are 40 correlation 

clusters, i.e. there are 10 nodes on average in each 

cluster. In this case, the percentage of the representative 

is very high, about 80% of total nodes (with entropy 

correlation coefficient in this simulation is 0.6). In the 

second structure, the number of clusters is 16 (4% of the 

total number of nodes usually is chosen with distance-

based energy-efficient routing protocols). In both 

structures, nodes transmit their data to their cluster head 

and cluster heads transmit all obtained data to the base 

station with or without compression. 

 

 
Fig. 4. Routing path of compression-based routing protocol. 

Simulation results and discussions 

To analyze results, we will evaluate the network lifetime, 

i.e. operational time of the network from the beginning 

until all nodes die). The network lifetime is calculated by 

several rounds. In addition, some other parameters are 

also considered such as the moment at which the first 

node/ half of the total number of nodes dies and half of 

the total energy remains. 

a. The compression along SPT to the cluster head (CH) 

• We consider three simulation situations. In the first 

situation, the network includes 16 correlation clusters 

(𝑆 = 16). In each cluster, nodes transfer data directly 

to their cluster heads, i.e. the whole cluster is a group 

(𝐺 = 1).  

• In the second situation, the network includes 8 

correlation clusters (𝑆 = 8), each cluster is divided 

into 2 groups (𝐺 = 2).  

• In the third situation, the network includes 4 

correlation clusters (𝑆 = 4), each cluster is divided 

into 4 groups (𝐺 = 4).   

The second and third situations are full compression 

along SPT to the cluster head types. Fig. 5, Fig. 6 and 

Table 2 show the simulation results about total energy 

and a live node’s number of the networks for 1200 

rounds. It is found that the smaller the number of 

correlation clusters is, the better the performance of the 

network is. 

From the first situation to the third situation, the 

network lifetime increases from 987 rounds to 1019 

rounds and then 1142 rounds. The time that network lost 

half of its total energy increased from 197 rounds (20% 
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of the lifetime) to 353 rounds (34% of the lifetime) and 

then 438 rounds (38% of the lifetime), as shown in Fig. 5 

  

 

Fig. 5. The total energy in each round in case of 

compression along SPT to the CH. 

 

 

Fig. 6. Number of alive nodes in each round in case of 

compression along SPT to the CH. 

 

Table 2. Simulation results in case of compression along 

SPT to the CH 

Type Network 

life 

(rounds) 

The 

first 

node 

dies 

(rounds) 

Half of 

the 

initial 

energy 

lost 

(rounds) 

Half of 

the 

number 

of 

nodes 

die 

(rounds) 

16 

clusters 

987 105 197 478 

8 clusters 1019 280 353 613 

4 clusters 1142 344 438 808 

 

From Fig. 6, it can be found that the moment at which 

the first node died also increases from 105 rounds (10% 

of the lifetime) to 280 rounds (27% of the lifetime) and 

then 344 rounds (30% of the lifetime). The moment at 

which network lost half of the number of nodes also 

increases from 478 rounds (48% of the lifetime) to 613 

rounds (60% of the lifetime) and then 808 rounds (71% 

of the lifetime). The reason is that the smaller the number 

of clusters is, the larger the number of nodes in each 

cluster is. The compression is more efficient with a high 

number of correlation data. Additionally, the smaller the 

number of clusters is, the smaller the dissipated energy 

of transmitting data to the base station far from nodes is. 

In addition, for the second and third situations, the 

moment at which the network lost half of the total energy 

is quite close to the moment at which the first node dies. 

The network lost it’s a half number of nodes after 60% 

and 71% of its lifetime. It means that the dissipated 

energy quite balances among nodes. The total energy 

reduces linearly until half of the number of nodes died. 

Then the speed of reduced energy is slow down. The 

reason is that the nodes far from the base station died, 

only nodes that are close to the base station still alive, 

thus the dissipated energy is reduced. 

b. Representative aggregation  

In this case, Fig. 7, Fig. 8 and Table 3 show the 

simulation results (total energy and the number of alive 

nodes) of the networks for 5000 rounds in the cases of 16 

and 40 correlation clusters. In the case of 16 clusters, the 

network lifetime is 3805 rounds, while the network 

lifetime is only 1873 rounds for 40 clusters. The moment 

at which the first node died is 326 rounds (8.6% of the 

lifetime) in the case of 16 clusters and 15 rounds (0.8% 

of the lifetime) in the case of 40 clusters. 

 

 
Fig. 7. The total energy in each round in the case of 

representative aggregation with 16 correlation clusters. 

 

The moment at which network lost half of the total 

energy is 272 rounds (7.1% of the lifetime) in the case of 

16 clusters and 87 rounds (4.6% of the lifetime) in the 

case of 40 clusters. The moment at which the network 

lost half of the number of nodes is 2589 rounds (68% of 

the lifetime) and 417 rounds (22% of the lifetime). From 

the simulation results, it is found that the smaller the 
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number of correlation clusters is, the better the 

performance of the network is. 
 

 
Fig. 8. Number of alive nodes in each round in the case of 

representative aggregation with 16 correlation clusters. 

 

Table 3. Simulation results in the case of representative 

aggregation 

Type Network 

life 

(rounds) 

The 

first 

node 

dies 

(rounds) 

Half of 

the 

initial 

energy 

lost 

(rounds) 

Half of 

the 

number 

of 

nodes 

die 

(rounds) 

40 

clusters 

1873 15 87 417 

16 

clusters 

3805 326 272 2589 

 

Evaluation and comparison 

To evaluate the effectiveness of ECODA, a distance-

based energy efficiency protocol as LEACH-C is used 

for comparison in the following sections.  In ECODA, 

two aggregation schemes including compression and 

representative aggregations can be used for this 

comparison purpose. Thus, we will consider two cases: 

ECODA with compression aggregation and ECODA 

with representative aggregation. 

a. The case of ECODA with compression aggregation 

In the case of 16 cluster heads, the shortest path from a 

node to its cluster head is the direct connection between 

them. Thus, compression is done only at the cluster head. 

Fig. 9 and Fig. 10 show the performance comparison 

between two protocols including total energy and 

number of live nodes. 

It is found that ECODA is better than LEACH-C, 

except the lifetime parameters. The reason is that with 

compression, the dissipated energy is reduced much 

more than distance-based optimization. 

 

 
Fig. 9. Total energy comparison between LEACH-C and 

ECODA with compression aggregation in the case of 16 

correlation clusters. 

 

 

Fig. 10. Total energy comparison between LEACH-C and 

ECODA with compression aggregation in the case of 16 

correlation clusters. 

 
Table 4. Comparison between LEACH-C and ECODA with 

compression aggregation in the case of 16 correlation 

clusters 

Type Network 

life 

(rounds) 

The 

first 

node 

dies 

(rounds) 

Half of 

the 

initial 

energy 

lost 

(rounds) 

Half of 

the 

number 

of 

nodes 

die 

(rounds) 

LEACH-

C 

1500 5 128 267 

ECODA 987 105 197 478 

 

However, when the number of nodes is reduced, the 
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effectiveness of compression is decreased and if the 

number of nodes is small enough, there is a little 

difference between two cases: with and without 

compression. From that point, LEACH-C is better than 

ECODA. 

In the case of 8 clusters (shown in Fig. 11 and Fig. 12 

and Table 5), the performances of ECODA are also 

better than LEACH-C, especially in the case of the 

compression along SPT to cluster head (ECODA-SPT).  

 
Fig. 11. Total energy comparison between LEACH-C and 

ECODA with compression aggregation in the case of 8 

correlation clusters. 

 

 
Fig. 12. Total energy comparison between LEACH-C and 

ECODA with compression aggregation in the case of 8 

correlation clusters. 

 

In the case of compression along SPT to cluster head, 

the compression was done along the way to the cluster 

head and at the cluster head. Therefore, the performance 

is much better. Only at the end of the network lifetime, 

when the number of alive nodes becomes small, the 

compression does not affect much of the dissipated 

energy, then the distance-based optimization will be 

better. 
 

 

 

 

 

Table 5. Comparison between LEACH-C and ECODA in 

the case of 8 correlation clusters  

Type Network 

life 

(rounds) 

The 

first 

node 

dies 

(rounds) 

Half of 

the 

initial 

energy 

lost 

(rounds) 

Half of 

the 

number 

of 

nodes 

die 

(rounds) 

LEACH-

C 

1514 5 233 462 

ECODA 900 250 301 549 

ECODA-

SPT 

1019 280 353 613 

 

As same as the case of 16 cluster heads, the lifetime of 

the distance-based protocol is longer than ECODA but 

the other parameters are not better than ECODA. In the 

case of compression at cluster head only, the 

compression is done only at the cluster head, thus the 

compression effect is not clear in the case of a small 

number of the cluster head. 

b. The case of ECODA with representative aggregation 

Fig. 13, Fig. 14 and Table 6 show the performance 

comparison between LEACH-C and ECODA with 

representative aggregation (with and without 

compression) in the case of 16 cluster heads. 

 

 

Fig. 13. Total energy comparison between LEACH-C and 

ECODA with representative aggregation in the case of 16 

correlation clusters. 
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Fig. 14. Number of a live nodes comparison between 

LEACH-C and ECODA with representative aggregation in 

the case of 16 correlation clusters. 

 

Because distortion is accepted, in ECODA, some nodes 

can sleep to save energy; therefore the performance is 

much better than the distance-based protocol. If the 

compression is done in the cluster heads, then the 

performance is much better in ECODA. 

It is noted that in all considered routing protocols, the 

total energy is reduced quite fast at the beginning and 

then reduced slower. The reason is that at the beginning 

area, nodes at all sensing area dissipate energy to send 

data to the base station. Then the nodes far from the base 

station died, the remained alive nodes are close to the 

base station, thus the dissipated energy is smaller. 

 
Table 6. Comparison between LEACH-C and ECODA with 

representative aggregation in the case of 16 correlation 

clusters 

Type Network 

life 

(rounds) 

The first 

node 

dies 

(rounds) 

Half of the 

initial 

energy 

lost 

(rounds) 

Half of 

the 

number 

of nodes 

die 

(rounds) 

LEACH-C 1500 5 128 267 

ECODA-

Rep- 

without 

compressi

on 

3805 326 272 2589 

ECODA-

Rep- with 

compressi

on 

4228 409 419 2958 

6. CONCLUSIONS 

In this paper, we have proposed an Entropy COrrelation 

clustering for Data Aggregation (ECODA) protocol for a 

wireless sensor network in correlation environments. The 

operation process of the protocol is divided into two 

periods including initial data-collecting period and 

correlation clustering period. The initial data-collecting 

period is at the beginning of the operation process in 

order to get the data for correlation identification. The 

next period is the main process where the network is 

with correlation clustering and deploys the proposed 

clustering and data aggregation schemes. In each period, 

the base station implements clustering and establishes the 

connection among networks in the setup phase. Then, in 

the steady-state phase, the data is sent to the station. The 

base station always uses received data to re-identify the 

correlation among nodes in the network. 

 In addition, simulation has been done with various 

conditions and ECODA is compared with LEACH-C 

protocol. It is shown that ECODA has better 

performance with better energy balance. The simulation 

results validated the effectiveness of ECODA. 

In the future, ECODA will be implemented in a real 

network with correlation characteristics. In addition, the 

development of Distributed Source Coding which is the 

most efficient compression scheme for ECODA will be 

considered. Moreover, the combination of the proposed 

spatial correlation model with a temporal correlation of 

measured data will be considered to further improve the 

energy efficiency of ECODA. 
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