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A B S T R A C T 

Feature selection is an important task in data mining to reduce data dimension. Feature 

selection is a difficult problem, especially when the number of initial features is large. In 

classification of power system stability, feature selection is a challenging task due mainly 

to a large search space. This paper proposes fisher and binary particle swarm optimization 

(F&BPSO) combination approach to feature selection for stability of power system 

classification. The Fisher step, it is applied to find the features with high ranking. The 

output results of the fisher method are the input of BPSO. The BPSO step, BPSO now 

only has the task of finding the feature subset that reaches the fitness function value on 

the feature subset that have been reduced from the Fisher step. So, the approach makes 

the proposed method achieve the goal of reducing the maximum number of features, and 

having the highest accuracy. K-nearest neighbor (KNN, K=1) classifier is employed to 

evaluate the classification performance in the experiments on dataset. Test results on IEEE 

39-bus diagram show that the proposed method achieves the goal of reducing features 

with high accuracy. 

 

1. INTRODUCTION 

Modern power systems suffer from operating pressure very 

close to a stable boundary limit, while power systems always 

face with stress condition that can easily cause vulnerability. 

Any faults in the power system will cause an unbalance 

between the mechanical power input to the generator and the 

electrical power output of the generator. As a result, the 

generator may lose synchronization with the power system 

and be automatically disconnected from the grid. Due to the 

very high non-linearity of the power system, traditional 

analytical methods take a lot of time to solve, causing delay 

in decision-making. Therefore, quickly detecting power 

system instability helps the control system to make timely 

decisions become the key factor to ensure stable operation 

of the power system [1], [2]. Classification method is one of 

the methods that can meet this requirement and has received 

great attention of researchers [3]–[6]. The key question in 

power system stability classification is whether the fault 

occurs, the power system is ‘’stable’’ or ‘’unstable’’.   

The classification method has been used as an alternative 

to solving difficult problems that traditional methods of 

analysis cannot solve in terms of calculation [3]–[6]. By 

learning the database, the nonlinear input/output 

relationship between the power system operating parameters 

and stability can be quickly calculated [7]. However, if the 

classifier acts fast, the input feature subset must be the most 

important features. Therefore, the inputs need only be 

representative features, eliminate unnecessary and noisy 

features. Feature selection is not only important to reduce 

sensor measurement costs, but it also reduces the 

computational burden on the model. 

In papers [8]–[10], the authors applied the ranking 

method to select variables, Fisher criterion is used in those. 

The paper [11] applied the ranking method thanks to the 

Relief algorithm to feature selection. So, the published 

works [8]–[11] mainly applied the ranking method to feature 

selection. This method evaluates each feature individually, 

without considering the context of a subset feature. so it can 

only provide local results. In previous studies [8]–[11] of 

feature selection for the classification of power system 

stability, the contributions of the Evolutionary computation 

techniques in feature selection are still limited. They are 

well-known for their global search ability, and have been 

applied to feature selection problems [12]. In which, BPSO 

is easier to implement, has fewer parameters, 

computationally less expensive. Due to these advantages, 

BPSO has been used as a promising method for feature 

selection problems. However, through experimentation, 

with a large number of features as power systems, it is 

difficult for BPSO to help reduce variables as deeply as 

desired. To overcome this obstacle, one idea proposed here 

is to combine the ranking method and BPSO for feature 

selection. With the support of the ranking method, the key 

features are selected first. The output result of selecting 
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features of the ranking method is the input of BPSO. This 

approach makes the proposed method achieve the goal of 

reducing the maximum number of features, and having the 

highest accuracy. Therefore, this paper proposes fisher and 

binary particle swarm optimization (F&BPSO) combination 

approach to feature selection for stability of power system 

classification.  

The remainder of the paper is organized as follow: 

Background information is provided in Section 2. Section 3 

offers the fisher and BPSO combination approach to feature 

selection. Section 4 presents experimental results with 

discussions. Section 5 provides conclusions.  

BACKGRUOND 

2.1 Fisher method 

Fisher discrimination is based on fisher’s linear  

discrimination  function F(w)  as  projection  from  D-

dimensional  space  onto  a  line  in  which  manner  the  data  

is  best  separated.  Given  a  set  of  n D-dimensional training   

samples  x1, x2, …, xn  with n1 samples in class 1 and n2 

samples in class 2, the task is to find the linear mapping, 

y=wT.x, that maximizes F(w). This criterion evaluates the 

quality single variables. The quality of the variable is 

expressed through the value of F(w) as in equation (1). The 

value F is bigger means the feature is more important. Fisher 

is a criterion that was applied in many works with ranking 

method [8], [13]. By evaluating criterion of features as 

Equation (1), features are ranked by ordering the best of 

them and selecting for good features. The bigger feature F is 

the more important one.  
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where mi is the mean of ni samples of class i and i
2 is the 

variance of ni samples of class i. 

2.2 BPSO algorithm  

PSO (Partical Swarm Optimization)  is the optimal search 

algorithm proposed by Kennedy and Eberhart [14]. In the 

PSO, each candidate answer of the problem is encoded as an 

instance that moves through the search space. The whole 

herd seeks the optimal solution by updating the position of 

each individual based on their own experience and on 

neighboring individuals. 

Generally, the vector xi = (xi1, xi2, ..., xiD) used in the PSO 

represents the position of the ith instance. The vector vi = (vi1, 

vi2,…, viD) is used in the PSO to rep-resent the velocity of 

the i th instance. D is the size of the search space. During the 

search, the best position for each previous individual was 

recorded as pbest. The best location of the herd is the gbest. 

The herd was randomly generated from the population. 

Finding the best solution by updating the velocity and 

position of each individual according to equations (2) and 

(3). 
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where, t is the tth iteration of the search process. d is the size 

in the search space, dD. c1, c2 are acceleration constants. 

r1i, r2i are random values, valid in the range (0,1). pid and pgd 

represent pbest and gbest particles of size d. w is the inertial 

weight. v is the velocity, limited to the maximum velocity 

vmax, vid
t[-vmax, vmax]. 

The original PSO algorithm applied to the problem of 

continuity. Kennedy and Eberhart developed the BPSO 

algorithm for the discrete problem, Table 1 [15]. The 

velocity in BPSO represents the element that can take the 

value 1. Equation (2) is still used to update the velocity while 

xid, pid get the value 0 or 1. The function sigmoid s(vid) is 

used to convert the value of vid into a range of values (0,1). 

The BPSO updates each instance's position using equations 

(4) and (5). The function rand() is a random function whose 

value is distributed in (0,1). 
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Table 1. BPSO algorithm 

BPSO algorithm 

Begin 

           Data set, k-fold; D: dimensionality of search space 

           N : the population size; T : maximum iterations; 

           c1, c2, vmax, w 

       Randomly initialise the position and velocity of each 

particle; 

while t ≤T 

  evaluate fitness of each particle according to Equation 

(6);  

for i=1 to N 

update the pbest of particle i; 

update the gbest of particle i; 

                   end 

               for i=1 to N  

for d=1 to D 

update the velocity of particle i according to 

Equation (2); 

update the position of particle i according to 

Equations (4) and (5); 

end 

                end 

     end 

calculate the classification error of the selected feature 

subset; 

return the position of gbest (the selected feature subset); 

return the classification error of the selected feature 

subset;  

end 
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2.3 Fitness function 

In BPSO for feature selection, the number of selected 

variables and the classification error are evaluated during the 

execution of the algorithm. In order to achieve the dual goal 

of searching for the selected feature set with the least 

number of features and the smallest classification error, the 

paper proposes to apply the fitness function as Equation (6), 

which combines the two goals of minimizing the 

classification error rate and the number of features. This 

fitness function has the beauty of helping to strike a balance 

between wanting a deep reduction in the number of features 

while requiring the highest classification accuracy or the 

smallest classification error [12]. 
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where, Fitness is the Fitness function; Acc is the 

classification accuracy of the selected feature subset; 

Accsample is the total number of samples the correct 

classification. Totalsample is the total number of samples; 

TotalFeature is the total number of features of the data set; 

selectedFeature is the number of selected features; Err is the 

classification error of the selected feature subset. 

2. PROPOSED FISHER AND BPSO COMBINATION 

FEATURE SELECTION APPROACHE 

To implement feature selection, we proposed that the feature 

selection process consists of the following three steps: Data 

generation, Fisher feature seletion approach, BPSO feature 

selection approach. In this paper, it is proposed to apply the 

1-NN (K-NN, K=1) classifier to evaluate the classification 

accuracy. The 1-NN classifier is applied because of its fast 

computation and its simplicity. The prosed approach 

algorithm is named F&BPSO-1-NN. 

Step 1. Data generation. This is the preparation step of 

initial data set for feature selection. Data set is 

noted by D(S,U). It formed by data set consists of 

stable samples, D(S), and un-stable samples, 

D(U). 

Step 2. Fisher feature seletion. In this step, the fisher 

criterion is applied to rank the importance of the 

features in order to select the important features 

due to its simplicity. The calculated importance 

of the features is applied according to the formula 

(1). The output of this step is the input of step 3. 

It not only helps to select good potential 

candidate features, but also helps to reduce the 

computational burden for the next step.  

Step 3. BPSO-1-NN feature selection approach. The 

input of this step is the output of step 2. This 

suggestion has an important meaning that it not 

only reduces the input variables but also helps to 

select the initial important input features for 

BPSO. BPSO algorithm is presented in Table 1. 

The fitness function drives the algorithm to find 

the best results with the smallest number of 

variables with the highest classification accuracy 

or the smallest error rate according to equations 

(6), (7), (8). 

3. RESULTS AND DISCUSSION    

4.1 Design of Experiment  

In the experimental design for the power system stability 

classification, the initial feature selection analysis is very 

important because it directly affects the classification 

accuracy. This step defines a specific feature set that 

represents the database for learning of classifier. These 

initial features are the input variable representing the 

operating parameters of the power system and covering the 

operating status of the power system. The characteristic 

variable of the power system in transient mode or dynamic 

mode is the change in generator capacity, change of load 

capacity, change of power on transmission lines, and voltage 

drop at nodes,... right at the time of the faults. The obvious 

fact is that the change of active power and voltage drop 

contains very high information, and is strongly related to the 

stable power system state. Output features represent the 

stable conditions of the power system. Simulating 

observation results, if the relative angle of the generator 

rotors is larger than 1800 then the system is ‘Unstable’, and 

less than 1800 then the system is ‘Stable’. The output 

variable is labeled binary. ‘0’ is un-stable and ‘1’ is stable. 

The study was tested on the IEEE 39-bus scheme, Fig.1. 

It includes 39 buses, 19 loads, 10 generators. The diagram 

IEEE 39-bus scheme is well-known. It was used in many 

published works. The off-line simulation was implemented 

to collect data for training. Load levels are (80, 90, …, 

120)% base load. The setting fault clearing time (FCT) is 

50ms [16]. In this paper, all kinds of faults such as single 

phase to ground, double phase to ground, three phases to 

ground and phase-to-phase short-circuit are considered. 

Faults are tested in any buses and in each of 5% distances of 

long transmission lines of the test systems. For each of the 

considered load samples, the generator samples have been 

got accordingly by running optimal power flow (OPF) tool 

of Power-World software [16]. 

The input and output feature are 

x{delVbus,delPLoad,delPflow} and y{1,0}. Total of input 

features is 104, x{104(39+19+46)}. The symbol 

x{104(39+19+46) means the total number of variables is 

104. Where 39 is 39 variables of delVbus , 19 is 19 variables 

of delPload, and 46 is 46 variables of delPflow. delVbus  is 

the symbol for change voltage at nodes, delPload is the 

symbol for change of active power of load, delPflow is the 

symbol for change of active power on transmission lines. 

The number of output feature is one, y{1,0}. From 

simulating results, there are 1617 samples that include 834 
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stable samples and 783 un-stable samples. D(S,U) =1617, 

D(S)=834, and D(U)=783. The 1-NN is used as a classifier 

for evaluating accurate classification or error rate. 

Assessment of classification error is a cross-assessment 

method. It is a 10-fold cross-validation. 

 

 
Fig.1. The IEEE 39-bus diagram. 

4.2. Results 

In this experiment, F&BPSO-1-NN is implemented to 

feature selection for stability data set of the IEEE 39-bus 

power system as described above. The results of feature 

selection of F&BPSO-1-NN are compared with the results 

of feature selection of the BPSO-1-NN.  

BPSO works with different N values, namely 10, 20, 30, 

40, and 50. The values of w is 0.9. The number of iterations 

is 100 for the program executions, T=100. The values of c1 

and c2 are selected unchanged during program execution, 

c1=2, c2=2. The program is executed on Matlab 2018a 

software.  

 

 

Fig. 2 Fisher value of features. 

 

Fig. 3 Convergence characteristics of BPSO-1-NN, d=104. 

 

Fig. 4 Convergence characteristics of F&BPSO-1-NN, d=20. 

Fig. 5 Convergence characteristics of F&BPSO-1-NN, d=30. 
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Fig. 6 Convergence characteristics of F&BPSO-1-NN, d=40. 

 

Table 2. Results of F&BPSO-1-NN and BPSO-1-NN 

 Algorithm   d   N nf Best 

Fitness 

Err(%) 

 

F
&

B
P

S
O

-1
-N

N
 

20 10 8 5.7978e-04 6.18 

20 10 5.7895e-04 6.12 

30 7 5.5467e-04 5.88 

40 7 5.1492e-04 6.00 

50 10 5.5264e-04 5.69 

30 10 15 5.5589e-04 5.5 

20 15 5.4894e-04 5.63 

30 12 5.3100e-04 5.88 

40 8 5.2180e-04 5.32 

50 8 5.1536e-04 5.38 

40 10 11 5.7188e-04 5.63 

20 14 5.4284e-04 5.50 

30 10 5.4606e-04 5.69 

40 16 5.5518e-04 5.44 

50 15 5.4894e-04 5.13 

 

B
P

S
O

-1
-N

N
 

104 10 32 6.6996e-04 5.44 

20 27 6.2646e-04 5.38 

30 27 6.1040e-04 5.13 

40 23 5.9552e-04 5.13 

50 23 6.1079e-04 5.07 

 

Step 2. Fisher feature selection. Applying Fisher 

criterion as equation (1), the Fisher values of all 

the features are assessed and shown in Fig. 2 in 

descending order. 

Step 3. BPSO-1-NN feature seletion approach. BPSO-1-

NN implements feature selection with an initial 

number of input variables (d) of 104. The 

convergence characteristics are shown in Fig. 3 

and the results of feature selection are shown in 

Table 2. 

From step 2, the number of input selected variables for 

step 3 are 20, 30, and 40. The convergence characteristics of 

the algorithm are shown in Fig. 4, Fig. 5, and Fig. 6. the 

results of feature selection are shown in Table 2. In Table 2, 

nf is the symbol for the number of selected variables. 

3.3. Discussion 

According to Table 2, with the initial number of input 

primitive variables of 104, implementing the BPSO-1-NN 

algorithm has reduced the number of variables to 23 

variables with the classification error of 5.07% or the 

classification accuracy of  94.93%. 

Also according to Table 2, the number of input variables 

for step 3 is selected as 20, 30, 40. In step 3, with 20 input 

variables, the proposed algorithm achieves 7 variables with 

classification error of 5.88% or classification accuracy of 

94.12%. With 30 input variables, the proposed algorithm 

achieves 8 variables with classification error of 5.32% or 

classification accuracy of 94.68%. With 40 input variables, 

the proposed algorithm achieves 10 variables with 

classification error of 5.69% or classification accuracy of 

94.31%. 

Compared with the BPSO-1-NN algorithm, in 

experimental cases, the proposed algorithm F&BPSO-1-NN 

is capable of reducing the number of variables to 69.5%, 

65.2%, 56.5%, while the classification accuracy is only 

decreased by 0.78%, 0.22%, and 0.59% respectively. The 

classification accuracy for all cases is more than 94%. This 

is also the accepted result in previously published works 

[17]–[20]. 

4. CONCLUSIONS 

The paper has introduced the new method to feature 

selection for stability power systems classification. The 

procedures proposed in the algorithm are specific, clear and 

very promising to be applied in selecting variables for 

evaluating the stability of the power system.  

The test results on the IEEE 39-bus diagram show that the 

variable reduction algorithm is very effective. Compared 

with the original 104 variables, the proposed algorithm has 

ability to reduce the number of variables to 7 variables. The 

rate of variables is reduced to about 93.2%. This has great 

significance in reducing sensor measurement costs, reducing 

computational costs for recognition models. The results of 

the study contribute to enriching the research direction of 

power system stability by classification method.  
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