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A B S T R A C T 

This paper presents an Improved Moth-flame Optimization to minimize power loss in 

the grids considering the constraints on the operation of equipment in the power system 

as well as the capacity of the transmission line. In this improvement, the number of 

flames is reduced exponentially, resulting in better convergence problems, especially in 

large scale problems. For problems in general and technical problems in particular, the 

first criteria should be considered as the best value and the average value of the solution. 

The proposed method has well addressed the requirements and has increased the 

accuracy and reliability of the MFO method. The IEEE power systems have been 

obtained to show that the performance of the proposed Improved Moth-flame 

Optimization is better than the one of the conventional method. 

 

1. INTRODUCTION 

Since 2015, Seyedali Mirjalili has developed a powerful 

nature-inspired optimization entitled Moth-flame 

optimization (MFO)  [16]. The method depends on the 

strategy of moths to identify their navigation in night. A 

moth is an insert in nature and usually earns food in night. 

The moth maintains a fixed angle with the moon to circle 

in night. Nonetheless, if the moths were attracted to 

artificial light sources, such as circle lights, it would be 

stuck in a deadly spiral fly path. Moth-flame optimization 

illustrates the spiral fly path of moths while searching the 

global optimum. Following works of Seyedali Mirjalili 

show that MFO is better than six well-known optimization 

techniques on seven basic tested benchmarks. The author 

applied the MFO for designing gear trains in mechanical 

engineering or three-bar truss in civil engineering. After 

Seyedali’s works, Zhiming Li et al. proposed a 

combination of MFO and Levy flight for engineering 

design problems, also known as LMFO algorithm, Lévy-

flight can prevent local convergence by diversifying the 

population of the problem, and this can make LMFO find 

an efficient optimal solution and more accurate results than 

the MFO algorithm [14]. On another hand, M. A. E. Aziz 

et al. made an observation of the MFO and Whale 

Optimization Algorithm for multilevel thresholding image 

segmentation. Five compared algorithms have been 

observed using a lot of standard photos. According to the 

conclusion, the MFO showed better results than the Whale 

Optimization Algorithm and the other swarm 

algorithms [9]. In addition, B. S. Yildiz and A. R. Yildiz 

employed the MFO to solve optimal setting parameters in 

manufacturing processes. The analytical results highlighted 

the effectiveness of the MFO in the optimization of 

manufacturing problems. The major purpose of the paper is 

to maximize the benefit for multi-tool milling service and 

handle many challenging constraints. The research 

indicates that the conventional MFO is powerful for 

problems on manufacturing optimization [28]. Therefore, 

MFO is also favorable to solve design engineering and 

multi-constraint multi-objective problems.  

Optimal reactive power dispatch, shortly ORPD, is an 

optimal power distribution problem used in power systems. 

In which the elements that can control reactive power and 

regulate voltage include: generator output voltage, under-

load voltage regulator of transformer (OLTC), reactive 

power sources such as capacitors or synchronous 

compensator will be adjusted for the main purpose of 

reducing power loss, strengthen the voltage profile or 

improving the security voltage index. The above problem 

is also studied and applied optimization methods to meet 

the multi-objective problem for a long time. Previously, 

some conventional approaches such as quadratic 

programming [18], Lagrange function [6] and linear 

programming [3] were applied. Nonetheless, the classical 

algorithms are only suitable for finding optimal solutions to 

scaled-down dilemmas. For large-scale obstacles, the 

calculation becomes more complicated and it is accessible 

to initiate the local optima. Nowadays metaheuristic 

techniques have been developed and prevailed. For 

instance, El Ela et al. employed an version of Differential 
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evolution (DE) for solving ORPD [1]; S. Durairaj et al. 

proposed a version of Genetic algorithm (GA) for ORPD 

considering voltage stability enhancement [8]. Their works 

show that these evolutionary methods have been successful 

to search the global optima; however, each stochastic 

search method only effects on some problems. Hence, the 

development of these methods to find an effective 

algorithm is continued.  

According to the original MFO, the new positions of 

moths are generated from the flames locating in the 

seeking space. The number of the flames is decreased by 

iterations. In this paper, the authors introduce a novel 

approach to enhance the original MFO to explore faster the 

optimal solution. The proposed strategy tries to reduce the 

number of flames by an exponential function. The 

proposed Improved Moth-Flame Optimization has been 

surveyed on 19 mathematical benchmarks and minimizes 

the power loss in the power system to compare the 

effectiveness with the original MFO.  

This paper consists of seven parts. In the second part, we 

go into the details of the algorithm, the steps to implement 

the algorithm and the related formulas. The third part 

describes the improvement of the Moth-flame Optimization 

method. The fourth part will show the efficiency of the 

improved MFO algorithm compared to conventional MFO 

algorithm and other optimization methods through basic 

functions. The next part will introduce the ORPD problem, 

related constraints, fitness function and flowchart. The fifth 

part shows the analytical results. The conclusion and our 

future work are given in the final part. 

2. MOTH-FLAME OPTIMIZATION ALGORITHM 

Moth-flame Optimization is an optimization method 

inspired by moths when they move in a straight line over a 

great distance, this mechanism is called horizontal 

orientation. Moths will fly and keep a stable angle to the 

moon. For the reason that the moon is long-distance from 

the earth, they will always move in a straight line. 

However, they are easily trapped by artificial light sources 

and move in a spiral until they reach the light source as 

Fig. 1. 

 

 

Fig. 1: Moths are trapped by flames 

 

Basing on the fact that the path of the moth will 

converge when moving towards the artificial light source, 

the Moth-flame Optimization method has been introduced 

by Seyedali Mirjalili. Each moth in the MFO method 

represents a solution, if the number of populations is larger, 

the solution set will be diverse and our task is to find the 

location of the night butterfly. The flame, or artificial light 

source, preserves the moth's best position after each 

iteration. The position of the moth complying with the 

flame by the distance Di is continuously updated in space 

in a spiral and is described by the equation. 

( , ) exp( )cos(2 )i j i jS M F D bt t F    (1) 

The parameter t is randomly in the range [-1, 1], which 

supports to indicate how much the moth move close to the 

flame in the next iteration (t = 1 shows the farthest position 

to the flame, and t = -1 is the closest). Consequently, a 

hyper ellipse is gathered around the flame in all directions 

and the next position of the moth would be within the 

space. Figure 2 illustrates the shape of the logarithmic 

spiral which is defined by the constant b, and the position 

considering different t. 

 

 

Fig. 2: Logarithmic spiral, seeking zone around a flame, and 

the moths with respect to t. 

 

The distance Di is based on the position of the moth Mi 

and the position of the flame Fj as follows: 

i j iD F M    (2) 

We observe in Figure 3 the discovery and exploitation of 

moths in the one-dimensional search space. Searching 

takes place when the position of the moth follows the 

arrows labeled 1, 3 and 4. Exploration takes place when the 

position of the moth follows the arrow labeled 2. Several 

points can be drawn. out of this model as follow:  

 On changing the value of t, a moth concentrates to 

any point in the vicinity of the flame. 

 The lower t, the distance from the moth to the flame 

decreases.  

 When the moth position gets closer to the fire, the 

number of location updates is increased. 
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Fig. 3: The trajectory of the position of the moth concerning 

the flame in logarithm 

 

The updated position of moths for n different locations in 

the search space downgrades the exploitation of the best 

promising solutions. To resolve this problem, Seyedali 

Mirjalili proposed a flexible mechanism for the number of 

flames NF. 

𝑁𝐹 = 𝑟𝑜𝑢𝑛𝑑 (𝑁 − 𝑙 ∗
𝑁−1

𝑇
)  (3) 

where, l, N, and T indicate the instant number of iterations, 

the total of flames, and the total of iterations, respectively. 

3. PROPOSED IMPROVED MOTH-FLAME 

OPTIMIZATION 

We have seen the benefits of reducing the number of 

flames through each loop. It has had an effect in balancing 

the search and exploitation. However, in some large-scale 

problem, finding too much can make the problem easy to 

fall into the non-convergence case.  

In this paper, the authors propose a solution to help 

moths find more effective in the space of search and 

exploitation of optimal solutions. Therefore, instead of the 

number of flames decreased after each loop follows a 

linear function. A proposed exponential function focuses 

and exploits the optimal results at the end of the algorithm. 

This is expected to bring more optimal results to the 

problem, especially in complex problems.  

The formula of the proposed exponential function is the 

following: 

𝑁𝐹 = 𝑟𝑜𝑢𝑛𝑑 (𝑁
−𝑙

𝑇
+1)  (4) 

Figure 4 shows the converged strategy of the proposed 

improved and the conventional MFO. 

 

 

Figure 4: Number of flames after loops 

4. THE EFFECTIVENESS OF IMPROVED MOTH-

FLAME OPTIMIZATION IN PRACTICE 

To validate the efficiency of the improved MFO algorithm 

over the traditional MFO algorithm and others, we evaluate 

the performance of the algorithms on a set of well-known 

mathematical functions. We employ 19 standard functions 

in the literature as testbeds for comparison ([19], 49-51). 

For more efficient testing, we divide the functions into 

three groups: unimodal, multi-modal, and composite. The 

unimodal functions (F1-F7) are used to evaluate the 

optimal exploitation of the algorithm because we do not 

have a local optimal. In contrast, multi-modal functions 

(F8-F13) can be used for local checking and are very useful 

for finding global solutions, avoiding algorithms falling 

into local solutions. Finally, the composite functions (F14-

F19) are a combination of various rotation, displacement, 

and deflection multimodal test functions. It is a search 

space that is close to real problems, helping algorithms to 

prove their effectiveness in balancing discovery and 

exploiting the optimal solutions. 

The details of the mathematical formulas of the test 

functions for the algorithms are presented in [16]. Because 

the conventional version of the uni-modal and multi-modal 

test functions are too elementary, Seyedali Mirjalili rotated 

the test functions using the rotation matrix proposed by 

Lorio and Li [12] and shift their optima at every run to 

enhance the complication of these functions. 

Random optimization techniques require a minimum of 

10 runs for the results to be statistically significant. Table 

A.1, Table A.2 and Table A.3 in the Appendix are the 

results of the algorithms after running 100 tests, which is 

enough for comparison between algorithms. The improved 

MFO algorithm will be compared with the latest variations 

of other stochastic algorithms to demonstrate its 

superiority: PSO [23], GSA, FPA [27], SMS [5], FA [26], 

and GA [11]. Figure 5, Figure 6 and Figure 7 compare the 

convergence profiles for Function F1 in the unimodal 



L. B. Qui anh K. P. Nguyen / GMSARN International Journal 16 (2022) 152-164       155 

 

function group, Function F8 in the multimodal function 

group and Function F15 in the composite function group of 

the proposed Improve MFO and the conventional MFO. 

Two methods are similar at the first stage of the searching 

process. However, at the end, the proposed method 

converses faster and reaches the optimal solution.  

Most of the results from the test function show that the 

Improved MFO method is better than the conventional 

MFO method in particular and other methods in general. 

From here we will consider the actual problem as the 

Optimal Reactive Power Dispatch (ORPD) problem. 

 

 

Fig. 5: Comparison about convergences profiles for Function 

F1 of proposed method. 

 

Fig. 6: Comparison about convergences profiles for Function 

F8 of proposed method. 

5. OPTIMAL REACTIVE POWER DISPATCH 

5.1 Objective function 

The goal of the ORPD problem is to reduce power loss on 

the grid and maintain voltage quality. To achieve these 

goals, the most important issue is the control of reactive 

power sources such as: generator output voltage, under-

load voltage regulator of transformer (OLTC), reactive 

power sources, etc. This is a typical and popular problem 

for power system operators, solving this problem has great 

significance. 

 

Fig. 7: Comparison about convergences profiles for Function 

F15 of proposed method. 

 

The total active power loss Ploss is calculated from the 

current through line Il and the resistance of the line Rl as 

follows: 

𝑃𝑙𝑜𝑠𝑠 = ∑ 𝑅𝑙𝐼𝑙
2𝑏𝑟

𝑙=1   (5) 

5.2 IEEE 118-bus system 

In this benchmark, we define optimal solutions in which 

they must satisfy all operating constraints such as power 

balance constraints, bus voltage limitations and 

transmission line capacity. 

5.2.1 Power balance constraints 

The solution of the ORPD problem satisfies the power 

balance condition, in which the transmit power and 

demand power must be balanced at each node. The above 

binding condition is expressed through the equation of 

active power and reactive power: 

   

, ,

1

cos sin

G i D i

b

i j ij i j ij i j

i

P P

V V G B   


 

     
  

 (6) 

   

, ,

1

sin sin

G i D i

b

i j ij i j ij i j

i

Q Q

V V G B   


 

     
  

  (7) 

where, 

 PG,i and PD,i : the active generating power and demand 

power at the i-th bus, respectively; 

 QG,i and QD,i : the reactive of generating power and 

demand powers at the i-th bus, respectively.  

 Gij and Bij : the real and imaginary components of 

element Yij of the admittance matrix, respectively. 
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5.2.2 Constraints of generators 

The generator output voltage and power must be within the 

allowable limits as follows: 

,min ,max

G G G

i i iV V V    (8) 

,min ,max

G G G

i i iQ Q Q   (9) 

5.2.3 Constraints of VAR controlled components:  

The limited power of reactive power sources can be 

expressed as follows: 

,min ,max

C C C

i i iQ Q Q    (10) 

The number of steps of a transformer is in a range 

follows:  

,min ,maxi i iT T T    (11) 

5.2.4 Constraints of limited load bus voltages 

The voltage on the bus bars must be handled in an 

allowable range to provide the power quality for the entire 

power system: 

,min ,max

L L L

i i iV V V    (12) 

5.2.5 Limitation of transmission lines 

The transmission capacity on the line must ensure the 

power conditions to avoid heat generation and faults on the 

power grid:  

max

li liS S   (13) 

5.3 Implementation of Moth-flame Optimization for 

ORPD 

5.3.1  Solution vector 

The problem mainly revolves around controllable variables 

such as the value of the generator’s voltage Vgn, the 

compensation power of capacitor banks Qcn or the voltage 

of the transformers with tap changer Tn and the dependent 

variables are the voltages of the load nodes Vln, the 

apparent power transmitted on the line Sn and reactive 

power outputs of the generators Qgn. The vector of 

controllable and dependent variable are as follows: 

1 1 1,..., , ,..., , ,...,g gn C Cn nx V V Q Q T T   
  (14) 

1 1 1,..., , ,..., , ,...,g gn l ln nu Q Q V V S S   
 (15) 

5.3.2 Initialize initial value 

We will use the boundary limits of the variables along with 

using the random distribution function rand() to initialize 

the first solution to the problem.  

The larger the number of N solutions, the wider the 

search scope can help the problem converge with better 

results.  

()( )Solution UpB rand UpB LowB    (16) 

where, UpB is the upper bound condition, LowB is the 

lower bound condition, rand() will return the random value 

of the uniform distribution function  

5.3.3 Modeling constraints in the optimization function 

• During the optimization process, all bound conditions 

must be handled simultaneously.  

• The condition of active and reactive power balance can 

be completely satisfied by the power balancing algorithm 

because if this condition is not guaranteed, the problem 

will not converge and have no optimal results.  

• The generator voltage, capacitor capacity and step 

settings of the multi-step transformer are controllable 

variables. Because of these constraints, they will 

automatically adjust themselves to the boundary limits 

when a new solution is created.  

• The binding conditions of the dependent variables will 

be controlled by converting to an element in the optimal 

objective function.  

• The fitness function is the combination of the objective 

function and the constraints of dependent variables through 

a penalty coefficient of Kp.  

• For the constraints of the dependent variables, we use 

some limit functions such as V
lim

(x).  

• In all cases used for testing, we use the penalty factor 

of 10^6. The fitness function is presented as follows:  

 

   

2
lim

1

22
lim max

1 1

gN

loss Gi i Gi

i

b br

P i i i P li li

i i

FF P Q V Q

K V V V K S S



 

   
 

     



 

 (17) 

max max

lim

min max

min min

, if

( ) , if

, if

x x x

V x x x x x

x x x




  
 

  (16) 

5.4 Flowchart 

The overall procedure of the proposed Improved Moth-

flame Optimization for the Optimal Reactive Power 

Dispatch is given in Figure 8. 

6. NUMERICAL RESULTS 

The Moth-Flame Optimization has been evaluated to 

clarify the optimal problems of ORPD in four standard grid 

models of IEEE. In which, the calculation of power 

distribution is made by the Newton-Raphson method 

supported by the Matpower toolbox [29]. All case studies 

have been run on the personal computer with the Intel 

Corei7 1065G7 processor and 8Gb RAM. 

 



L. B. Qui anh K. P. Nguyen / GMSARN International Journal 16 (2022) 152-164       157 

 

 

Fig. 8: Overall Procedure 

6.1 Case study 1 

The first study is the standard IEEE 30-bus system [2] 

including 06 generators, 24 load buses, and 41 branches. 

We plan to install nine reactive power sources on the tested 

system. In lines (6, 9), (6, 10), (4, 12), and (27, 28), there 

are four transformers with tap changers in each line. The 

limit of reactive power generation is given in [15] and the 

limit of the power flows of transmitted lines is given in [4]. 

We have to keep the generator voltage, transformer lap 

changers, and voltages at load buses in good condition as 

follows:  

0.95 1.1giV    (19) 

0.90 1.1iT    (20) 

0.95 1.1liV   (21) 

The value of the fitness function is given in Tab. 1. The 

result shows that the performance of the proposed 

Improved MFO is better than the conventional method. 

The best solution solved by the Improved MFO is slightly 

better, while the mean value and the standard deviation are 

smaller than the conventional MFO. The proposed IMFO 

has been compared with various versions of Grey Wolf 

Optimizer [25] and the Particle Swarm Optimization [13]. 

The result of IMFO is slightly better than the PSO-TVIW 

and other methods in the literature.  

The load voltage profile of the proposed solution given 

by the Improved MFO is shown in Fig. 9. The initial off-

limits voltage has disappeared and the load voltage is kept 

stable in the allowable region. The convergence results of 

the two methods are presented in Fig. 10 and Fig. 11.  

 

 

Fig. 9: Load voltage profile of IEEE 30-bus system when 

using Improved MFO Method. 

 

 

Fig. 10: Convergence characteristics of the compared methods 
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Table 1: Analytical results of conventional MFO and 

Improved MFO for the IEEE 30-bus system 

Method Best Mean SD 

PSO-TVIW [13] 4.5129 4.5742 0.1907 

PSO-TVAC [13] 4.5356 4.5912 0.0592 

HPSO-TVAC [13] 4.5283 4.5581 0.0188 

GWO [25]  4.5984 - - 

MFO 4.5128 4.5529 0.0962 

IMFO 4.5128 4.55 0.0616 

 

 

Fig. 11: Zoomed image of convergences at the end of search 

process 

6.2 Case study 2 

The second benchmark is the standard IEEE 57-bus 

system, a larger scale system. The tested one consists of 7 

generators, 53 transmission lines, 57 load buses, and 17 

transformers with online tap changers. We install three 

shunt reactive power sources at buses 18, 25, and 53. The 

constraints of all variables are taken from [10]. 

The analytical results two methods are presented in 

Tab. 2. All parameters of the Improved MFO method are 

clearly superior to the conventional MFO Method. In this 

case, the Firefly Algorithm (FA) gave better solution, while 

the IMFO is better than other methods such as: Differential 

Evolution (DE) and Grey Wolf Optimizer. Load voltage 

profile of the proposed methods is shown in Fig. 12. The 

optimal solution clearly satisfies all voltage constraints. 

The convergence results of the two methods are presented 

in Fig. 13 and Fig. 14. 

 

 

 

 

 

Table 2: Analytical results of MFO and Improved MFO for 

the IEEE 57-bus system 

Method Best Mean SD 

DE [17] 25.9556 - - 

FA [24] 24.4587 - - 

GWO [24] 24.7523 - - 

MFO 24.6702 25.0846 0.2075 

IMFO 24.6202 25.014 0.1628 

 

 

Fig. 12: Load voltage profile of IEEE 57-bus system when 

using Improved MFO Method 

 

 

Fig. 13: Convergence characteristics of the compared methods 

in 57-bus system. 

6.3 Case study 3 

To evaluate the proposed method on large-scale systems, 

the improved MFO algorithm runs well on the huge IEEE 

118-bus system. The evaluated testbed has 54 generators, 

186 transmission lines, 64 load buses, and 9 transformers 
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with tap changers. We put 14 reactive power sources in the 

system. Table A.4 in the Appendix gives the placement and 

capacity of the VAR compensators.  

 

 

Fig. 14: Zoomed image of convergences at the end of search 

process in 57-bus system. 

 

The analytical results two methods are presented in 

Tab. 3. All parameters of the improved MFO method are 

clearly superior to the conventional MFO Method. 

Comparing with other versions of the PSO and 

Gravitational Search Algorithm (GSA), the IMFO also 

gives the better solution. Once again, the proposed optimal 

solution accomplishes voltage constraints as Fig. 15. The 

convergence results of the two methods are presented in 

Fig. 16 and Fig. 17. In this benchmark, the conventional 

MFO converges faster than the proposed method. 

Nonetheless, at the end of the search progress, the 

proposed Improved MFO reaches the global solution. The 

detailed optimal solution of this case study is shown in 

Tab. A.9 in the Appendix. 

 

Table 3: Analytical results of MFO and Improved MFO for 

the IEEE 118-bus system 

Method Best Mean SD 

GSA [7] 127.76  -   -  

PSO [15] 131.99 -  -  

CLPSO [15] 130.96 -  -  

OGSA [22] 126.99 -  -  

MFO 125.8587 128.6239 1.9034 

IMFO 124.9741 127.1519 1.4076 

 

 

Fig. 15: Load voltage profile of IEEE 118-bus system when 

using Improved MFO Method. 

 

Fig. 16: Convergence characteristics of the compared methods 

in 118-bus system. 

 

Fig. 17: Zoomed image of convergences at the end of search 

process in 118-bus system. 
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6.4 Case study 4 

The last benchmark is an extremely complex IEEE 300-bus 

system. Only some algorithms successfully run on this 

grid. In that MFO algorithm is a powerful algorithm and 

can run on this grid with a high probability of convergence. 

Placement of capacitors is specified as in Tab. A.5 in the 

Appendix.  

The best solution of two methods is presented in Tab. 4. 

The optimal solution satisfies all voltage constraints at 300 

buses as Fig. 18.  

 

Table 4: Analytical results of MFO and Improved MFO for 

IEEE 300-bus system 

Method Power losses [MW] 

EGA [20] 646.2998 

EEA [20] 650.6027 

CSA [21] 635.8942 

MFO 411.5256 

IMFO 391.0417 

 
Table 5: Comparison of statistics of MFO and Improved 

MFO for IEEE 300-bus system 

Method MFO Improved MFO 

Successful runs  3 10 

Best  411.5256 391.0417 

Mean  414.3143 401.6185 

Worst  417.3142 409.203 

SD  2.7479 6.7408 

 
Table 6: Comparison of computation time of case studies 

Method 

Case 

study 1 

Case 

study 2 

Case 

study 3 

Case 

study 4 

IMFO 50s 66s 90s 172s 

GSA [7]  198s 321s 1199s - 

GWO [24] - - 1372s - 

PSO  [15] - - 1215s - 

CLPSO  [15] - 423s 1472s - 

OGSA [22] 190s 309s 1152s - 

 

Comparing the computational time, the proposed IMFO 

is robust algorithm. It takes only 90s to optimize the 

problem for the IEEE 118-bus system. On another hand, 

the IEEE 300-bus system is really a complex problem. The 

proposed IMFO only successfully gives the optimal 

solution in 10 of 50 runs, while the conventional MFO has 

only three times reached the optimal solution. The 

analytical statistics of the IEEE 300-bus system of the 

MFO and IMFO are shown in Tab. 5. 

In Table 6, the computational times have been compared 

together. The proposed Improved MFO is a robust method 

while solving the problem only about few minutes. 

However, the methods have been run on different computer 

systems give the different computational times. 

 

Figure 18: Load voltage profile of IEEE 300-bus system when 

using Improved MFO Method. 

7. CONCLUSION 

The proposed Improved MFO method is totally powerful 

and effective for minimizing the power loss in the grids. 

According to four benchmark systems, the proposed 

method has been shown to be more effective than 

conventional MFO and can solve relatively complex 

technical problems in electrical systems. Through the new 

method of limiting the number of flames, exploiting the 

optimal solution at the end of the loops makes the local 

solutions more accurate and helps the results of the 

problem converge to better values.  

In future, the Improved MFO should be continued to 

enhance the performance of solutions. 
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APPENDIX 

Table A.1: Outcomes of the unimodal tested functions 

Function Improved MFO MFO PSO GSA 

F Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

F1 1.08E-38 4.42E-38 0.000117 1.321152 0.00015 1.153887 608.2328 464.6545 

F2 1.67E-23 5.36E-23 0.000639 0.000877 7.715564 4.132128 22.75268 3.365135 

F3 133.3333 938.0353 696.7309 188.5279 736.3931 361.7818 135760.8 48652.63 

F4 3.03E-02 0.153942 70.68646 5.275051 12.97281 2.634432 78.78198 2.814108 

F5 123.4518 517.9948 139.1487 120.2607 77360.83 77360.83 741.003 781.2393 

F6 1.79E-32 3.24E-32 781.2393 9.87E-05 286.6518 107.0796 3080.964 898.6345 

F7 5.13E-03 0.004628 0.091155 0.04642 1.037316 0.310315 0.112975 0.037607 

Function GA FA SMS FPA 

F Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

F1 21886.03 2879.58 7480.746 894.8491 120 0 203.6389 78.39843 

F2 56.51757 5.660857 39.3253 2.465865 0.020531 0.004718 11.1687 2.919591 

F3 37010.29 5572.212 17357.32 1740.111 37820 0 237.5681 136.6463 

F4 59.14331 4.648526 33.95356 1.86966 69.17001 3.876667 12.57284 2.29 

F5 31321418 5264496 3795009 3795009 6382246 729967 10974.95 12057.29 

F6 20964.83 3868.109 7828.726 975.2106 41439.39 3295.23 175.3808 63.45257 

F7 13.37504 3.08149 1.906313 0.460056 0.04952 0.024015 0.135944 0.061212 

 
Table A.2: Outcomes of the multimodal tested functions 

Function Improved MFO MFO PSO GSA 

F Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

F8 -3.22E+03 3.57E+02 -8496.78 725.8737 -3571 430.7989 -2352.32 382.167 

F9 2.06E+01 12.34089 84.60009 16.16658 124.2973 14.25096 31.00014 31.00014 

F10 6.62E-01 3.33E+00 1.260383 1.26E+00 0.72956   1.568982  1.568982 3.740988 

F11 0.158961 0.092246 0.01908 0.01908 0.021732 12.41865 12.41865 0.486826 

F12 2.24E-01 0.471006 0.894006 0.88127 13.87378 5.85373 0.4634 0.137598 

F13 2.97E-03 0.004902 0.115824 0.193042 11813.5 30701.9 7.617114 1.22532 

Function GA FA SMS FPA 

F Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

F8 -6331.19 332.5668 -3662.05 214.1636 -3942.82 404.1603 -8086.74 155.3466 

F9 236.8264 19.03359 214.8951 17.21912 152.8442 18.55352 92.69172 14.22398 

F10 0.46751 0.531147 14.56769 0.46751 19.13259 0.238525 6.844839 1.249984 

F11 179.9046 32.43956 69.65755 69.65755 420.5251 25.2561 2.716079 2.716079 

F12 34131682 1893429 368400.8 172132.9 8742814 1405679 4.105339 1.043492 

F13 1.08E+08 3849748 5557661 1689995 94.84298 0 62.3985 94.84298 
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Table A.3: Outcomes of the composite tested functions 

Function Improved MFO MFO PSO GSA 

F Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

F14 2.35E+00 2.003747 8.25E-31 1.08E-30 137.7789 116.3128 5.43E-19 1.35E-19 

F15 1.39E-03 0.002757 66.73272 53.22555 166.6643 164.3894 20.35852 63.12427 

F16 -1.03E+00 1.56E-15 119.0146 28.3318 394.507 121.949 245.3021 49.05264 

F17 3.98E-01 4.46E-16 345.4688 43.11578 486.3534 67.31685 315.2086 100.7477 

F18 3.00E+00 0 10.4086 3.747669 256.5258 200.3816 70 48.30459 

F19 -3.86E+00 0.00079 706.9953 194.9068 790.1284 189.4915 881.6392 45.17728 

Function GA FA SMS FPA 

F Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

F14 92.13909 27.90131 175.9715 86.928 105.7572 26.8788 10.09454 31.59138 

F15 96.7092 9.703147 353.6269 103.423 156.463 68.24926 11.41158 3.380957 

F16 369.1036 42.84275 308.0516 37.435 406.9962 65.39732 234.9341 39.60663 

F17 450.829 31.54446 548.5276 162.8993 518.6931 42.74199 355.3807 20.61705 

F18 95.92017 53.79146 175.1975 83.15078 153.6984 96.91419 54.78722 42.05824 

F19 523.7037 22.92001 829.5929 157.2787 611.5401 154.8529 573.0955 149.1538 

 
Table A.4: Constraints of reactive generating devices in IEEE 118-bus system 

Bus 5 34 37 44 45 46 48 74 79 82 83 105 107 110 

QCi,max [MVar] 30 30 30 30 30 30 30 30 30 30 30 30 30 30 

QCi,min[MVar] -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 

 
Table A.5: Constraints of reactive generating devices in IEEE 300-bus system 

Bus 5 17 51 53 63 97 117 149 150 202 206 207 293 

, [ ]Ci maxQ Mavr   
30 30 30 30 30 30 30 30 30 30 30 30 30 

, [ ]Ci minQ Mavr   
-10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 

 
Table A.6: Optimal solution given by the Improved MFO for the IEEE 118-bus system 

1GV  0.962  
62GV  1.015  

113GV  0.984 49GV  1.032 

4GV  1.0  
116GV  1.025  

65GV  1.009 54GV  0.958 

6GV  0.99  
66GV  1.053  

5CQ  30 55GV  0.953 

8GV  1.053  
69GV  1.033  

34CQ  -14.683 56GV  0.956 

10GV  1.1  
70GV  0.984  

37CQ  12.436 59GV  0.985 

12GV  0.984  
72GV  0.986  

44CQ  4.485 61GV  1.015 

15GV  0.972  
73GV  0.988  

45CQ  30  
104GV  0.976 

18GV  0.975  
74GV  0.962  

46CQ  -30  
105GV  0.97 
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19GV  0.971  
76GV  0.95  

48CQ  6.211  
107GV  0.95 

24GV  0.997  
77GV  1.009  

74CQ  7.38  
110GV  0.974 

25GV  1.032  
80GV  1.03  

79CQ  30  
111GV  0.986 

26GV  1.099  
85GV  1.007  

82CQ  29.438  
112GV  0.968 

27GV  0.977  
87GV  1.011  

83CQ  21.258  
63 59T 

 1.019 

31GV  0.968  
89GV  1.026  

105CQ  29.999  
64 61T 

 1.016 

32GV  0.973  
90GV  0.999  

107CQ  15.187  
65 66T 

 0.94 

34GV  0.99  
91GV  0.996  

110CQ  23.159  
68 69T 

 0.936 

36GV  0.987  
92GV  1.006  

8 5T 
 1.049  

81 80T 
 0.964 

40GV  0.976  
99GV  1.007  

26 25T 
 1.1 

  

42GV  0.987  
100GV  1.011  

30 17T 
 1.062 

  

46GV  1.015  
103GV  0.997  

38 37T 
 1.036 

  

 

 

 


