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A B S T R A C T 

This paper provides a conventional cooperation strategy of thermal power plants (TPPs) 

in economic load dispatch (ELD) problem and proposes a new cooperation strategy of 

TPPs and wind farms (WFs) in modified ELD (MELD) problem. The main target while 

solving both ELD and MELD problems is to cut total fuel cost (TFC). Besides, the 

generating capacity and prohibited zone operating constraints of each thermal power 

plant, the generation capacity of WFs, and the power balance of system are also 

considered. Moreover, the power balance constraint is modified by considering the 

power loss (PLs) and the power output of wind turbine (Pwind) in 24 periods.  For finding 

the optimal operation parameters of ELD and MELD problems, Tunicate Swarm 

Optimizer (TSO) is nominated. TSO is a novel method with one generation of updating 

solutions per each iteration and it is simple for a typical optimization problem as well as 

complex problems. To value the real effectiveness of TSO, three systems with non-

convex function and different constraints are employed. In which the first two systems 

are a standard system with TPPs while the last one formed from the second one 

considers the operation coordination of WFs and TPPs. Apart from TSO, social ski 

driver algorithm (SSD) and particle swarm optimization (PSO) are also implemented. 

The results by using TSO, PSO and SSD for the first two systems reveal that TSO is a 

strong method. The results on the last one prove the important role of wind power for 

the cost reduction. As a result, a conclusion is withdrawn that TSO is a good solution for 

solving ELD and MELD problems. 

 

1. INTRODUCTION 

The problem of economic load dispatch (ELD) is one of the 

chief optimization ones due to its significant distribution. 

This problem is to determine the power output of the 

existing units for the purpose of minimizing fuel cost and 

simultaneously meeting physical constraints. The fuel cost 

for operating the TPPs is high and becomes rare in future. 

This proves why the ELD problem is very important. In the 

first ELD problem, the function of TFC is normally 

represented under a single quadratic one and its constraints 

are very simple like power balance and the generating 

capacity limit. This type is successfully handled by some 

methods like Hopfield method (HM) [1], one rank cuckoo 

search (ORCS) [2], stochastic fractal search (SFS) [3], 

modified firefly optimizer (MFO) [4], elitist particle swarm 

optimization (EPSO) [5], biogeography-based learning 

particle swarm optimization (BLPSO) [6], improved firefly 

optimizer (IFO) [7] and clustering cuckoo search (CCS) 

[8]. However, the practical ELD problem is a complex one 

with high dimensional, non-convex function and non-

smooth function. The non-convex function is because of 

existing the valve-point effects as shown in backtracking 

search (BS) [9], hybrid scheme Nelder–Mead and pattern 

search methods (NM–PS) [10] and variants of genetic 

algorithm (GAs) [11], GA with sequential quadratic 

programming (GA-SQP) [11] and GA with interior-point 

methods (GA-IPMs) [11]. The non-smooth function owns 

to using multiple fuel sources as presented in improved 

SFS (ISFS) [12] and improved spider optimizer (ISO) [13]. 

Apart from the mentioned functions, the operation 

constraint of unit to be prohibited operating zones in ELD 

also existed as reported in differential evolution (DE) [14], 

new adaptive particle swarm optimization (NAPSO) [15], 

exchange market search (EMS) [16], modified krill herd 

search (MKHS) [17], adaptive charged system search 

(ACSS) [18], modified moth swarm search (MMSS) [19] 

and improved cuckoo search (ICS) [20]. After reviewing 

mailto:phanminhtan9695@gmail.com


166 C. T. Hien et al. / GMSARN International Journal 16 (2022) 165-173 

 

all above papers, it shows that authors only focused on 

solving the generation scheduling but not considering 

pollution emission (PE) from TPPs. Recently, environment 

pollution is the hottest issue that gets the concern of social. 

Therefore, such PE from TPPs is first treated in most of 

countries.  To reduce amount of PE, we need to find a new 

plant satisfying both electricity generation and PE 

decrease. Renewable energy plant (REP) is considered as 

an excellent measurement.  So, ELD problem should be 

renewed by replacing the operation scheduling for TPPs to 

that of for TPPs and REPs. For valuing such ELD problem 

considering REPs, many intelligent optimization methods 

are favored by scholars [21-26]. In [21-23], the wind cost 

model such as direct cost, overestimation cost and 

underestimation cost are proposed. These costs are 

regarded as the objective function and added into the 

objective function of traditional ELD problem. In addition, 

authors in [21-22] have also suggested different hybrid 

systems (HSs) with the consideration of wind farm (WF) to 

test an ability of the proposed method. In [21], brain storm 

optimizer (BSO) is used to test on two hybrid systems with 

six units and one WF, and 40 units and one WF. Bat 

optimizer (BO) is recommended in [22] and is 

implemented on two HSs. In which, the first HS is the 

same as the first system in [21] and the second one 

includes 15 thermal units and one WF of 300MW. 

Dragonfly search (DS) has been applied in [23] and [24]. 

However, in [23] mixed system with WFs and TPPs is 

considered while a combination of TPPs with WFs and 

solar farms is employed in [24]. Unlike [21-24], direct cost 

of WF model in [25] is ignored and modified anti-

predatory PSO (MAPSO) is suggested for valuing the 

effectiveness of WF as added into existing system. A study 

of dynamic power dispatch regarding the uncertainties of 

wind power penetration, effects of valve, limitation of 

ramp rate and violated working zones are recommended in 

[26]. Clearly, the ELD problem with the existence of REPs 

is more complex than original ELD problem. Therefore, 

handling this problem needs a strong enough tool for 

reaching a global solution in shorter implementation time 

and less generation assessments. Tunicate swarm optimizer 

(TSO) was a metaheuristic algorithm developed in 2020 

[27]. Its behavior and power are effectively demonstrated 

on benchmark problems as compared with many 

approaches. Besides, TSO also solved seven different 

engineering problems successfully and reached much better 

results than others [27]. This paper nominates TSO for the 

ELD and MELD problems. The duty of TSO in the study is 

to verify the best optimal power output to reduce total costs 

of three test systems such as System 1 with 6 thermal units, 

System 2 with 20 units, and System 3 with 20 units and 2 

WFs. Three systems are also solved by PSO [28] and SSD 

[29]. 

The novelties of the paper are as follows: 

• Apply TSO, PSO and SSD to the problem of ELD 

with prohibited zone (PZs) and power losses (PLs) 

• Test ability of TSO on large scale system  

• Consider 24 periods for MELD problem with WFs 

and TPPs 

• Propose the modified test system from the standard 

test system. 

In addition, this paper offers some main contributions as 

follows: 

• TSO can find highly effective solutions of three 

considered systems with smaller cost than others. 

• TSO can easily handle PZs constraints. 

• TSO can find valid solutions for very high dimension 

system. 

2. FORMULATION OF STUDIED PROBLEM  

2.1 Objective function 

The electric power generation cost of each generating unit 

k (GCk) is a convex function according to its power output 

and the fuel cost coefficients given [3] as follows: 

GCk =ck.(Pk)
2
+bk.Pk+ ak (1) 

where ck, bk and ak are given coefficients in GCk  function. 

In power system operation and management, the total 

fuel cost (TFC) of TPPs accounts of the amount of high 

share that needs to be minimalized. The objective of the 

ELD problem is presented as the following equation.  

TFC  =∑(∑GCk
m

NT

k=1

)

24

m=1

 (2) 

where NT is number of the generating units 

2.2 Constraints of the Economic load dispatch problem 

- Generation limits: power generated by units at each 

period must satisfy the inequality [3]: 

Pkm,min ≤ Pkm ≤  Pkm,max  (3) 

where Pkm,max and Pkm,min are the highest and lowest power 

produced by the kth unit. 

Violation of Prohibited zones: Power generated by each 

unit k at each period is constrained as the following model 

[14]. 

 Pkm ∈{

Pkm,min ≤ Pkm ≤  PLkm,t-1

PUkm,t-1 ≤ Pkm≤  PLkm,t

PUkm,Nz ≤ Pkm ≤  Pkm,max

  t=2,...,Nz (4) 

where Nz is the number of PZs,  PLkm,t is the lower bound 

of the tth PZ of the kth generating unit at the mth period, 

 PUkm,t  is the upper bound of the tth PZ of the kth 
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generating unit at the mth period 

- Power balance constraint: Real power balance 

constraint is an absolute guarantee. Wherein the total 

generated power side must equal the sum of consumed 

power side and power losses. Such constraint is given as 

the model below: 

Pwind,m+∑Pk,m

NT

k=1

 = CPSm+ PLsm, m=1,...,24 (5) 

where Pwind,m  is power output of WF at the mth period, 

CPSm is a consumed power side at the mth period. 

3. TUNICATE SWARM OPTIMIZER 

The tunicate swarm optimizer (TSO) [27] has been 

developed inspired by finding the food source. TSO has 

two search mechanisms for updating position of tunicates. 

One is for the tunicate with the best position; it means that 

the tunicate is at the food source.  Another is for the 

remaining tunicates.  

The main steps of the TSO method are explained as 

follows: 

3.1 Initialization position 

Position of all tunicates (T𝒏) can be randomly generated 

within the search spaces. 

3.2 Updating position 

There are two ways to update the position of the best 

tunicate and other tunicates. 

For the best position of tunicate: Updating position of the 

best tunicate  Tbest  depends on the location of the food 

source (LFS), the conflicts avoiding factor ω and a random 

number (C) [27]. 

 Tbest= {
LFS+ ω ×(LFS-C × Tbest)      if C ≥ 0.5

LFS-ω ×(LFS-C × Tbest)      if C < 0.5
 (6) 

where ω is formed by 

ω =
ε1+ε2-(2×ε3)

lb+ε3×(ub-lb)
 (7) 

where 𝜀1, 𝜀2, 𝜀3 are three random numbers within [0, 1]; 

and ub and lb denote the highest and smallest speeds.  

For the position of the nth tunicate: Updating position of 

the tunicates depends on the position of the best position of 

tunicates (T(n+1)) and the current position of tunicates  

( T(n)) [27]. 

T(n+1)=
T(n+1) + T(n)

2+ ε1

 ;n=1,..,(Np-1) (8) 

where Np is population size of tunicates 

3.3 Check bound new position 

The position of each tunicate is checked and adjusted in a 

given search space. If the obtained position of each tunicate 

violates one of the search spaces, this position needs to be 

modified so that this position must satisfy space limit. 

3.4 Calculate the fitness value 

Each position corresponding to a solution is evaluated to 

improve the obtained solution after each iteration. The 

fitness function for evaluating solutions is defined as 

below. 

Fitness = TFC+ k×∆CT (9) 

where k is penalty and ∆CT is the value of the violated 

constrains. 

3.5 Flowchart of the proposed Tunicate swarm optimizer 

The execution of TSO method for a general optimization 

problem can be described in Figure 1.  

 

 

Fig. 1. Flowchart of TSO for an example problem.  

Initialize position of tunicates Tn

Determine the fitness value of all tunicates

Specify the best tunicate

Update for the best tunicate and the 

remaining tunicates using equations (6) & (8)

Check bound of new updated tunicates and adjust 

them in a given search space

Determine fitness value of new tunicate

Compare new tunicate and old tunicate
Select the best one

Export the best tunicate 

and its fitness value

Select the parameters and 

highest of iterations

Check the stopping 

criteria

Yes

No
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4. NUMERICAL RESULTS 

In this section, three systems including two standard 

systems and one modified system are used to assess the 

usefulness of TSO, PSO and SSD methods. The solutions 

obtained from TSO, PSO and SSD by testing on three 

systems are collected and compared to others. For running 

methods, the population (Np) and the iterations (Nmt) are set 

as follows: 

• Np =50 and Nmt  = 200 are respectively assigned to 

TSO, PSO and SSD for System 1  

• Np =50 and Nmt  = 500 are respectively set to TSO, 

PSO and SSD for System 2 

• Np =50 and Nmt  = 500 are respectively selected to 

TSO, PSO and SSD for System 3 

For each test system, 50 trial runs are implemented for 

evaluating the robustness of TSO, PSO and SSD. 

The whole work for coding three methods is executed on 

MATLAB and run on a personal PC. 

4.1 Result comparisons for System 1 

In this section, System 1 with 6 thermal units considering 

PLs and PZs is utilized to test the potentialities of TSO, 

PSO and SSD. Input data and B coefficients of network 

losses of System 1 are in [15]. The CPS of such system is 

1200 MW. The obtained optimization results from TSO, 

PSO, SSD and other methods such as ISO [13], NAPSO 

[15], EMS [16], MKHS [17], and ACSS [18] are 

enumerated in Table 1 and displayed in Figure 2. In the 

table, the smallest cost (SC), average cost (AC) and highest 

cost (HC) of all methods are reported. Only EMS [16] did 

not report HC. In the consideration of SC between TSO, 

PSO and SSD, that of TSO is $15443.075 while that of 

PSO and SSD is $15443.170 and $15443.109. It shows that 

TSO is better than PSO and SSD. As compared to other 

remaining methods about SC, only four methods such as 

TSO, ISO [13], EMS [16] and MKHS [17] can reach the 

best value of $15443.075 while ACSS [18] is the worst 

method with $15443.556. For assessing SC, AC and HC of 

all methods, it can be seen that those of TSO and ISO [13] 

are approximately equal and better than other ones. 

Clearly, TSO is one of two outstanding methods for 

solving System 1. The convergence characteristic of TSO, 

PSO and SSD algorithms plotted in Figure 3 designates 

that TSO can obtain better solutions than PSO and SSD. In 

addition, the 50 runs for TSO, PSO and SSD is also 

collected and displayed in Figure 4. As seen in Figure 4, 

three curves represent the results of three methods applied 

in this case in which the black, blue and red curves display 

fitness function of 50 runs of PSO, SSD and TSO. It is 

quite easy to realize that the fluctuation level of the fitness 

value given by TSO is the lowest among three methods.  

TSO can find better solution quality than PSO and SSD for 

all the runs.  

 

Table 1. Comparison of fuel costs of methods for System 1 

Methods SC ($) AC ($) HC($) 

ISO [13] 15443.075 15443.077 15443.120 

NAPSO [15] 15443.760 15443.766 15443.766 

EMS [16] 15443.075 15443.075 - 

MKHS [17] 15443.075 15443.327 15443.916 

ACSS [18] 15443.556 15458.202 15490.690 

PSO 15443.170 15458.856 15501.546 

SSD 15443.109 15446.217 15454.380 

TSO 15443.075 15443.085 15443.123 

 

 

Fig. 2. The smallest cost of methods for System 1. 

 

 
Fig. 3. The best convergence curve of TSO, PSO and SSD for 

System 1. 
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Fig. 4. The best fuel costs using TSO, PSO and SSD under 50 

runs for System 1. 

 

4.2 Result comparisons for System 2 

In this section, System 2 has 20 thermal units considering 

PLs. Total load power of such system is 2500 MW. Input 

data for System 2 are taken from [9]. Figure 5 displays the 

smallest cost of TSO, PSO, SSD and six methods. In three 

applied methods, TSO again proves its outstanding ability 

over PSO and SSD through SC. That of TSO is 

$62456.633 whilst that from PSO and SSD is respectively 

$62456.876 and $62456.664. Compared to TSO and other 

methods, ORCS [2], ISFS [12] can find the same SC as 

TSO. That of HM [1], IFO [7], and BS [9] is worse than 

TSO. It means that TSO is capable of solving System 2 

more effectively.  

   

 
Fig. 5. The minimum fuel cost of methods for System 2. 

 

The convergence characteristic and robust levels of 

TSO, PSO and SSD algorithms are plotted in Figures 6 and 

7, respectively. Figure 6 depicts the search speed of TSO in 

red curve is faster than that of PSO in black one and SSD 

in blue one. From about 170th iterations, the red curve is 

always under black curve and blue curve. It means that 

TSO can reach the best solution whereas PSO and SSD 

can’t reach. Figure 7 displays fitness values of 50 

implementation runs obtained by three methods. Among 

the three curves, the shape of the red curve is almost 

unchanged while that of the black and the blue curves is a 

high fluctuation. From the point, it proves TSO approach is 

more efficient and robust than PSO and SSD. 
 

 
Fig. 6. The best convergence curve of TSO, PSO and SSD for 

System 2. 

 

 
Fig. 7. The best fuel costs using TSO, PSO and SSD under 50 

runs for System 2. 
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velocity of wind changes continuously, power output of 

WF also changes accordingly. Therefore, such system will 

consider different CPSs corresponding to 24 periods in 

day. This is a big difference between System 2 and System 

3. The total load demand and power outputs of wind power 

of each hour in a day are shown in Table 2. The minimum 

fuel cost by using TSO each CPS with WF and without WF 

is presented in Table 3. These results show that the total 

fuel cost with WFs is always better than that of without 

WFs. Total fuel cost with WFs is $1196742.156 whilst that 

of without WFs is $1264644.939. Figure 8 shows that the 

fuel cost of with WFs in orange bar is always lower than 

that without WFs in blue bar at each period. This 

demonstrates the effectiveness of wind power in 

minimizing fuel cost. As a result, it can lead to a 

conclusion system with WFs is more potential than system 

with only TPPs. 

Optimal solutions of the systems are reported in Tables 

A1-A2 in Appendix. 

 
Table 2. Consumed power side and WF power for System 3 

Times 
CPS 

 (MW) 

WF power  

(MW) 
Times 

CPS 

 (MW) 

WF power  

(MW) 

1 1600 150 13 2500 150 

2 1600 150 14 2500 150 

3 1600 130 15 2500 150 

4 1600 130 16 2500 150 

5 1600 150 17 2000 150 

6 1800 150 18 2000 150 

7 1800 100 19 2000 120 

8 2500 100 20 2000 120 

9 2500 140 21 2000 120 

10 2500 140 22 1500 150 

11 2500 140 23 1500 150 

12 2500 140 24 1500 150 

5. CONCLUSION 

This paper applied a new meta-heuristic proposed in early 

2020 called Tunicates Swarm Optimizer (TSO) for solving 

both ELD and MELD problems successfully with an 

outstanding performance over other metaheuristic 

algorithms. Specifically, the ELD and MELD problems 

have been solved by TSO, PSO and SSD. The power of 

three methods was proven by testing on three systems. 

Among the three systems, the last one is first proposed in 

this paper because of the change of wind power over a day. 

The collected results from three methods on System 1 and 

System 2 are used to find the strongest method. As results, 

TSO is the best. TSO’ results are continuously compared 

with other methods. As a result, it proves that TSO is a 

promising method. From the analysis results on System 3, 

it shows that the system with wind power has better total 

fuel cost than the system without wind power. 

The paper showed the robustness of TSO and it promised 

that TSO or its modified versions can be more effective for 

the problems or other problem in power systems. For 

instance, ELD with more complicated constraints such as 

valve point effects [11] and multi fuel options [12] will be 

solved in the future by TSO or other proposed modified 

TSO. 
 

Table 3. Cost obtained from TSO of System 3 with and 

without WFs 

Times 
Total fuel cost  

without wind power ($/h) 

Total fuel cost 

 with wind power ($/h) 

1 43995.560 41003.879 

2 43995.561 41003.879 

3 43995.560 41400.941 

4 43995.560 41400.941 

5 43995.560 41003.879 

6 48028.349 44999.630 

7 48028.340 46006.649 

8 62456.633 60365.876 

9 62456.633 59532.356 

10 62456.633 59532.356 

11 62456.633 59532.355 

12 62456.633 59532.356 

13 62456.633 59324.226 

14 62456.633 59324.225 

15 62456.633 59324.225 

16 62456.633 59324.225 

17 52101.583 49042.912 

18 52101.584 49042.916 

19 52101.584 49652.847 

20 52101.583 49652.848 

21 52101.584 49652.851 

22 41997.611 39028.594 

23 41997.611 39028.594 

24 41997.611 39028.594 

Total 1264644.939 1196742.156 
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Fig. 8. Cost obtained from TSO for each period of System 3 

with and without WFs. 
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APPENDIX 

Table A1. Optimal solution of TSO and other compared methods of System 1 

Unit (MW) ISO [13] NAPSO [15] EMS [16] MKHS [17] ACSS [18] TSO 

P1 447.399 446.423 447.387 447.399 440.131 447.413 

P2 173.241 172.608 173.252 173.241 174.706 173.196 

P3 263.382 262.618 263.372 263.382 261.650 263.405 

P4 138.980 142.775 138.989 138.981 139.296 138.963 

P5 165.392 164.665 165.365 165.391 172.531 165.432 

P6 87.052 86.323 87.078 87.052 87.154 87.036 

Total generation (MW) 1275.445 1275.413 1275.444 1275.446 1275.468 1275.446 

Loss (MW) 12.445 12.413 12.443 12.446 12.468 12.446 

Total cost ($) 15443.075 15443.770 15443.075 15443.075 15443.556 15443.075 

 
Table A2. Optimal solution of TSO and other compared methods of System 2 

Unit (MW) HM [1] ORCS [2] BS [9] ISFS [12] TSO 

P1 512.780 512.776 510.448 512.793 512.782 

P2 169.104 169.114 168.397 169.308 169.101 

P3 126.890 126.880 125.972 126.877 126.891 

P4 102.866 102.858 103.529 102.852 102.867 

P5 113.684 113.680 113.821 113.638 113.683 

P6 73.571 73.569 73.790 73.549 73.572 

P7 115.288 115.279 115.066 115.292 115.290 

P8 116.399 116.389 116.340 116.440 116.400 

P9 100.406 100.408 100.709 100.389 100.405 

P10 106.027 106.047 107.137 105.827 106.027 

P11 150.240 150.241 150.706 150.216 150.239 

P12 292.765 292.785 291.130 292.792 292.766 

P13 119.116 119.115 119.153 119.173 119.114 

P14 30.824 30.842 32.452 30.841 30.832 

P15 115.806 115.823 116.148 115.841 115.806 

P16 36.255 36.263 36.282 36.244 36.254 

P17 66.859 66.846 67.736 66.842 66.859 

P18 87.972 87.960 87.255 88.017 87.971 

P19 100.803 100.791 101.536 100.790 100.803 

P20 54.305 54.307 54.286 54.310 54.305 

Total generation (MW) 2591.893 2591.970 2591.893 2592.029 2591.967 

Loss ( MW) 91.967 91.970 91.893 92.029 91.967 

Total cost ($) 62456.634 62456.633 62456.693 62456.633 62456.633 
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