Vector Control of DFIG-Based Wind Turbine System

Aanchal Singh S. Vardhan¹,∗ and Rakesh Saxena¹

¹Department of Electrical Engineering, Shri G.S. Institute of Technology & Science, Indore (Madhya Pradesh) India.
∗Corresponding author: Aanchal Singh S. Vardhan, Phone: +917518499096, Email: aanchalvardhan123@gmail.com

ABSTRACT

The paper discusses the vector control of the Doubly-Fed Induction Generator (DFIG)-based wind turbine system. The wind energy has become an important part of power networks as demand for renewable energy has grown. Several national grid codes require comprehensive simulation studies under a variety of operating situations to ensure that the specified model has no detrimental effects on the grid. The DFIGs are now used in the majority of wind farms. The goal of this paper is to gain insight into the DFIG turbine system and create vector management to control reactive and active power exchange independently with the grid. The changes in varied parameters of the system due to wind speed variation are illustrated. In this paper, the DFIG and its numerous parts, its working, characteristics and its limits are also discussed. Then the Maximum Power Point Tracking (MPPT) and additionally the rotary engine profile of the DFIG are focused. This paper describes dynamic equations of the induction machine and then vector control method by developing the equations in d-q reference model and also the active and reactive power control. Finally, the concept is validated in MATLAB/Simulink. There is a tendency to observe the power flow and calculate all the mandatory parameters of the system at synchronous, sub-synchronous and super-synchronous regions.

1. INTRODUCTION

The standard energy supply is restricted and increase pollution to the environment [1-3]. Therefore, a lot of attention and interest are paid to the use of renewable energy (RE) sources equivalent to wind energy, electric cell and solar power and so forth wind energy is the quickest growing and most promising RE source among them because it is economically viable [4-5]. India is the world’s third-largest source of electricity and its third-largest consumer. India is one of the countries that produces the most electricity from renewable sources. The Asian nation generates 17% of its overall energy from renewable sources. India’s alternative energy generation capacity has grown significantly in recent years. The total installed wind power capacity was 37.669 GW as of the twenty-ninth Gregorian calendar month 2020, making it the fourth highest in the world. The potential for alternative energy is primarily spread through the Southern, Western, and Northern regions. A DFIG is an induction machine within which each the stator coil and rotor is connected to a source, thus the name doubly fed [6-8]. The stator of the DFIG is connected to the grid and the rotor is connected in the back-to-back converters in DFIG based mostly WT system [9-10]. The facility flow through rotor is around 20-30 p.c of the power flow through stator aspect hence the rating of the converters used is low which is one in all the benefits of the DFIG based WT system [11]. The facility flow within the stator side is unidirectional; it continually flows from rotary engine to the grid. Whereas in rotor aspect power flow is bidirectional, power flows from rotary engine to grid in super-synchronous operation and from grid to turbine in sub-synchronous mode [12-14]. One attention-grabbing purpose to notice here is that in sub-synchronous mode the facility absorbed from grid is truly fed back to the grid through stator [15-17].

The organization of the paper is as follows. The Section 2 of the paper deals with the overview of wind turbine power generation and characteristics. The MPPT tracking methodology from the wind with different turbine characteristics is explained in Section 3. The Mathematical modelling of rotor and grid side system and also vector controls of the wind energy system is done using MATLAB Simulink which is explained in Section 4. The results obtained from the Simulink model are described in section 5. The simulation and results are discussed in Section 6. Finally, the main findings are concluded in the Section 7. The paper mainly focuses on modelling and...
Simulation of the wind power generation which is given in details. This makes this paper useful for the researchers to get detailed simulation procedure for their study.

2. AN OVERVIEW OF WIND TURBINE POWER CHARACTERISTICS

A DFIG is an induction motor in which both the stator and rotor is connected to a source, hence the name includes doubly fed. In DFIG based WT system the stator is connected directly to the grid whereas the rotor is connected via back-to-back converters. The power flow through rotor is around 20-30 percent of the power flow through stator side hence the rating of the converters used is low which is one of the advantages of the DFIG based WT system. The power flow in the stator side is unidirectional; it always flows from turbine to the grid. Whereas in rotor side power flow is bidirectional, power flows from turbine to grid in super-synchronous operation and from grid to turbine in sub-synchronous mode. One interesting point to note here is that during sub-synchronous mode the power absorbed from grid is actually fed back to the grid through stator. The power contained in a given volume of a wind is given by

\[P = \frac{1}{2} A v^3 \rho \]
(1)

where,

- \(P \) = Power in a given volume of wind
- \(A \) = Wind blades swept area
- \(v \) = Wind velocity
- \(\rho \) = Air density

Whereas the power obtained by the turbine is given by:

\[P = \frac{1}{2} A v^3 \rho C_p \]
(2)

The maximum value of \(C_p \) is 0.593 which is called Betz limit. This restricts the maximum value of power we can extract from wind to 59.3 percent of total power contained in a block of wind. \(C_p \) is actually a function of \(\beta \) and \(\lambda \). Where pitch angle = \(\beta \) of the wind blade \(\lambda \) is called the tip-speed ratio of the turbine [18].

\[\lambda = \frac{\omega_m R}{v} \]
(3)

where,

- \(\omega_m \) = Rotational speed of the turbine
- \(R \) = Radius of the blades
- \(v \) = Velocity of wind

The rotor torque can be defined as:

\[\tau_m = \frac{P}{\omega_m} = \frac{\rho R^2 v^3 C_p}{2 \omega_m} = \frac{\rho R^3 v^2 C_t}{2} \]
(4)

3. MPPT WITH TURBINE PROFILE

The main aim of any WT system is to get highest power at a selected wind speed. In this paper we’ll use the rotary engine profile given by the manufacturer to realize the maximum power extraction. A straightforward graph is given in Figure 1 to know the MPPT [7, 19-20].

![Fig. 1. Maximum power point tracking.](image)

A wind speed sensor measures the wind speed in real time. The P power reference is generated and sent to the generator management system, which contrasts the power reference with the calculated power from the generator to provide management signals for the ability converters, in accordance with the MPPT profile given by the manufacturer. The mechanical power \(P_m \) of the engine will be capable of its reference in steady state, by which time the utmost power operation will be accomplished with the help of the regulation of power converters and generators. Since the power losses of the shell and drive-train are ignored in the higher-order analysis, the mechanical power of the generator is equal to the mechanical power generated by the turbine. The details of the rotor side of the DFIG will be discussed in this section [8,21-23].

4. MATHEMATICAL MODELLING

The mathematical modeling of the DFIG system is described in the following sub-sections.

4.1 Converter model

The grid side converter and rotor both are identical. The two-level converter is made up of perfect switches that enable electricity to flow both ways. Signals such as \(S_{ag}, S_{bg} \) and \(S_{cg} \) are used to control the switches [20].
\[S_{ag}' = S_{ag}, S_{bg}' = S_{bg}, S_{cg}' = S_{cg} \] (5)

\[V_{ag} = 0, V_{bg} = 0, V_{cg} = 0 \]

Fig. 2. Two Level Voltage of V_{ag}.

This indicates that both switches cannot conduct at the same time in a specific leg of the converter. It is therefore feasible to produce changing amplitude and frequency AC output voltages fundamental component using various combinations of Sag, Sbg, and Scg. Each phase of this converter may be set to one of two voltage levels. The o/p voltage of converter are attached to grid’s 3phase system neutral point on the other hand are quite useful for modelling purposes (n) [16].

\[V_{jn} = V_{jo} - V_{no} \text{ with } j = a, b, c \] (6)

Assuming a 3-phase grid system, require the voltage between the DC bus’s neutral (n) and negative points (o).

\[V_{an} + V_{bn} + V_{cn} = 0 \] (7)

Substituting expression

\[V_{no} = \frac{1}{3}(V_{ao} + V_{bo} + V_{co}) \] (8)

Substituting again into Equaton,

\[V_{an} = \frac{2}{3}V_{ao} - \frac{1}{3}(V_{bo} + V_{co}) \] (9)

\[V_{bn} = \frac{2}{3}V_{bo} - \frac{1}{3}(V_{ao} + V_{co}) \] (10)

\[V_{cn} = \frac{2}{3}V_{co} - \frac{1}{3}(V_{ao} + V_{bo}) \] (11)

Table 1. Output voltages of 2 level VSC

<table>
<thead>
<tr>
<th>S_{ag}</th>
<th>S_{bg}</th>
<th>S_{cg}</th>
<th>V_{ao}</th>
<th>V_{bo}</th>
<th>V_{co}</th>
<th>V_{an}</th>
<th>V_{bn}</th>
<th>V_{cn}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>V_{bus}</td>
<td>- \frac{V_{bus}}{3}</td>
<td>- \frac{V_{bus}}{3}</td>
<td>2 \frac{V_{bus}}{3}</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>V_{bus}</td>
<td>V_{bus}</td>
<td>- \frac{V_{bus}}{3}</td>
<td>2 \frac{V_{bus}}{3}</td>
<td>- \frac{V_{bus}}{3}</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>V_{bus}</td>
<td>0</td>
<td>0</td>
<td>\frac{2V_{bus}}{3}</td>
<td>- \frac{V_{bus}}{3}</td>
<td>- \frac{V_{bus}}{3}</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>V_{bus}</td>
<td>0</td>
<td>\frac{V_{bus}}{3}</td>
<td>-2 \frac{V_{bus}}{3}</td>
<td>\frac{V_{bus}}{3}</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>V_{bus}</td>
<td>V_{bus}</td>
<td>0</td>
<td>\frac{V_{bus}}{3}</td>
<td>\frac{V_{bus}}{3}</td>
<td>-2 \frac{V_{bus}}{3}</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>V_{bus}</td>
<td>V_{bus}</td>
<td>V_{bus}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

According to the eight permissible switching states of S_{ag}, S_{bg}, and S_{cg} there are eight possible output voltage combinations show all these voltage combinations. The output voltages as noted earlier V_{ao}, V_{bo} and V_{co} only two different voltages level that are the bus voltage (V_{bus}) and 0 therefore, this converter is called “two-level converter”. Whereas output phase voltages (V_{an}, V_{bn}, and V_{cn}) of phase a, b, and c take 5 different levels of voltage as: -2V_{bus}/3, -V_{bus}/3, 0, V_{bus}/3 and 2V_{bus}/3 with the help of simple 6-pulse generator to implement vector control [18].

Fig. 3. Eight Different Two-Level VSC Output Voltage Combinations.
4.2 Rotor side system

Dynamic Modelling of Rotor Side System

4.2.1 Two phase (α-β) Modelling: The space vector theory is used to model the α-β dynamics from the mathematical equations obtained using the electric circuit of the machine under steady-state condition.

The α-β is a stationary model D-Q model is a rotor reference frame that rotates at a speed of ω_m the d-q model is synchronous frame that rotates at ω_r. The subscript r, s and a represent that the vector space referred to the rotor, stator and reference axis [20, 23].

$$\begin{align*}
V_{ds} &= R_s i_d + \frac{d\varphi_s}{dt} \quad V_{rs} = R_s i_r + \frac{d\varphi_r}{dt} \\
V_{qs} &= R_s i_q + \frac{d\varphi_q}{dt} \quad V_{q_s} = R_s i_q + \frac{d\varphi_q}{dt}
\end{align*}$$

(12)

(13)

$$\begin{align*}
\varphi_r &= L_s i_d + L_m i_q \\
\varphi_s &= L_s i_d + L_m i_q
\end{align*}$$

(14)

Similarly, stator and rotor flux equations are also derived in space vector form instationary frame [48].

$$\begin{align*}
\varphi_r &= L_s i_d + L_m i_q \\
\varphi_s &= L_s i_d + L_m i_q
\end{align*}$$

(15)

(16)

The magnitudes of the fluxes are sinusoidal in nature whose frequency is s. The stator and rotor, reactive and active power of a system may be estimated as [12].

$$\begin{align*}
P_s &= \frac{3}{2} (V_{ds} i_{d s} + V_{qs} i_{q s}) \\
P_r &= \frac{3}{2} (V_{ds} i_{d r} + V_{qs} i_{q r})
\end{align*}$$

(17)

(18)

The electromagnetic torque can be calculated by

$$\begin{align*}
T_{em} &= \frac{3}{2} p Im(\varphi_r i_r - \varphi_s i_d) \\
T_{em} &= \frac{3}{2} p \frac{\varphi_r}{i_r} Im(\varphi_r i_r - \varphi_s i_d) = \frac{3}{2} L_m p h m (\varphi_r i_r - \varphi_s i_d)
\end{align*}$$

(19)

(20)

where $\sigma = 1 - L_m^2 / L_s L_r$ by adding the mechanical...
equation

$$T_{em} - T_{load} = J \frac{d\omega_m}{dt}$$ \hspace{1cm} (21)

4.2.2 The d-q Modelling: To obtain the d-q model in synchronously rotating frame we multiply the Equations by $e^{j\theta_d}$ and $e^{j\theta_r}$ respectively we get [26]

$$\tilde{V}_d^2 = R_\sigma i_d^2 + \frac{d\tilde{q}_d^2}{dt} + j\omega_m \tilde{q}_d^2$$ \hspace{1cm} \Rightarrow \hspace{1cm} \begin{align*}
\tilde{V}_d &= R_\sigma i_d + \frac{d\tilde{q}_d}{dt} + \omega_m \tilde{q}_d \\
\tilde{V}_q &= R_\sigma i_q + \frac{d\tilde{q}_q}{dt} + \omega_m \tilde{q}_q
\end{align*}$$ \hspace{1cm} (22)

$$\tilde{V}_r^2 = R_\sigma i_r^2 + \frac{d\tilde{q}_r^2}{dt} + j\omega_m \tilde{q}_r^2$$ \hspace{1cm} \Rightarrow \hspace{1cm} \begin{align*}
\tilde{V}_d &= R_\sigma i_d + \frac{d\tilde{q}_d}{dt} - \omega_m \tilde{q}_r \\
\tilde{V}_q &= R_\sigma i_q + \frac{d\tilde{q}_q}{dt} - \omega_m \tilde{q}_r
\end{align*}$$ \hspace{1cm} (23)

Similarly, the fluxes

$$\tilde{\varphi}_d^2 = L_s \tilde{q}_d^2 + L_m i_d^2$$ \hspace{1cm} \Rightarrow \hspace{1cm} \begin{align*}
\tilde{\varphi}_d &= L_s \tilde{q}_d + L_m i_d \\
\tilde{\varphi}_q &= L_s \tilde{q}_q + L_m i_q
\end{align*}$$ \hspace{1cm} (24)

$$\tilde{\varphi}_r^2 = L_m \tilde{q}_r^2 + L_m i_r^2$$ \hspace{1cm} \Rightarrow \hspace{1cm} \begin{align*}
\tilde{\varphi}_d &= L_m \tilde{q}_d + L_r i_d \\
\tilde{\varphi}_q &= L_m \tilde{q}_q + L_r i_q
\end{align*}$$ \hspace{1cm} (25)

4.2.3 Vector Control of Rotor Side System

Among different methods of controlling the DFIG, only the vector control is discussed here which is most extensively used control strategy. For easier understanding we will develop it step by step. In the first step we are going to see the current control loops.

4.2.3.1 Rotor Current Control Loop: In the vector control technique of DFIG is operated on synchronously rotating d-q frame, in which the d-axis is in direction with stator flux. Due to this the d-axis of the rotor current is proportional to the stator reactive power whereas the q-axis component is proportional to the torque or stator active power. We will see this later on. We get the rotor voltage as a function of rotor currents and stator flux by substituting Equations. (Note that $\varphi_{qs} = 0$) [9,22].

$$v_{dr} = R_l i_{dr} + \sigma L_r \frac{di_{dr}}{dt} - \omega_m \sigma L_l i_{qr} + \frac{l_m d\varphi_d}{L_s dt}$$ \hspace{1cm} (26)

$$v_{qr} = R_l i_{qr} + \sigma L_r \frac{di_{qr}}{dt} + \omega_m L_l i_{dr} + \frac{l_m d\varphi_q}{L_s dt}$$ \hspace{1cm} (27)

From the last two equations we can say that the d and q components of current can be controlled independently by using single regulator for each component. Cross terms in Equations can be included at the output of the regulator and for that we need to estimate the stator flux and ω_m. For transformation of reference frame, we need the angle θ_r. The control is to done in d-q coordinates. To evaluate the θ_r, a basic step locked loop can be used, but we will use a finer approach in our simulation. The current loop, as seen in Figure 11, operates with the currents of rotor side which are referred to the stator, and since the turn ratio is different, we’ll take that into account right away [12,23-25].

$$T_{em} = \frac{3}{2} p \frac{L_m}{L_s} (\varphi_{qs} i_{dr} - \varphi_{ds} i_{qr}) = \frac{3}{2} p \frac{L_m}{L_s} (\varphi_d) i_{dr}$$ \hspace{1cm} (28)
We can see here that the torque is proportional to the q components of the rotor current; hence we can control the torque by controlling. Similarly we can develop the reactive power of stator part in the d-q model and find
\[i_{qS} \] that it depends upon the d component of the rotor current.

\[
Q_s = \frac{3}{2} (V_{qsS} i_{dsS} - V_{dsS} i_{qsS}) = -\frac{3}{2} \omega_s \frac{L_m}{L_s} |\omega_0| \left(i_{dr} - \frac{\omega_0}{L_m} \right) K_Q = \frac{\varphi_s}{L_m} \tag{29}
\]

Because of the orientation, the authors have chosen to control the active and reactive powers independently. In addition to the current loops discussed earlier we now added power loop as shown in Figure 12. It is possible to control the magnetization of the machine with the \(Q_s \) loop. As we know the stator is connected to the power grid directly which has a constant voltage, the stator flux amplitude produced is constant. The stator flux equation reveals that,

\[
|\varphi_s| = \varphi_{dsS} = L_s i_{dsS} + L_m i_{drS} \tag{30}
\]

\[
\varphi_{qsS} = 0 = L_s i_{qS} + L_m i_{qrS} \tag{31}
\]

The stator flux \(|\varphi_s| \) thus must be created by choosing \(i_{dsS} \) and \(i_{drS} \) but these values depend upon the torque and is not in our hands. However, by changing the value of \(Q_s \) set we can increase or decrease the stator and rotor currents. For minimizing the rotor currents, the rotor current \(i_{dr} \) is set to zero.

4.3 Grid Side System

Now that we have discussed the rotor side system, we now move on to designing the grid side system.

4.3.1 Grid Side Modelling

The equivalent single-phase circuit of grid side system is described in [2.24-26]. The sub-index ‘f’ is used to label the converter's output AC voltages that are referred to the neutral stage. Hence, the mathematical equations of the electrical machine can be given as:

\[
v_{af} = R_f i_{afg} + L_f \frac{di_{afg}}{dt} + v_{agf} \tag{32}
\]

\[
v_{bf} = R_f i_{bfg} + L_f \frac{di_{bfg}}{dt} + v_{bgf} \tag{33}
\]

\[
v_{cf} = R_f i_{cfg} + L_f \frac{di_{cfg}}{dt} + v_{cfg} \tag{34}
\]

where, \(L_f \) is the grid side filter's inductance in H, \(R_f \) is the grid side filter's resistive portion (Ω), \(v_{agf}, v_{bfg}, v_{cfg} \) are the voltages on the grid (V), with \(\omega_s \) electric angular velocity in (rad/s), \(i_{afg}, i_{bfg}, i_{cfg} \) are the currents running from the output of the grid-side converter (A), and \(v_{af}, v_{bf}, v_{cf} \) are the converter's output voltages in relation to the load's neutral point n (V). As a result, the first derivative of the currents must be isolated for modelling purposes.

\[
\frac{di_{afg}}{dt} = \frac{1}{L_f} (v_{af} - R_f i_{afg} - v_{agf}) \tag{35}
\]

\[
\frac{di_{bfg}}{dt} = \frac{1}{L_f} (v_{bf} - R_f i_{bfg} - v_{bfg}) \tag{36}
\]

\[
\frac{di_{cfg}}{dt} = \frac{1}{L_f} (v_{cf} - R_f i_{cfg} - v_{cfg}) \tag{37}
\]

4.3.2 \(\alpha-\beta \) Model

It is possible to represent the equations in d-q frame by applying space vector notation to the abc model.

\[
v_{af} = R_f i_{afg} + L_f \frac{di_{afg}}{dt} + v_{agf}, v_{af} = R_f i_{afg} + L_f \frac{di_{afg}}{dt} + v_{afg} \tag{38}
\]

Fig. 13. Simplified Representation of the Three-Phase Grid System.

Fig. 14. \(\alpha \) Model of the Grid Side.
4.3.3 d-q model: On further simplifying the equation we get

$$\begin{align*}
v_{df} &= R_f i_{dg} + L_f \frac{di_{dg}}{dt} + v_{dg} - \omega L_f i_{qg} \\
v_{qf} &= R_f i_{qg} + L_f \frac{di_{qg}}{dt} + v_{qg} + \omega L_f i_{dg}
\end{align*}$$

(39) (40)

The equation of power of the grid can be given in simplified version as:

$$P_g = 1.5 v_{dg} i_{dg}, \ Q_g = -\frac{3}{2} v_{dg} i_{qg}$$

(41) (42)

It is observed that the reactive and active power exchange with the grid is controllable independently by manipulating i_{dg} and i_{qg} currents.

4.3.4 Grid Side Vector Oriented Control: During this section we have a tendency to be progressing to discuss regarding the grid aspect control system. While not the grid side control system, the DFIG won’t work properly. We are going to apply a vector control scheme as shown in Figure 4. The facility generated by the DFIG is partly transmitted from the rotor to the grid side convertor then to the grid. Here we are going to implement a 2 level VSC.

We have a tendency to generate the pulses for the controlled switches two level VSC to regulate the output voltage, that is, the voltage of DC link and additionally to regulate the reactive power ensue the grid. To make sure that power ensue the rotor to the grid aspect convertor then to the grid, the active power got to flow through the dc link, that is made by a capacitor, we’ve got maintain the dc link voltage to a continuing price with the guarantee that the rotor side and also the grid side converter each has access to the dc link voltage.

Another variable which will be controlled here is that the reactive power flow. It can take any value relying upon which current we wish to minimize, the present flowing from the mechanical device side or the current flowing from the rotor side. For the grid side management, the magnitudes we’d like to live are the grid side voltage and current at the side of the DC link voltage. We have a tendency to generate pulses for the controlled switches from the references [16].

The d-q voltage references v_{df} and v_{qf} is 1st created from the d-q current references, that are i_{dq} and i_{dq} from the expression mentioned earlier. This voltage references are then regenerate to fundamentals references mistreatment inverse Clark’s and Park’s transformation. These fundamentals reference v_{af}, v_{bf} and v_{cf} are then led to modulator that generates pulses consequently to regulate the switches of the grid aspect convertor. The latest references i_{ag} and i_{aq} are fully decoupled since the space vector of grid voltage and the direct-axis of d-q frame are compatible. The active power P_g is controlled by controlling i_{ag}, and reactive power Q_g is controlled by i_{aq}.

![Fig. 15. β Model of the Grid Side.](image1)

![Fig. 16. d Model of the Grid Side.](image2)

![Fig. 17. q Model of the Grid Side.](image3)

![Fig. 18. Power Flow Diagram.](image4)
The constant terms needed are deduced from Equations \((11)\) and \((12)\).

\[
\begin{align*}
e_{df} &= -w_s L_f l_{dg}, \quad e_{qf} = w_s L_f l_{dq} \\
K_{Pg} &= \frac{1}{2g_{dg}}, \quad K_{Qg} = \frac{1}{2g_{qg}}
\end{align*}
\]

The \(V_{bus}\) regulator generates the power relation \(P_g\).

5. SIMULATION

In this section we tend to are about to simulate the entire DFIG system in MATLAB and Simulink as shown in Figure 21. We tend to model the wind turbine, rotor aspect system, grid side system and their controls as shown in Figures 6 and 7. Before that we are going to see the various values of the parameters of the machine, constants and alternative pre-defined values that we are going to use within the simulation. We use this power characteristics curve of turbine as shown in Figure 8.
V_{bus}, Q_{gref}, i_{dq}, v_{dq}, v_{dq}, V_s and i_q. The values of the parameters will be shown first at sub-synchronous speed, then at super-synchronous speed, and finally at synchronous speed. We will keep the reactive power reference at 0 in these two cases. Here the synchronous speed is 1500 RPM.

![Fig. 25. Lambda vs C_t and Power characteristics graph.](image)

![Fig. 26. Parameter values of rotor side at wind speed of 6 m/s (sub-synchronous region).](image)

![Fig. 27. Parameter values of grid side at wind speed of 6 m/s (sub-synchronous region).](image)

We could observe that the steady state rotor speed is approximately 103 radians per second that is lesser than the synchronous speed. Hence, the machine is operating at sub-synchronous region. The steady state torque is 3150 N-m. Hence, the power is calculated as 324260 W, which is close to the value according to the turbine power characteristics we are using. The frequency of i_q current is also close to 50 Hz; hence the frequency is also matched with the grid. The reactive power absorbed by stator for magnetising is discussed later. v_{dq} and i_{dq} is very small (almost close to 0), the active power flow is very minute from grid side to rotor side. Whereas the reactive power is 0 since the value of i_{dq} is 0. This happens because we set the Q_g reference value to 0 to minimize rotor current.

![Fig. 28. Parameter values of rotor side at wind speed of 11 m/s (super-synchronous region).](image)

![Fig. 29. Parameter values of grid side at wind speed of 11 m/s (super-synchronous region).](image)

We could observe that the steady state rotor speed is approximately 188 radians per second which is more than the synchronous speed; hence the machine is operating at super-synchronous region. The steady state torque is close to 10600 N-m. Hence, the power is calculated as 1992800 W. i_{dq} = 365A and v_{dq} = -2V, the active power transfer from the rotor to the grid is 1095W. Whereas the reactive power is 0 since the value of i_{dq} is 0. This happens because we set the Q_g reference value to 0 to minimize rotor current. The active and reactive power absorbed by filter is found out to be 1.944 W and 12208 VAR.

Since the DFIG is working at synchronous speed the steady state rotor currents are constant values. The active power through the rotor should be 0, and we will verify that now. We know active power through the rotor depends upon i_{dq}. If we look into the steady state value of i_{dq} in above figure, we will see that its value is very close to 0. Hence, the active power is also 0.
7. CONCLUSION

In this paper DFIG-based wind energy system is studied. During the initial part of the paper, the importance of a wind turbine system is introduced and the wind system is also defined. Later, a DFIG based wind turbine system is modelled theoretically, deriving all the important dynamic modelling equations and based on these equations a DFIG is modelled virtually using software MATLAB and SIMULINK. Finally, the steady state values of all the important parameters are observed in different working conditions, and also calculated the reactive and active powers flowing through both the rotor and stator sides. The simulation results are verified theoretically. It is observed that when the DFIG is working at synchronous speed, the steady state rotor currents are constant values. Also, the active power through the rotor is found to be zero that is obvious.

The future scopes of this paper are as follows:
- This paper will help in modelling the wind energy system for further controlling of any of its part.
- This will also be helpful for further investigation of controller design for wind turbine power generation.

ACKNOWLEDGEMENT

The authors are heartily thankful to the PSRT to bring this research work in its present form. This research work is dedicated to the sweet memories of first author’s great grandfather late Shri Ramdas Saket and grandmother late Smt. Terasiya Devi Saket for providing their Aashirvaad, encouragements and constant supports for girl child education in India.

ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFIGs</td>
<td>Doubly Fed Induction Generators</td>
</tr>
<tr>
<td>MPPT</td>
<td>Maximum Power Point Tracking</td>
</tr>
<tr>
<td>WT</td>
<td>Wind Turbine</td>
</tr>
<tr>
<td>P</td>
<td>Power in a given volume of wind</td>
</tr>
<tr>
<td>A</td>
<td>Swept area of the wind blades</td>
</tr>
<tr>
<td>v</td>
<td>Wind velocity</td>
</tr>
<tr>
<td>ρ</td>
<td>Density of air</td>
</tr>
<tr>
<td>β</td>
<td>Pitch angle of the wind blade</td>
</tr>
<tr>
<td>λ</td>
<td>Tip-speed ratio of the turbine</td>
</tr>
<tr>
<td>ω_m</td>
<td>Rotational speed of the turbine</td>
</tr>
<tr>
<td>R</td>
<td>Radius of the blades</td>
</tr>
<tr>
<td>v</td>
<td>Velocity of wind</td>
</tr>
</tbody>
</table>

REFERENCES

