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Abstract— The aim of this work is to present an extension of the subproblem finite element approach to improve 

inaccuracies around curvatures and corners from thin shell finite element models. Traditional shielding magnetic 

models are generally replaced by surfaces with impedance-type interface conditions, which accept inaccuracies of the 

local solutions surrounding corners and borders such as magnetic fields, eddy current losses and Joule power losses. In 

this article, the extended subproblem approach is performed with the h-conformal finite element formulation where the 

shielding models are coupled in a sequence of a three step-coupling: Stranded inductors alone (step 1) – added 

shielding models (step 2)- volume corrections (step 3). Each step of the method allows separately solving on its own 

sub-domain and meshing without starting again a full problem for each new set of parameters. This leads to a reduced 

computational time. 

 
Keywords— Eddy current, joule power loss, magnetodynamics, subproblem technique, thin shell approximations. 
 

1.  INTRODUCTION 

The direct use of the finite element method (FEM) 

formulation to realistic thin plates in electromagnetic 

shielding problems is still extremely challenging, even 

not possible [1]. For magnetodynamic problems, when 

thin shells are conducting, very thin meshes have to be 

created to capture the skin depth, this becomes more and 

more computationally expensive (and difficult) with 

increasing frequency. 

 So as to scope with this advantage, in [2], [3], the 

classical thin shell (TS) solution is proposed to replace 

volume thin meshes (Fig. 1, left) by surface meshes with 

impedance-type interface conditions (ICs) (Fig. 1, right), 

but this approximation neglects significant errors in the 

calculation of local quantities (magnetic flux density, 

magnetic field, eddy current and joule power loss…) 

around corners and edges. 

 

 
Fig. 1: From volume (left) to surface (right). 

 

 In order to overcome this drawback, many studies 

have recently developed a subproblem method (SPM) for 

one-way coupling to improve inaccuracies near corners 

and edges occurring from the TS [4]-[7], or to correct 

errors in conducting regions and global fields [8]-[10]. 
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In this paper, a three step-coupling technique with the 

h-conformal magnetodynamic finite element (FE) 

formulation is extended from a one-way coupling to treat 

inaccuracies on local electromagnetic solutions from the 

TS approximations [2], [3]. The extended method is 

implemented as a sequence, allowing to divide a full 

problem (including of stranded inductors and magnetic 

thin regions) into three steps: 

• Step 1: A problem involving stranded inductors is 

first considered on a simplified mesh.  

• Step 2: A thin shell is added with very coarse mesh 

that does not contain stranded inductor anymore. 

• Step 3: A volume correction with an actual thin plate 

is improved errors of the TS solutions.  

In this strategy SP, from the stranded inductor to the 

TS model is constrained by surface sources (SSs) that 

indicate changes of ICs across surfaces [4]-[6]. From the 

TS model to the volume correction is constrained by SSs 

and volume sources (VSs), where VSs present changes 

of material properties (i.e., permeability and 

conductivity) of volume thin regions [4]-[6].  

Each process of the method allows separately doing on 

its own domain and meshing without depending on the 

meshes and domains of other subproblems (SPs). This 

also permits to consider previous solutions as SSs or VSs 

for new SPs instead of solving a new full problem for 

each new set of parameters.  

2. SEQUENCE OF SUBPROBLEM APPROACH 

Magnetodynamic problem 

In the scenario of the subproblem approach, a 

magnetodynamic problem q is performed at step q in a 

domain Ω𝑞, with Ω𝑐 = Ω𝑐,𝑞 ∪ Ω𝑐,𝑞
𝐶  and the boundary 𝜕Ω𝑞 

= Γ𝑞 = Γh,q ∪ Γb,q. Where Ω𝑐,𝑞 and Ω𝑐,𝑞
𝐶  are respectively 

the conducting part and the non-conducting. The 

Maxwell’s equations together with the following 

constitutive relations express [4] - [8]. 
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curl 𝒉𝑞 = 𝒋𝑠,𝑞 , div𝒃𝑞 = 0, curl𝒆𝑞 = −𝜕𝑡𝒃𝑞,  (1a-b-c) 

𝒃𝑞 = 𝜇𝑞𝒉𝑞 + 𝒃𝑠,𝑞 ,  𝒆𝑞 = 𝜎𝑞
−1𝒋𝑞 + 𝒆𝑠,𝑞 ,    (2a-b) 

𝒏 × 𝒆𝑞|Γ𝑒,𝑞
= 0,    [𝒏 × 𝒆𝑞]𝛾𝑞

= 𝒌𝑓,𝑞 ,     (3a-b)    

where the source fields (𝒃𝑠,𝑞 and 𝒆𝑠,𝑞) in (2 a-b) are VSs 

and 𝒏 is the unit normal exterior to Ω𝑞. The trace of 

electric field in (3 a) is defined as a zero for classical 

homogeneous boundary conditions (BCs). The 

discontinuity of electric field in (3 b) (𝒌𝑓,𝑞) is a SS 

expressed its discontinuity through the positive and 

negative sides (𝛾𝑞
+ and 𝛾𝑞

−) of any interface 𝛾𝑞 in  

Ω𝑞, with notation [∙]𝛾𝑝
= |𝛾𝑝

+ − |𝛾𝑝
− [4]-[7]. 

Sequence of SPs: From stranded inductor alone to TS 

model 

As developed in [4]-[7], the constraint from stranded 

inductor alone to the TS models is expressed a SS (i.e. 

𝒌𝑓,𝑞) in (3 b). This SS linked to the BC and IC is 

presented by the TS model associated with contributions 

from the previous problem [2], [3]. For the magnetic 

field formulation, the magnetic field is split as 𝒉𝑞 =

𝒉𝑐,𝑞 + 𝒉𝑑,𝑞, where the fields 𝒉𝑐,𝑞 and 𝒉𝑑,𝑞 are 

respectively continuous and discontinuous components 

of 𝒉𝑞 across the TS [3]. 

At the step 1, there is no any thin region in the 

stranded inductor, but it should be assumed that there is a 

relative constraint with the TS model across the ICs of 

the TS (q = p), with 𝛾𝑞 = 𝛾𝑞
± = 𝛾𝑝

±. For that, the trace 

discontinuity [𝒏 × 𝒆𝑝]𝛾𝑝
 in (3 b) of the TS problem p is 

given as [3] 

 

[𝒏 × 𝒆𝑝]𝛾𝑝
= [𝒏 × (𝒆𝑞 + 𝒆𝑝)]𝛾𝑝

= [𝒏 × 𝒆]𝛾𝑝
= 

𝜇𝑝𝛽𝑝𝜕𝒕(2𝒉𝑐,𝑝 + 𝒉𝑑,𝑝), (4) 

𝒏 × 𝒆𝑝|𝛾𝑞
+ = 𝒏 × (𝒆𝑞 + 𝒆𝑝)|𝛾𝑝

+ − 𝒏 × 𝒆𝑞|𝛾𝑝
+ = 

1

2
[𝜇𝑝𝛽𝑝𝜕𝒕(2𝒉𝑐,𝑝 + 𝒉𝑑,𝑝) +

1

𝜎𝑝𝛽𝑝
𝒉𝑑,𝑝] − 𝒏 × 𝒆𝑞|𝛾𝑝

+ = 

1

2
[𝜇𝑝𝛽𝑝𝜕𝒕(2𝒉𝑐,𝑝 + 𝒉𝑑,𝑝) +

1

𝜎𝑝𝛽𝑝
𝒉𝑑,𝑝] − 𝒌𝑓,𝑞 ,     (5)  

where 𝛽𝑝 is given is [4]. In the stranded inductor (e.g. SP 

q), the trace discontinuity [𝒏 × 𝒆𝑝]𝛾𝑝
 in (4) is equal to 

zero (i.e. [𝒏 × 𝒆]𝛾𝑝
= [𝒏 × 𝒆𝑞]𝛾𝑞

+ [𝒏 × 𝒆𝑞]𝛾𝑝
= 0) 

because it does not contribute to the solution of SP q [3]. 

Sequence of SPs: From TS model to volume correction 

The TS solution of the problem SP p is next improved 

by the volume correction SP k (q = k) that scopes with 

the TS approximations [3]. So as to improve the TS 

model, one must remove the TS representation solution 

appearing in the SP k by imposing a SS opposed to the 

TS IC. The changes of properties from the TS model to 

the volume correction are defined via the VSs (𝒃𝑠,𝑘 and 

 𝒆𝑠,𝑘) in (2 a-b), i.e. [6], [9] 

 𝒃𝑠,𝑘 = (𝜇𝑘 − 𝜇𝑝)(𝒉𝑞 + 𝒉𝑝),           (6)    

 𝒆𝑠,𝑘 = −(𝒆𝑞 + 𝒆𝑝),                  (7) 

where the electric fields 𝒆𝑞 and 𝒆𝑝 are unknown and are 

defined via an electric problem [9].  

3. SEQUENCE OF WEAK FORMULATIONS 

From the results of Section 2, the weak formulations for 

each step coresponding to each SP are developed as the 

sequence: SP q → SP p→ SP k. 

Step 1: A weak form for inductors – SP q 

The magnetic field formulation is written from the 

weak form of Faraday’s equation (1 c) [5]-[10]. The field 

𝒉𝑞 is divided into two parts [6], [9], 𝒉𝑞 = 𝒉𝑟,𝑞 + 𝒉𝑠,𝑞, 

where 𝒉𝑟,𝑞 is a reaction field and is unknown in advance, 

and 𝒉𝑠,𝑞 is a source field defined by a fixed current 

density such that curl 𝒉𝑠,𝑞  = 𝒋𝑠,𝑞 in the stranded 

inductor Ω𝑠,𝑞. For the SP q, one gets 

𝜕𝑡(𝜇𝑞𝒉𝑟,𝑞 , 𝒉𝑞
′  )

Ω𝑞
+ 𝜕𝑡(𝜇𝑞𝒉𝑠,𝑞 , 𝒉𝑞

′ )
Ω𝑞

 

+〈𝒏 × 𝒆𝑞 , 𝒉𝑞
′ 〉Γ𝑒,𝑞−𝛾𝑞

+ 〈[𝒏 × 𝒆𝑞]𝛾𝑞
, 𝒉𝑞

′ 〉Γ𝑞
 = 0, 

∀ 𝒉𝑞
′ ∈ 𝑯ℎ,𝑞

1 (curl, Ω𝑞),  (8) 

where the field 𝒉𝑠,𝑞 is determined via a projection 

method of the unknown distribution 𝒋𝑠,𝑞 [5], [6]. 

𝐻ℎ,𝑞
1 (curl, Ω𝑞) is a function space including the basis 

function (𝒉𝑟,𝑞) and the test function (𝒉𝑞
′ ) as well. The 

term 〈𝒏 × 𝒆𝑞 , 𝒉𝑞
′ 〉Γ𝑒,𝑞−𝛾𝑞

 is considered as a natural BC 

given in (3 a).  

Step 2: A weak form for TS model – SP p 

The weak form for the TS model SP p is expressed via 

the terms [𝒏 × 𝒆𝑝]𝛾𝑝
 and 𝒏 × 𝒆𝑝|𝛾𝑞

+ given in (4) and (5), 

i.e. 

𝜕𝑡(𝜇𝑝𝒉𝑝, 𝒉𝑝
′ )

Ω𝑝
+ (𝜎𝑝

−1curl 𝒉𝑝, curl 𝒉𝑝
′ )

Ω𝑐,𝑝
 

+〈𝒏 × 𝒆𝑝, 𝒉𝑝
′ 〉Γ𝑒,𝑝−𝛾𝑝

+ 〈[𝒏 × 𝒆𝑝]𝛾𝑝
, 𝒉𝑝

′ 〉Γ𝑝
 = 0, 

∀ 𝒉𝑝
′ ∈ 𝑯ℎ,𝑝

1 (curl, Ω𝑝).   (9) 

The test funcition 𝒉𝑝
′  in the trace discontinuity 〈[𝒏 ×

𝒆𝑝]𝛾𝑝
, 𝒉𝑝

′ 〉Γ𝑝
 in (10) is analysed as 

〈[𝒏 × 𝒆𝑝]𝛾𝑝
, 𝒉𝑝

′ 〉Γ𝑝
= 〈[𝒏 × 𝒆𝑝]𝛾𝑝

, 𝒉𝑐,𝑝
′ + 𝒉𝑑,𝑝

′ 〉Γ𝑝
= 

〈[𝒏 × 𝒆𝑝]𝛾𝑝
, 𝒉𝑐,𝑝

′ 〉Γ𝑝
+ 〈[𝒏 × 𝒆𝑝]𝛾𝑝

, 𝒉𝑑,𝑝
′ 〉Γ𝑝

.      (10) 

The term 〈[𝒏 × 𝒆𝑝]𝛾𝑝
, 𝒉𝑑,𝑝

′ 〉Γ𝑝
 is expressed as 

〈[𝒏 × 𝒆𝑝]𝛾𝑝
, 𝒉𝑑,𝑝

′ 〉Γ𝑝
= 

 〈𝒏 × 𝒆𝑝|𝛾𝑝
+ , 𝒉𝑑,𝑝

′ 〉Γ𝑝
+ + 〈𝒏 × 𝒆𝑝|𝛾𝑝

− , 𝒉𝑑,𝑝
′ 〉Γ𝑝

−,    (11) 

where the 𝒉𝑑,𝑝
′  is equal to zero on Γ𝑝

− [3]. Therefore, (11) 

is rewritten 

〈[𝒏 × 𝒆𝑝]𝛾𝑝
, 𝒉𝑝

′ 〉Γ𝑝
= 

〈[𝒏 × 𝒆𝑝]𝛾𝑝
, 𝒉𝑐,𝑝

′ 〉Γ𝑝
+ 〈𝒏 × 𝒆𝑝|𝛾𝑝

+ , 𝒉𝑑,𝑝
′ 〉Γ𝑝

+ , (12) 
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where the first integral 〈[𝒏 × 𝒆𝑝]𝛾𝑝
, 𝒉𝑐,𝑝

′ 〉Γ𝑝
 and the 

second term 〈𝒏 × 𝒆𝑝|𝛾𝑝
+ , 𝒉𝑑,𝑝

′ 〉Γ𝑝
+ in the SHS are 

respectively given in (4) and (5), i.e. 

〈[𝒏 × 𝒆𝑝]𝛾𝑝
, 𝒉𝑝

′ 〉Γ𝑝
= 〈𝜇𝑝𝛽𝑝𝜕𝒕(2𝒉𝑐,𝑝 + 𝒉𝑑,𝑝), 𝒉𝑝

′ 〉Γ𝑝
+ 

 〈
1

2
[𝜇𝑝𝛽𝑝𝜕𝒕(2𝒉𝑐,𝑝 + 𝒉𝑑,𝑝) +

1

𝜎𝑝𝛽𝑝
𝒉𝑑,𝑝] , 𝒉𝑑,𝑝

′ 〉Γ𝑝
+ − 𝒌𝑓,𝑞 . 

(13) 

The 𝒌𝑓,𝑞 in (13) is a SS defined from the weak form of a 

previous problem SP q, i.e. [6] 

−𝒌𝑓,𝑞 = − 〈𝒏 × 𝒆𝑞|𝛾𝑝
+ , 𝒉𝑑,𝑝

′ 〉Γ𝑝
+ = 

𝜕𝑡(𝜇𝑞𝒉𝑟,𝑞 , 𝒉𝑞
′ )

Ω𝑞
+=Γ𝑝

+ + 𝜕𝑡(𝜇𝑞𝒉𝑠,𝑞 , 𝒉𝑞
′ )

Ω𝑞
+=Γ𝑝

+(14)  

By combining the equations from (11) to (15), the weak 

form of the TS model finally becomes 

𝜕𝑡(𝜇𝑝𝒉𝑝, 𝒉𝑝
′ )

Ω𝑝
+〈𝜇𝑝𝛽𝑝𝜕𝒕(2𝒉𝑐,𝑝 + 𝒉𝑑,𝑝), 𝒉𝑝

′ 〉Γ𝑝
+ 

+ 〈
1

2
[𝜇𝑝𝛽𝑝𝜕𝒕(2𝒉𝑐,𝑝 + 𝒉𝑑,𝑝) +

1

𝜎𝑝𝛽𝑝
𝒉𝑑,𝑝] , 𝒉𝑑,𝑝

′ 〉Γ𝑝
+   

+𝜕𝑡(𝜇𝑞𝒉𝑟,𝑞 , 𝒉𝑞
′ )

Ω𝑞
+=Γ𝑝

+ + 𝜕𝑡(𝜇𝑞𝒉𝑠,𝑞 , 𝒉𝑞
′ )

Ω𝑞
+=Γ𝑝

+ 

+〈𝒏 × 𝒆𝑝, 𝒉𝑝
′ 〉Γ𝑒,𝑝−𝛾𝑝

= 0, ∀ 𝒉𝑝
′ ∈ 𝑯ℎ,𝑝

1 (curl, Ω𝑝).  (15)  

At the discrete level, the SSs 𝒉𝑟,𝑞 and 𝒉𝑠,𝑞 initially 

defined the mesh of SP q are transferred to the mesh of 

the SP p through a projection method [11]. 

Step 3: A weak form for volume correction – SP k 

The weak form for the volume correction SP k is 

presented as 

𝜕𝑡(𝜇𝑘𝒉𝑘, 𝒉𝑘
′ )Ω𝑝

+ (𝜎𝑘
−1curl 𝒉𝑘, curl 𝒉𝑘

′ )Ω𝑐,𝑘

+ 𝜕𝑡(𝒃𝑠,𝑘, 𝒉𝑘
′ )

Ω𝑐,𝑘
+ (𝒆𝑠,𝑘 , curl 𝒉𝑘

′ )
Ω𝑐,𝑘

 

+〈𝒏 × 𝒆𝑘, 𝒉𝑘
′ 〉Γ𝑒,𝑘−𝛾𝑘

+ 〈[𝒏 × 𝒆𝑘]𝛾𝑘
, 𝒉𝑘

′ 〉Γ𝑘
= 0, 

∀ 𝒉𝑘
′ ∈ 𝑯ℎ,𝑘

1 (curl, Ω𝑘).       (16) 

By substituting VSs 𝒃𝑠,𝑘 in (6) and 𝒆𝑠,𝑘 in (7) into (17), 

one becomes 

𝜕𝑡(𝜇𝑘𝒉𝑘, 𝒉𝑘
′ )Ω𝑝

+ (𝜎𝑘
−1curl 𝒉𝑘, curl 𝒉𝑘

′ )Ω𝑐,𝑘

+ 𝜕𝑡((𝜇𝑘 − 𝜇𝑝)(𝒉𝑞 + 𝒉𝑝), 𝒉𝑘
′ )

Ω𝑐,𝑘

+ (−(𝒆𝑞 + 𝒆𝑝), curl 𝒉𝑘
′ )

Ω𝑐,𝑘
 

+〈𝒏 × 𝒆𝑘, 𝒉𝑘
′ 〉Γ𝑒,𝑘−𝛾𝑘

+ 〈[𝒏 × 𝒆𝑘]𝛾𝑘
, 𝒉𝑘

′ 〉Γ𝑘
= 0, 

∀ 𝒉𝑘
′ ∈ 𝑯ℎ,𝑘

1 (curl, Ω𝑘). (17)        

where the fields (𝒉𝑞 in SP q and 𝒉𝑝 in SP p) are 

projected from the meshes of the SP q and the SP p to the 

mesh of SP k through a projection method [11].  

In addition, the representation of the TS model 

(〈[𝒏 × 𝒆𝑘]𝛾𝑘
, 𝒉𝑘

′ 〉Γ𝑘
) in (18) needs to be removed by a 

SS, i.e. [4-7]  

〈[𝒏 × 𝒆𝑘]𝛾𝑘
, 𝒉𝑘

′ 〉Γ𝑘
= −〈[𝒏 × 𝒆𝑝]𝛾𝑘

, 𝒉𝑘
′ 〉Γ𝑘

.    (18) 

 

It should be noted that the electric fields 𝒆𝑞 and 𝒆𝑝 in 

(17) are unknown and need to be defined via an electric 

problem presented in next Section. 

Weak formulation for electric problem 

As mentioned in the previous Section, the source 

quantities 𝒆𝑞 and 𝒆𝑝 in (17) are found via an electric 

problem in Ω𝑐,𝑖 (i = q, p) [9]. The weak form for the 

electric problem for the volume correction SP k is 

obtained from the associated (1 c), the unknown electric 

vector potential  𝒖𝑘 (𝒅𝑘 = curl 𝒖𝑘) and the constitutive 

law (𝒅𝑘 = 𝜖𝑘𝒆𝑘), i.e.    

(𝜕𝑡(𝜇𝑘𝒉𝑘), 𝒖𝑘
′ )Ω𝑐,𝑘

+ (𝜖𝑘
−1curl 𝒖𝑘, curl 𝒖𝑘

′ )Ω𝑐,𝑘
+ 

+〈𝒏 × 𝒆𝑘, 𝒖𝑘
′ 〉Γ𝑐,𝑘

= 0, ∀ 𝒖𝑘
′ ∈ 𝑯ℎ,𝑘

1 (curl, Ω𝑐,𝑘), (19) 

where 𝑯ℎ,𝑘
1 (curl, Ω𝑐,𝑘) is a function space defined in 

Ω𝑐,𝑘 including the basis function 𝒖𝑘 and test function 𝒖𝑘
′  

as well. The expression for each test function 𝒖𝑘
′  can be 

directly written only for non-conducting region Ω𝑐,𝑘
𝐶 =

Ω𝑘\Ω𝑐,𝑘, i.e. [9] 

(𝜖𝑘
−1curl 𝒖𝑘, curl 𝒖𝑘

′ )Ω𝑐,𝑘
+ (𝜕𝑡(𝜇𝑘𝒉𝑘), 𝒖𝑘

′ )Ω𝑐,𝑘
+ 

(𝜕𝑡(𝜇𝑘𝒉𝑘), 𝒖𝑘
′ )Ω𝑘\Ω𝑐,𝑘

+ (𝜎𝑘
−1curl 𝒖𝑘, curl 𝒖𝑘

′ )Ω𝑘\Ω𝑐,𝑘
 

+〈𝒏 × 𝒆𝑘, 𝒖𝑘
′ 〉

∂Γ𝑐,𝑘
𝐶 = 0, ∀ 𝒖𝑘

′ ∈ 𝑯ℎ,𝑘
1 (curl, Ω𝑐,𝑘). (20)        

In the (20), the source field 𝒉𝑘 is transferred from mesh 

of previous meshes to the mesh of Ω𝑐,𝑘. The volume 

integrals in Ω𝑘\Ω𝑐,𝑘 are defined in a single layer of FEs 

touching 𝜕Ω𝑐,𝑘 in Ω𝑘\Ω𝑐,𝑘. The solution 𝒖𝑘 obtained 

from (20) is considered as a source for computing the 

electric field.  

4. NUMERICAL TESTS 

The first application problem is a TEAM workshop 

problem 28 [13] (Fig. 2). It consists of two stranded 

inductors and an above shielding plate, for 𝜇𝑝𝑙𝑎𝑡𝑒 =

100, 𝜎𝑝𝑙𝑎𝑡𝑒 = 34 MS/m,𝑓 = 50 Hz. The inner inductor 

has w1 = 960 turns and the outer inductor w2 = 576 turns. 

The sinusoidal currents flow in the inductors in opposite 

directions, i.e. 𝑖(𝑡) = 20 sin(2𝜋𝑓𝑡) (𝐴).  

 

 

Fig. 2. Geometry 2-D of TEAM problem 28 (dimensions in 

mm) [14]. 
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Fig. 3. Sequence of associated solutions: distribution of 

magnetic field (real part) for the SP q (𝒉𝒒, top, inductors 

alone), added TS solution SP p (𝒉𝒑, second level), electric 

field for SP q (𝒆𝒒, third level), electric field for SP p (𝒆𝒑, 

fourth level) and volume correction SP k (𝒉𝒌, bottom). 

 
Fig. 4. Colored map of eddy current density on the TS 

solution (𝒋𝒑, top) and the volume correction (𝒋𝒌, bottom) 

(𝝁𝒑𝒍𝒂𝒕𝒆 = 𝟏𝟎𝟎, 𝝈𝒑𝒍𝒂𝒕𝒆 = 𝟑𝟒 𝐌𝐒/𝐦,𝒇 = 𝟓𝟎 𝐇𝐳). 

 

Fig 5. Eddy current density (top) and joule power loss 

density (bottom) of the TS, improvement and reference 

solutions along the shielding plate for different thicknesses 

(𝝁𝒑𝒍𝒂𝒕𝒆 = 𝟏𝟎𝟎, 𝝈𝒑𝒍𝒂𝒕𝒆 = 𝟑𝟒 𝐌𝐒/𝐦, 𝒇 = 𝟓𝟎 𝐇𝐳). 

 

The test problem is solved with three steps. The 

sequence of associated solutions on magnetic fields and 

electric fields of each SPs are shown in Figure 3. A 

problem with the stranded inductors alone SP q without 

including a thin shielding is first solved (Fig. 3, top,  𝒉𝑞). 

A TS solution SP p with reduced domain that does not 

contain the inductors any more is then added (Fig. 3, 

second level,  𝒉𝑝). The source electric fields 𝒆𝑞 and  𝒆𝑝 

obtained from SP q and SP p are respectively indicated 

in Fig. 3 (third level) and Fig. 3 (fourth level). These 

source fields are projected to the volume correction SP k 

covering a local thin plate and it surrounding to improve 

errors on the TS FE solution (Fig. 3, bottom,  𝒉𝑘).  

The colored map of eddy current density on the TS 

solution and volume correction is pointed in Figure 4. 

The significant inaccuracy on the eddy current density 

along the plate of TS SP p corrected by the volume 

improvement SP k are shown in Figure 6. It reaches 

64%, with δ = 1.22mm and d = 5mm, or lower than 30% 
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for d = 3 mm. The improvement solution is then 

compared to be very similar the reference solutions 

obtained from the classical finite element method [1]. 

The second application is also based on a TEAM 

workshop problem 21 (model, B) [14]. The problem is 

solved in 3-D case and is performed as the same 

sequence of the previous test. The significant errors on 

the eddy current are depicted by colored maps with 

thickness d = 1.5 mm and d = 7.5 mm (from left to right) 

(Fig. 6). The relative improvement on the joule power 

loss along the quarter-plate, from the middle to the end, 

with the different thicknesses, is presented in Figure 7. It 

can be up to 60% near the end of the TS for d = 7.5mm, 

and 40% with d = 1.5mm, for 𝜇𝑝𝑙𝑎𝑡𝑒 = 100, 𝜎𝑝𝑙𝑎𝑡𝑒 =

6.484 MS/m and 𝑓 = 50 Hz in both cases. 

 
Fig. 6. Colored map on the eddy current densities showing 

the regions with the relative volume improvements greater 

than 5% for d = 1.5 mm and 10 mm (from left to right), 

𝝁𝒑𝒍𝒂𝒕𝒆 = 𝟏𝟎𝟎, 𝝈𝒑𝒍𝒂𝒕𝒆 = 𝟔. 𝟒𝟖𝟒 𝐌𝐒/𝐦, 𝒇 = 𝟓𝟎 𝐇𝐳). 

 

 

Fig 7. Relative improvement of joule power loss (3D) along 

the quarter-plate, from the middle to the end, with different 

thicknesses (𝝁𝒑 = 𝟐𝟎𝟎, 𝝈𝒑𝒍𝒂𝒕𝒆 = 𝟔. 𝟒𝟖𝟒 𝐌𝐒/𝐦, 𝒇 = 𝟓𝟎 𝐇𝐳). 

5. CONCLUSION 

The subproblem FE technique has been successfully 

proposed with h-conformal formulation for imporving 

the errors on the local quantities of the TS model in three 

steps. The sequence of each step is implemented on its 

own sub-domain without staring again a full domain. 

From this step to another one is contrained via VSs and 

SSs. In particular, an electric problem has been also 

introduced in the heart of method to strongly support the 

VSs in volume correction.  

The method has been sucessfully applied to the 

international problems (TEAM workshop problem 21 

(model B) and problem 28). The simulated results of the 

method are checked to be quite similar to the reference 

solution calculated from the finite element method [1]. 

This is a very good agreement of the studied method. 

The development has been done with the linear case in 

the frequency domain. It can be extended to the 

nonlinear case and time domain in the future work.  

NOMENCLATURE 

The list of symbols used in the paper is given below: 

𝐻𝑒,𝑞
1 (curl, Ω𝑞) Curl-conform function space in Ω𝑞 

(·, ·) Volume integral of the product of its 

vector field argument 

< ·, · > Surface integral of the product of its 

vector field argument 

𝒉𝒒 Magnetic field (A/m) 

𝒃𝒒 Magnetic flux density (T) 

𝒆𝒒 Electric field (V/m) 

𝒅𝒒 Electric flux density (C/m2) 

𝒋𝒔,𝒒 Electric current density (A/m2) 

𝒋𝒒 Eddy current density (A/m2) 

𝒃𝒔,𝒒, 𝒆𝒔,𝒒 Volume sources  

𝒌𝒇,𝒒 Surface source field  

𝛀𝒒 Bounded open set of Ε3 

𝚪𝒒 Boundary of Ω𝑞 (Γ𝑞 = 𝜕Ω𝑞) 

𝝁 Magnetic permeability (H/m) 

𝝁𝒓 Relative magnetic permeability 

𝝈 Electric conductivity (S/m) 

𝝐 Electric permittivity (F/m) 

𝝆 Electric charge (C/ m3) 
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