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Abstract— In this paper, a perturbation finite element method with magnetostatic formulations is developed for 

treating errors occurring from thin structure models, that volume structures are considered as surfaces for 3-D model 

or surfaces are considered as lines for 2-D model. Nevertheless, these considerations generally ignore curvature effects 

next to corners and edges. The process of correction for thin shell assumption is performed with a two-way procedure 

that allows a full/complete problem to divide into several sub-domains including stranded inductors-thin magnetic 

structures and volume improvement. At the discrete level, each sub-domain is only solved on its own sub-mesh, 

generally distinct from the complete/full one. This allows reducing the degree of freedom in matrixes due to the reduced 

size of each sub-domain. 
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1.  INTRODUCTION 

In [1], a thin structure is considered a priori 1-D 

analytical distributions across the interface condition 

(IC). For that, the interior of volume thin regions is not 

meshed and is replaced by surfaces with impedance-type 

transmission conditions connected to the inner-analytical 

distributions. This neglects local distribution fields near 

edges and corners of shells, increasing with the 

thickness. To treat this disadvantage, the perturbation 

method for magneto-dynamic problems with the dual 

formulation has been recently proposed for one-way 

coupling [2]-[6]. 

In this researh, a novel scenario based on a 

perturbation method is proposed to accurately compute 

the magnetic scalar potential, magnetic flux density and 

magnetic field in volume correction starting from shell 

approximate solutions. The expanded method permits a 

full problem to split into sub-models with a two-way 

procedure (Fig. 1). 

From this sub-model to another one is to be 

constrained via volume and surface sources expressed for 

material changes [2]-[6]. In each process, a sub-model is 

solved its own mesh and domain without depending on 

other sub-models, which permit to distinct from the 

complete one. The developments are developed for the 

h-magnetostatic finite element formulations, paying 

special attention to the proper discretisation of the source 

constraints. The method is also validated on a practical 

problem to indicate the efficiency and differences. 
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Fig. 1. Modeling of decompostion of a complete domain into 

several sub-models. 

2. SERIES OF PERTUBATION METHOD 

Canonical magnetostatic problem with surface and 

volume sources 

A canonical magnetostatic problem n is defined is in a 

domain Ω𝑛, with boundary 𝜕Ω𝑛 = Γ𝑛 = Γℎ,𝑛 ∪ Γ𝑒,𝑛, 

where subscripts n express as the associated sub-model 

n. The set of maxwell's equations, constitutive laws, 

boundary conditions (BCs), and ICs of the sub-model n 

expresses [6]-[8] 

curl 𝒉𝑛 = 𝒋𝑛 , div𝒃𝑛 = 0,         (1a-b) 

𝒃𝑛 = 𝜇𝑛𝒉𝑛 + 𝒃𝑠,𝑛 (2) 

𝒏 ∙ 𝒃𝑛|Г𝑒,𝑛
= 0,   [𝒏 ∙ 𝒃𝑛]𝛾𝑛

= 𝒃𝑓,𝑛 (3a-b) 

where 𝒏 is the unit normal exterior to Ω𝑛.  

The source field 𝒃𝑠,𝑛 in (2) is a volume source that 

accounts for fixing a remnant induction in magnetic 

materials or changes of permeability (𝜇𝑛) from the 

current problem to the next problem 𝜇𝑚 (n  m), i.e. 

=

Γ = Γh ∪ Γe

n

n

n Γ f = Γh,f ∪ Γe,f

Γk = Γh,k ∪ Γe,k

j s, h s

Ωs or Ωm

Γ t

ΩC
cΩs or Ωm

thin shell
γt = γf

air

+

ΩC
c,k

Ωc,k

actual volume

thin region(Ωt )

Ωs
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𝒃𝑠,𝑚 = (𝜇𝑚 − 𝜇𝑛)𝒉𝑛 (4) 

The notation [∙]𝛾𝑛
= |𝛾𝑛

+ − |𝛾𝑛
−. In (3 b) is the 

discontinuity of a quantity across the negative and 

positive sides (𝛾𝑛
+) and (𝛾𝑛

−). The field 𝒃𝑓,𝑛 is a surface 

source that accounts for special phenomena appearing in 

the idealized thin region between 𝛾𝑛
+ and 𝛾𝑛

− [2]-[5]. In 

addition, the magnetic field 𝒉𝑛 in (1 a) is split in two 

parts 𝒉𝑠,𝑛 and 𝒉𝑟,𝑛, i.e. 

𝒉𝑛 = 𝒉𝑠,𝑛 + 𝒉𝑟,𝑛 (5) 

where 𝒉𝑟,𝑛 is the reaction field due to the magnetization 

of the magnetic materials and 𝒉𝑠,𝑛 is a source magnetic 

field generated by the imposed current density 𝒋𝑠,𝑞  such 

that 

curl 𝒉𝑠,𝑛 = 𝒋𝑠,𝑛 (6) 

Procedure 1: Weak formuolation for inductor model 

and thin structure (SP n) 

The magnetostatic weak formulation (𝒉𝑛 − 𝛷) for 

procedure 1 (SP n) is obtained via the magnetic Gauss's 

law (1 b), i.e. [1]  

− ∫ 𝜇𝑛𝒉𝑠,𝑛 ∙  grad𝛷𝑛
′ 𝑑Ω𝑛

Ω𝑛

+ ∫ 𝜇𝑛grad𝛷𝑛 ∙  grad𝛷𝑛
′ 𝑑Ω𝑛

Ω𝑛

+ ∫ (𝒏 ∙ 𝒃𝑛) ∙ 𝛷𝑛
′ 𝑑Γ𝑒,𝑛 − 𝛾𝑛

Γ𝑒,𝑛

 

− ∫ [𝒏 ∙ 𝒃𝑛] ∙ 𝛷𝑛
′ 𝑑𝛾𝑛𝛾𝑛

= 0, ∀𝛷𝑛
′ ∈ 𝐻ℎ,𝑛

10 (𝛺𝑛) (7) 

where 𝐻ℎ,𝑛
10 (𝛺𝑛) is a function space presented in 𝛺𝑛 

including the basis functions for 𝛷𝑛 as well as for the test 

function 𝛷𝑞
′ . The third surface integral in (7) is 

considered as a natural BC given in (3 a). The thin 

structure is defined via the last term in (7), i.e. [1] 

− ∫ [𝒏 ∙ 𝒃𝑛] ∙ 𝛷𝑛
′ 𝑑𝛾𝑛

𝛾𝑛

= − ∫ 𝜇𝑝𝑑𝑝𝒉𝑠,𝑝 ∙ grad𝛷𝑛
′ 𝑑𝛾𝑛

𝛾𝑛

 

    (8) 

By substituting (8) into (7), one has 

− ∫ 𝜇𝑛𝒉𝑠,𝑛 ∙  grad𝛷𝑛
′ 𝑑Ω𝑛

Ω𝑛

+ ∫ 𝜇𝑛grad𝛷𝑛 ∙  grad𝛷𝑛
′ 𝑑Ω𝑛

Ω𝑛

 

− ∫ 𝜇𝑝𝑑𝑝𝒉𝑠,𝑝 ∙ grad𝛷𝑛
′ 𝑑𝛾𝑛

𝛾𝑛

= 0, ∀𝛷𝑛
′ ∈ 𝐻ℎ,𝑛

10 (𝛺𝑛)   (9) 

Procedure 2: Weak formulation for volume corection 

(SP m) 

The solution obtained from (9) is now corrected by a 

volume correction SP m via a volume source given by 

(2), i.e.  

𝒉𝑚 = grad 𝛷𝑚, 𝒉𝑛 = 𝒉𝑠,𝑛 − grad𝛷𝑛 (10a-b) 

Hence, the weak form of SP m is: 

∫ 𝜇𝑚grad𝛷𝑚 ∙  grad𝛷𝑚
′ 𝑑Ω𝑚

Ω𝑚

 

− ∫ (𝜇𝑚 − 𝜇𝑛)grad𝛷𝑛 ∙  grad𝛷𝑚
′ 𝑑Ω𝑚

Ω𝑚

 

+ ∫ (𝜇𝑚 − 𝜇𝑛)((𝒉𝑠,𝑚 − grad𝛷𝑚
′ ) ∙  grad𝛷𝑚

′ 𝑑Ω𝑚
Ω𝑚

+ ∫ (𝒏 ∙ 𝒃𝑚) ∙ 𝛷𝑚
′ 𝑑Γ𝑒,𝑚 − 𝛾𝑚

Γℎ,𝑚

 

− ∫ [𝒏 ∙ 𝒃𝑚] ∙ 𝛷𝑚
′ 𝑑𝛾𝑚

𝛾𝑚

= 0, ∀𝛷𝑚
′ ∈ 𝐻ℎ,𝑚

10 (𝛺𝑚) 

 (11) 

At the discrete level, the source quantities 𝛷𝑛 and 𝒉𝑠,𝑛 

in (11) defined in SP n are also projected to the mesh of 

SP m via a projection method [9]. 

In addition, (11) needs to be remove representation of 

the shell discontinuity of SP n in SP m via the IC, i.e.  

∫ [𝒏 ∙ 𝒃𝑚] ∙ 𝛷𝑚
′ 𝑑𝛾𝑚𝛾𝑚

= − ∫ [𝒏 ∙ 𝒃𝑛] ∙ 𝛷𝑚
′ 𝑑𝛾𝑚𝛾𝑚

 

 (12) 

Projection of solutions between two procedures 

  As presented above, the source fields 𝛷𝑛 and 𝒉𝑛 

obtaining from the previous meshes of SP n are 

transferred to the mesh of SP m, i.e. [9] 

(𝒉𝑛,𝑚−𝑝𝑟𝑜𝑗 , 𝒉′)𝛺𝑠,𝑚
= (𝒉𝑛 , 𝒉′)𝛺𝑠,𝑚

, ∀𝒉′ ∈ 𝐻ℎ,𝑚
1 (𝛺𝑠,𝑚)  

(13) 

where ∀𝒉′ ∈ 𝐻ℎ,𝑚
1 (𝛺𝑠,𝑚) is curl-conform function space 

for the m-projected source 𝒉𝑛,𝑚−𝑝𝑟𝑜𝑗 (the projection of 

𝒉𝑚,𝑚−𝑝𝑟𝑜𝑗 on mesh of SP w) and the test function 𝒉′ 

defined on 𝛺𝑠,𝑚. For a magnetic scalar potential 𝛷𝑚 , it 

can project the grad of 𝛷𝑛 from the mesh of SP q, i.e. [9] 

(grad𝛷𝑛,𝑚−𝑝𝑟𝑜𝑗 , grad𝛷′)𝛺𝑠,𝑚
= (grad 𝛷𝑛 , grad𝛷′)𝛺𝑠,𝑚

 

∀𝛷′ ∈ 𝐻ℎ,𝑚
10 (𝛺𝑚)  (14) 

where 𝛷′ ∈ 𝐻ℎ,𝑚
10 (𝛺𝑚) is grad-conform function space 

for the p-projected source 𝛷𝑛,𝑚−𝑝𝑟𝑜𝑗 (the projection of 

𝛷𝑛 on mesh of SP w) and the test function 𝛷′ defined on 

𝛺𝑠,𝑚. 

3. DISCRETIZATION OF FIELDS  

For the magnetostatic case, the relation 𝒉𝑖 =
−grad 𝛷𝑖  (𝑖 = 𝑛 𝑜𝑟 𝑚) defines in the whole domain Ω𝑖 . 

The scalar potential 𝛷𝑖 is expressed as 

𝛷𝑖|Ω𝑖
= 𝛷𝑐,𝑖|Ω𝑐

𝐶 + 𝛷𝑑,𝑖|Γ𝑐𝑢𝑡,𝑖
+ 𝛷𝑑,𝑖|Γ𝑠ℎ𝑒𝑙𝑙,𝑖

= 

𝛷𝑐,𝑖|Ω𝑐
𝐶 + ∑ 𝛷𝑑,𝑖|Γ𝑐𝑢𝑡,𝑖

+ ∑ 𝛷𝑑,𝑖|Γ𝑠ℎ𝑒𝑙𝑙,𝑖𝑖∈(shell)𝑖∈(cut)

 (15) 

The discontinuous fields 𝛷𝑑,𝑖|Γ𝑐𝑢𝑡,𝑖
 and 𝛷𝑑,𝑖|Γ𝑠ℎ𝑒𝑙𝑙,𝑖

are 

presented by restricting thier support to layers of 

elements to the positive side of the surface Γ𝑐𝑢𝑡,𝑖 and 

Γ𝑠ℎ𝑒𝑙𝑙,𝑖 [1], [7].  

  The field 𝒉𝑖  can then be obtained from a scalar 

potential 𝛷𝑖 everywhere in Ω𝑖 . For that, the discretization 

of 𝒉𝑖 −  𝛷𝑖 is now written as [1], [7]. 
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𝒉𝑖 = 𝒉𝑠,𝑖 + ∑ 𝛷𝑐,𝑛,𝑖𝑣𝑐,𝑛,𝑖

𝑖∈𝑁(Ω𝑐,𝑖
𝐶 )

  

+ ∑ (∑ 𝛷𝑑,𝑖𝑡𝑑,𝑛,𝑖𝑖∈𝑁(Γ𝑠ℎ𝑒𝑙𝑙)𝑖∈𝑠ℎ𝑒𝑙𝑙   (16) 

where 𝑣𝑐,𝑛,𝑖 and 𝑡𝑑,𝑛,𝑖 are respectively expressed as 

𝑣𝑐,𝑛,𝑖 = ∑ 𝑠𝑒{𝑝,𝑞}{𝑝,𝑞}∈𝐸(Ω𝑐,𝑖
𝐶 )

 (17) 

𝑡𝑑,𝑛,𝑖 =

{

∑ 𝑠𝑒,{𝑝,𝑞}{𝑝,𝑞}∈𝐸(Ω𝑐,𝑖
𝐶 )

 in supp (Δ𝛷𝑑,𝑖|Γ𝑠ℎ𝑒𝑙𝑙,𝑖
)

𝑝 ∈ 𝑁(Γ𝑠ℎ𝑒𝑙𝑙), 𝑞 ∉ 𝑁(Γ𝑠ℎ𝑒𝑙𝑙), 𝑞 ∈ 𝑁𝑠ℎ𝑒𝑙𝑙,𝑖
+

0  otherwise

 (18) 

In (18), 𝑞 ∈ 𝑁𝑠ℎ𝑒𝑙𝑙,𝑖
+  is the set of nodes of the transition 

layers supp (Δ𝛷𝑑,𝑖|Γ𝑠ℎ𝑒𝑙𝑙,𝑖
). 

4. APPLICATION TEST 

The practical application herein comprises a thin plate 

located on the right hand side of a stranded inductor. The 

magnetomotive force imposed in the stranded inductor is 

1000 ampere-turns. The plate thickness is from 2 mm to 

10 mm, for different relative permeabilities of 𝜇𝑟,𝑝𝑙𝑎𝑡𝑒  

=300 and 500. The problem is tested in 2-D case. 

As introduced in previous Sections, the test is 

implemented with a sequence including two procedures. 

A very fine mesh of the full/complte problem with more 

than 12 layers in the plate is shown in Figure 2. The 

colored map solutions on the magnetic scalar potential 𝛷 

of each sub-model are pointed out in Figure 3. A sub-

model (SP n) attending with the stranded inductor and 

thin plate/shell without containing an actual volume is 

first solved in a coarch (Fig. 3,𝛷𝑛, top). The volume 

correction that does not include the stranded inductor and 

thin plate anymore is given to improve the thin structure 

approximation (Fig. 3, 𝛷𝑚, middle) [1], [2]. Finally, the 

full/complete solution is a su sum of two previous 

solutions (SP n + SP m), for d = 10 mm and 𝜇𝑟,𝑝𝑙𝑎𝑡𝑒  = 

500 (Fig. 3, 𝛷𝑐𝑜𝑚𝑝𝑙𝑡𝑒 = 𝛷𝑛 + 𝛷𝑚, bottom). 

 

 

Fig. 2. Mesh of the complete problem. 

 

 

 

 

 

Fig. 3. Colored map of magnetic scalar potential 

distributions for the stranded inductors with the thin 

structure SP n (𝜱𝒏, top), volume correction SP m (𝜱𝒎, 

middle) and the full/complte solution (𝜱𝒄𝒐𝒎𝒑𝒍𝒕𝒆 = 𝜱𝒏 + 𝜱𝒎, 

bottom), for a thickness d = 10 mm, 𝝁𝒓,𝒑𝒍𝒂𝒕𝒆 = 500). 
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Fig 4. Magnetic flux density distributions 𝒃 = 𝝁(𝒉𝒔 −
𝐠𝐫𝐚𝐝 𝜱) for the stranded inductor and thin structure SP n 
(top), the volume improvement SP m (middle) and the 

full/complete solution (bottom) (d = 10 mm, 𝝁𝒓,𝒑𝒍𝒂𝒕𝒆 = 500). 

 

Fig 5. Magnetic flux density on TS solution and volume 

correction along the plate (d = 7.5mm). 

 

 
 
Fig 6. Correction of the magnetic field along the plate for 

different effects of d and 𝝁𝒓. 

 

In the similar way, the magnetic flux density 

distributions for each sub-model (sub-mesh) in 

computation from the different meshes is depicted in 

Figure 4, for d = 10 mm and 𝜇𝑟,𝑝𝑙𝑎𝑡𝑒  = 500. The shell 

solution 𝒃𝑛 of SP n due to the source field 𝒉𝑠,𝑛 and 

grad 𝛷𝑛 is presented with the coarse mesh (Fig. 4, top). 

The local mesh covering an actual volume and its 

vicinity is then shown (Fig. 4, middle) to correct errors of 

the shell solution 𝒃𝑛. The complete solution in the full 

mesh solved by finite element method (FEM) [10] is next 

illustrated (Fig. 4, bottom). 

Significant errors on the magnetic flux density 

between the thin shell solution (SP n) and local volume 

solution (SP m)  along the plate are indicated in Figure 5, 

for d = 7.5 mm, 𝜇𝑟,𝑝𝑙𝑎𝑡𝑒  =500. The error reaches 

approximately 50% in vicinity of the plate end. The 

corrected solution is then compared with both the FEM 

solution and a-form solution obtained from the 

computation in the FEM method [10] and the magnetic 

vector potential formulation [4], [5], [8]. The errors are 

less than 1 % for both cases. 

The relative correction of the magnetic field along the 

plate is presented in Figure 6, for different thicknesses. It 

can reach several tens of percents in the surrounding 

plate, up to 47 % near edges and corners, for d = 7.5 mm, 

𝜇𝑟,𝑝𝑙𝑎𝑡𝑒  =500. It reduces to be lower than 25 % for d = 5 

mm and 𝜇𝑟,𝑝𝑙𝑎𝑡𝑒  =300. 

5. CONCLUSION 

In this contribution, a perturbation method for a two-

procedure has been successfully presented with h-

conformal magnetostatic finite element formulations. 
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The local volumetric improvement (correction) has been 

fully proposed in the heart of the method to correct the 

inaccuracies of the magnetic scalar potential, magnetic 

flux density, and magnetic field near geometric 

discontinuities like edges and corners [1].  

The obtained results of the developed method are 

validated to be quite similar to both the FEM solution 

and a-form solution. This is also a very good 

demonstration between the studied technique and other 

methods [4], [5], [8]. [10]. In particular, this is also a 

good step to explode for a three-procedure in the next 

study.  

All the procedures of the method have been 

successfully applied to the practical problem.  
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NOMENCLATURE 

The list of symbols used in this research is given below: 

𝒉𝑛 Magnetic field (A/m) 

𝒃𝑛 Magnetic flux density (T) 

𝒋𝑛 Electric current density (A/m2) 

𝛷 Magnetic scalar potential (A) 

𝒃𝑠,𝑛 Volume sources  

𝒃𝑓,𝑛 Surface source field  

Ω𝑛 Bounded open set of Ε3 

Γ𝑛 Boundary of Ω𝑞  (Γ𝑞  = 𝜕Ω𝑞) 

𝜇 Magnetic permeability (H/m) 

𝜇𝑟 Relative magnetic permeability 

 


