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A B S T R A C T 

In this paper, the optimal generation cooperation problem of thermal power plant (TPP), 

hydropower plant (HPP) and photovoltaic power plant (PVP) is successfully solved by 

slime mould algorithm (SMA). The problem aims to cut electricity generation cost of 

thermal power plants and photovoltaic power plants, and satisfy all operation constraints 

in these power plants and power system. The uncertainty of solar radiation is considered 

during the calculation of power generation and generation cost while limits of reservoir 

volume and discharge in hydropower plants are taken into account. In addition, general 

constraints regarding limits of generators such as minimum and maximum power output 

have to be exactly met. Two systems are run to test the performance of SMA and two 

other applied methods including Marine predator algorithm (MPA) and Moth Swarm 

Algorithm (MSA). The two systems are optimally scheduled over twenty-four hours and 

the PVP in the second system considers the uncertainty in generation and cost. SMA can 

reach smaller electricity generation cost than MPA, MSA and other previous methods in 

finding the best generation for all plants and reaching the lowest cost. Thus, SMA is 

recommended as an effective optimization tool in optimally cooperating three different 

power plants with the uncertainty of solar radiation. 

 

1. INTRODUCTION 

In traditional power systems, electrical energy produced 

from thermal power plants (TPPs) and hydropower plants 

(HPPs) is supplied to bundle loads such as urban 

consumers, commercial centers, and industrial zones via 

transmission lines. These plants use various fuels for 

generating electricity. TPPs, seized a dominated part of 

total electricity capacity, use fossil fuel such as gas, coal 

and oil; however, they are not low-priced and become 

exhausted in the near future. On the other hand, water that 

is used to produce electricity in hydropower plants costs 

approximately zero. Regarding the ability to adapt to the 

electrical load variation, HPPs are preferred to TPPs 

because by controlling the water flow HPPs can quickly 

adjust the generating power from very small power to rated 

power in only several minutes. Unlike HPPs, the startup 

and the response time of TPPs corresponding to the 

variation of load are quite slow. Moreover, increasing or 

decreasing the generating power of TPPs leads to consume 

more fuels or even waste of fuel, so we should restrict large 

adjustment volumes of generating power as well as the 

completely shut down circumstances. Therefore, TPPs 

need to operate in full-time periods once they have been 

started. Based on the previous analysis, to operate 

effectively and economically as well as save cost for power 

system, the coordination of TPPs and HPPs, called hydro-

thermal system operation scheduling (HTSOS), becomes 

essential. The scheduling of hydro-thermal systems is more 

complicated than other systems with only TPPs or only 

HPPs. The core objective of HTSOS problem is how to 

minimize electrical generation fuel costs of thermal plants 

while satisfying the physical and operational constraints of 

HPPs and TPPs [1]. Constraints of TPPs are the limits of 

generating power within lower and upper boundaries while 

those of HPPs are upper and lower generation limits, 

available water resources, continuity water, water 

discharge limits and reservoir volume limits [2]. Available 

water resources, continuity water, water discharge limits 

and reservoir volume limit, called the hydraulic constraints, 

are dependent on the mathematical model of HPPs. 

Normally, HTSOS problem has two basic types that are 

short-term scheduling (STHTSOS) and long-term 

scheduling (LTHTSOS). The comer investigates 
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optimization horizon of from one day to one week 

involving hour-by-hour generation planning of all 

generating units while the latter considers the scheduled 

plan in a long period, namely one week to one year. 

For solving STHTSOS problem, a huge number of 

methods has been developed by scholarships in the past 

few decades, such as Lagrange multiplier theory based 

efficient method (EM) [1], genetic algorithm (GA) [2], 

improved GA (IGA) [2], Cuckoo search (CS) [3-5], 

gravitational search (GS) [6], GS with non-dominated 

sorting procedure (NSGS) [7], GS with combination of 

krill herd search and particle swarm optimization (GS-

KHS-PSO) [8], symbiotic organisms optimizer (SOO) [9-

10], accelerated PSO (APSO) [11], hybrid grey wolf 

optimizer and dragonfly search (HGWODS) [12], krill herd 

search (KHS) [13], quasi-reflected ions motion 

optimization search (QRIMOS) [14], evaporation rate-

based water cycle optimizer (ERWCO) [15], parallel 

differential evolution algorithm (PDE) [16], sine cosine 

search (SCS) [17], two-stage linear programming with 

special ordered sets (TLPSOS) [18] and backtracking 

search (BA) [19]. Among methods, EM [1] and GA [2] are 

the oldest methods but their structure is completely 

different. EM is a mathematical technique whilst GA is an 

evolutionary algorithm. In [1], authors have linearized 

coordination equations and the constraint of availability 

water of each unit has been separately handled by using 

Lagrangian function. Based on the obtained results from 

solving the constraint, the Lagrangian multiplier for the 

energy balance equation is determined and the outputs of 

thermal and hydro units are then determined. However, due 

to using derivative equation, EM cannot solve the problems 

with consideration of nonconvex objective function or 

complicated constraints. GA can solve the drawback of EM 

by employing the mechanics of natural selection and 

natural genetics. And GA can reach a global optimal 

solution as proved by obtained result comparisons [2]. 

Except for EM, other methods have the best solution by 

using population that are randomly initialized. Anyway, the 

above studies have proven a promising ability of 

algorithms in searching the global optimum of the 

STHTSOS problem.  In mentioned papers, authors only 

focused on minimizing the fuel cost function of thermal 

unit and ignoring cost of HPPs. However, fuel resources 

for electricity generation of TPPs will be exhausted and 

scarce in the future. It is therefore essential to find different 

resources.  Solar energy and wind energy are considered as 

suitable solutions that can meet the above issue. Recently, 

these renewable energy sources have been connected in 

conventional power system with hydro and thermal plants 

for tackling HTSOS problem [20-25]. In [20], two 

approaches are proposed for dealing with HTSOS problem 

considering uncertain model of photovoltaic power plants 

(PVPs). An efficient 2m-point estimate method (E2PEM) 

is employed to determine the uncertainty of solar radiation 

and whale optimization optimizer (WOO) is utilized for 

finding power of TPPs and HPPs. In [21-23], multi-

objective hydro-thermal-wind scheduling with 

consideration of wind power cost is proposed for testing 

the ability of bee colony optimization (BCO), NSGA-III 

and SCS, respectively. In these papers, three wind power 

costs such as direct cost, underestimation cost and 

overestimation cost have been established as a part of the 

objective function of such problem. In [24], cascaded 

hydropower plants are considered together with TPPs and 

wind power plants (WPs) while [25] considers the wind-

thermal-hydropower-pumped storage system. Like [21-23], 

the two studies also considered three costs of wind 

turbines. 

In this study, Slime mould algorithm (MSA) [26] is 

nominated to tackle STHTSOS problem considering the 

integration of PVPs, the uncertain solar radiation along 

with complex practical operating constraints. For 

demonstrating the efficacy and practicality of MSA, its 

results are compared with many different algorithms 

available in recent literature and two other implemented 

methods including Marine predator algorithm (MPA) [27] 

and Moth Swarm Algorithm (MSA) [28] that were 

introduced in 2016 and 2020, respectively. MSA and MPA 

are applied to successfully solve some different problems 

such as economic load dispatch [29], network 

reconfiguration [30] and optimal reactive power dispatch 

[31].  

Briefly, the main contributions of the study are as 

follows: 

1. Formulate an optimal scheduling problem for a new 

complex integration structure consisting of 

Photovoltaic, Hydro and Thermal power plants,   

2. Select the suitable decision variables for methods, 

3. Scrutinize performance of SMA, MPA and MSA, 

4. Consider the uncertainty of solar radiation. 

The remaining sections of this paper are as follows. 

Problem formulation is shown in Section Problem 

Formulation. The application of slime mould algorithm for 

the problem is presented in Section Application. Obtained 

results, analyses and discussions are reported in Section 

Numerical Result. Lastly, the conclusion is provided in 

Section Conclusion.  

2. PROBLEM FORMULATION 

For supplying electricity to loads involving urban 

consumers, commercial centers and industrial zones, a 

photovoltaic-hydrothermal power system with TPPs, HPPs 

and PVPs scheduled in optimization periods is constructed 

and depicted in Figure 1. This is one of two approaches 

used to evaluate the effectiveness of the applied algorithms 

in the study. To operate the system, it is essential to 

determine the optimal parameters of the power plants. This 
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issue can be solved by using the optimal photovoltaic-

hydrothermal system operation scheduling problem 

(OPHTSOS) through objective function and constraints. 

The model of TPPs, HPPs and PVPs, the objective function 

and all constraints can be mathematically expressed as 

follows: Thermal power plants 

Fig. 1. A typical photovoltaic hydrothermal power system 

2.1. Thermal power plants 

Among these plants, the cost of buying fuels for generating 

the electricity of TPPs is very high. So, the generation cost 

of TPPs is regarded as the fuel cost function objective that 

need to be minimized. The fuel cost (FC) model of all the 

TPPs available in the system is expressed as a quadratic 

function below: 

FCTPP=∑∑ asi+bsiTsi,n+csi(Tsi,n)
2

K

n=1

N1

i=1

 (1) 

where N1 is the number of TPPs; Tsi,n denotes the power 

generation of the ith TPP over the subinterval n; asi, bsi and 

csi are the fuel coefficients of the TPP i and K signifies the 

number of subintervals.  

However, the real cost model of the TPPs is non-convex 

function as taking the effects of valve on the process of 

increasing and decreasing power output into account. As 

result, Eq. (1) is rewritten by adding a sinusoidal term as 

the following equation below: 

FCTPP=∑∑(
asi+bsiTsi,n+csi(Tsi,n)

2

+ |dsi× sin (esi×(Tsi,min-Tsi,m))|
)

K

n=1

N1

i=1

 (2) 

where dsi and esi are the fuel burnt coefficients of the ith 

TPP. Tsi,min represents the lower power generation of the 

TPP i 

2.2. Hydropower plants 

Unlike TPPs, HPPs use water from the river to generate 

electrical power. Thus, their generation cost is low and can 

be ignored [32]. From this viewpoint, HPPs exploit the 

maximum power and do not consider the cost but their 

hydraulic and generator constraints must be seriously 

administered. 

2.3. Photovoltaic power plants 

As predicted from Department of Energy [33], a world 

energy consumption will significantly grow in the future. 

Regarding energy security, emission problem and a high 

fluctuation of oil prices, it boosts to expand the non-fossil 

source use such as renewable energy resource, nuclear 

power and natural gas. Besides, the policy and support of 

the governments help renewable energies like solar energy 

become the world’s fastest-growing energy source. Like 

HPPs, PVPs do not use any fossil fuel for producing the 

electricity, so their generation cost is negligible. However, 

if we consider the owner of the plant and the difference 

between the generated power and the forecasted power of 

PVPs, their cost model involving direct cost, 

underestimation cost and overestimation cost should be 

added [34]. Specifically, as PVPs belong to private owners, 

three mentioned costs are regarded as a part of objective 

function that must be minimized. The formulations of these 

costs are constructed as follows [34]: 

FCDPVP=g
d
.Tpvf (3) 

FCUPVP= hu. ∫ (tpvf -Tpvf).fpv
(tpvf).dtpvf

Trpvf

Tpvf

 (4) 

FCOPVP= ko. ∫ (Tpvf - tpvf).fpv
(tpvf).dtpvf

Tpvf

0

 (5) 

where, FCDPVP, FCUPVP and FCOPVP are the direct, 

underestimation and overestimation costs of the considered 

PVP; gd, hu, and k0, are the direct, underestimation and 

overestimation cost price coefficients of PVP;  Tpvf  and 

 Trpvf  are the predicted power and the rated power of the fth 

PVP; 𝑓𝑝𝑣(𝑡𝑝𝑣𝑓)  is the solar power probability density 

function for the fth PVP. 

2.4. Objective function 

The main target of the OPHTSOS problem is to cut the 

total generation cost from TPPs and PVPs as follows: 

Reduce FC=FCTPP+FCDPVP+FCUPVP+FCOPVP (6) 

2.5. The constraint sets 

The solutions of Eq. (6) are subjected to the following 

equality and inequality constraints: 

2.5.1. System power balance constraint 

This is one of the most important constraints in the 

problem. This constraint is to ensure the balance between 

supply side and consumption side. In which, the supply 

side consists of power generation of TPPs, HPPs and PVPs 

whilst the consumption side involves the load demand and 

total power losses. Its mathematical equation is given by: 

∑ Tsi,n+

N1

i=1

∑ Thj,n

N2

j=1

+∑ Tpvf,n

N3

f=1

=TL,n+TD,n 

with n=1,…, K  

(7) 

!"#$%&%'($)&*+,-
! "#$#%#&$'()*+#,-.*+&'/$

Hydropower plant Photovoltaic power plant

Thermal power plant

Load
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where Thj,n denotes the power generation of the jth HPP 

over the subinterval n; TL,n and TD,n  are power losses in 

transmission lines and load demand over the subinterval n.  

2.5.2. Discharge limits 

Water discharge via turbines for generating electricity are 

restricted within their boundaries as follows: 

wq
hj,min

 ≤ wq
hj,m

 ≤ wq
hj,max

 (8) 

where wqhj,n is the discharge at the nth subinterval of the jth 

HPP; and 𝑤𝑞hj,minand wq
hj,max

 are the lower and upper 

discharges of the jth HPP. 

In Eq. (8), wqhj,n is a quadratic function as follows [32]: 

wq
hj,n

=ohj+p
hj

Thj,n+q
hj

Thj,n
2  (9) 

where ohj, phj
 𝑎𝑛𝑑 q

hj
 are discharge coefficients of the HPP 

j 

2.5.3. Water availability constraint 

The total water discharge over K intervals must be equal to 

available as given by Eq. (10) [32]:  

∑wq
hj,n

K

n

=WVh,avai   ;j=1,…,N2 ;n=1, …,K (10) 

where WVh,avai denotes available water of the jth HPP for 

power generation over K intervals 

2.5.4. Power generation constraints 

Power generations generated by TPPs, HPPs and PVPs 

must be restricted by their bounds as follows [4]: 

Tsi,min ≤  Tsi,n ≤ Tsi,max;i=1,…,N1; n=1,…,K (11) 

Thj,min ≤ Thj,n ≤ Thj,max;j=1,…,N2; n=1,…, K (12) 

Tpvf,min ≤ Tpvf,n ≤ Tpvf,max;f=1,…,N3; n=1,…, K (13) 

where Tsi,max is the upper power generation bound of the ith 

TPP; Thj,min and Thj,max  are the lower and upper power 

generation limitations of the jth HPP; and Tpvf,min  and 

Tpvf,max  are the lower and upper power generation 

limitations of the fth PVP 

2.6. The uncertainty description of solar power 

For determining the uncertainty of solar irradiance, 

lognormal probability distribution (PDF) [35] can be used 

and is given by  

 PDF (Apvf) = (  
1

Apvf. σ.√(2.π)
 ) 

× exp . [-
(ln(Apvf)-μ)

2

2.σ2
]with Apvf> 0 

(14) 

where σ  is the scale parameter and μ is the location 

parameter; Apvf is solar irradiance of the fth PVP 

As solar irradiance is known, the power output of PVPs 

is resultant from the energy conservation of solar radiation 

as stated in Eq. (15) below [34] 

Tpvf(Apvf)=

{
 
 

 
 

Trpvf×
Apvf

2

Astd+Rc

 for  0<Apvf <Rc

Trpvf×
Apvf

Astd

  for  A
pvf

 >Rc

 

with n=1,...,K 

(15) 

where Astd is the standard environmental solar radiation in 

W/m2; Rc is radiation intensity in W/m2. 

In Eq. (14) and Eq. (15), probability distribution and the 

power output of PVP are two functions with solar radiation 

variable. Their values are determined by the sun’s 

radiations at each time period.  

3. THE APPLICATION OF SLIME MOULD 

ALGORITHM   

3.1. Slime Mould Algorithm 

The main inspiration for forming SMA is based on the 

simulation of the food searching process of Slime Mould 

fungus. This process is divided into two main phases: the 

body-transforming phase and the surrounding food source 

phase. In the first phase, the whole body of Slime Mould is 

transformed like a starfish. In this shape, their limbs are 

spread out in all directions. This behavior aims to improve 

the probability of catching foods from the environment. In 

the second phase, while the food source is already 

determined, the Slime Mould starts to surround the food 

source and release a special enzyme to digest the food. The 

update mechanism of SMA is described in the Equation 

(16) below: 

𝑆m(t+1)= 

{

Lb+r1(Ub-Lb)                                        ;if r1≤ε

{
Smbest(t)+pr.(M.SRA-SRB),             r2≤k

dp.Sm(t),                                       r2>k
 ;if r1>ε

 
(16) 

where Sm(t+1) is the position of Slime Mould in the 

(t+1)th iteration; t is the tth iteration; 𝑆𝑚𝑏𝑒𝑠𝑡is the position 

with the highest flavor that the Slime Mould already 

detected; Sm(t) is the current position of Slime Mould; dp 

is the linear decreasing parameter picked up from the 

interval of [0, 1]; SRA and SRB are the random positions 

taking by the Slime Mould on the way to detect food 

sources; M is the mass of Slime Mould; r1 and r2 are 

respectively the random values with a range of [0 1]; and 

pr is varied in the interval between –q and q. Lb and Ub are 

respectively the lower and upper limitations of search 

spaces. 𝜀 is the predetermined value and is set to 0.03. The 

values of q and k is calculated by: 

 q = arctanh (- (
t

Hi

)+1) (17) 

.k = tanh |F(m) - BestF |; m=1, ..., Ns (18) 

where, F(m) is the fitness of the mth Slime Mould; BestF is 

the best fitness obtained in all iterations; Ns is the 

population; Hi is the highest iteration. 
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Table 1.  The comparison of cost values for Case 1 

Method EM [1] GA [2] IGA [2] CS [3] MSA MPA SMA 

Min. Cost ($) 96024.37 96028.65 96024.34 96024.68 96024.76 96024.41 96024.35 

Aver. Cost ($) - 96050.15 96024.37 96024.68 96039.74 96026.37 96024.46 

Max. Cost ($) - 96086.70 96024.42 96024.69 96105.19 96039.22 96024.57 

STD - - - 0.003 13.051 2.758 0.036 

Ns - - - 20 50 25 50 

Hi - - - 1000 200 200 200 

 

3.2. The whole search of SMA for the problem 

The SMA implementation for determining the power 

output of the plants to reduce cost is presented in the steps 

below and summarized in flowchart of Figure 2. 

Step 1: Set the values for Ns, Hi and set t =1 

Step 2: Generate solutions in the population Sm (m=1,…, 

Ns) 

Step 3: - Calculate fitness function using Eq. (6) 

   - Find 𝐵𝑒𝑠𝑡𝐹and 𝑆𝑚𝑏𝑒𝑠𝑡 

Step 4: Calculate k and q by using Eq. (17) and Eq. (18) 

Step 5: Update new solutions using Eq. (16) 

Step 6: Check violated new solutions  

Step 7: If t=Hi, stop the iterative algorithm. Otherwise, 

set t=t+1 and back to Step 3. 

 

 

Fig. 2. The search process of SMA. 

4. RESULTS  

In this section, SMA is compared to MPA, MSA and other 

methods such as EM [1], GA [2], IGA [2] and CS [3] to 

find the best one. Two test systems are handled for 

determining the optimal parameters. System 1 considers 

the operation cooperation of one hydro power plant and 

one thermal power plant and System 2 comprises of one 

hydro power plant, one thermal power plant and one 

photovoltaic power plant. The whole schedule timeline is 

24h and this schedule is divided into 24 intervals 

separately. The entire work of programing, simulating and 

data arrangement is implemented in a personal computer 

with 2.4 Ghz of Processing unit and 16 GB of RAM. For 

each system, each method is run for getting 50 successful 

trial runs.   

4.1. Comparison and discussion on system 1 

Data of System 1 are given in Table A1 and Table A2 and 

load demand is reported in Figure A1 in Appendix. The 

whole data can be read by referring to [3]. For comparisons 

with other approaches, the minimum cost (Min. Cost), 

average cost (Aver. Cost), maximum cost (Max. Cost) and 

standard deviation (STD) are determined to demonstrate 

MPA's strong search. To reach good results, the most 

important parameters should be selected effectively to be 

population (Ns) and the greatest iteration (Hi). These 

parameters are chosen for solving two test systems under 

consideration based on the system dimension and the 

settings of previously used methods in order to achieve 

good results and a fair comparison. The two parameters 

have an impact on the final results as well as the 

computation time. High values of these parameters usually 

help applied methods discover very good results, but they 

take a long time to compute. Conversely, if these 

parameters are set to low values, the applied procedures 

will produce poor results. However, in this scenario, short 

computation time is a significant benefit. As a result, Ns 

and Hi were chosen to achieve both the good result and 

reasonable computation time.  To solve System 1, by the 

experiment, Ns of SMA, MPA and MSA are respectively 

set to 50, 25 and 50. The Hi is set 200 for the three 

methods. The obtained results by using the methods are 

reported in Table 1 and plotted in Figure 3, Figure 4 and 
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Figure 5. Namely, Figure 3 is the best cost obtained from 

50 independent runs for System 1. It points out that MSA is 

the method with extremely high fluctuation between each 

independent run. The average fluctuation of 50 

independent runs given by MPA method is smaller than 

MSA. In contrast to MSA, SMA has the smallest 

fluctuations of the fitness values during 50 independent 

runs. So, SMA is the most stable method among the three 

applied methods.  

 

 

Fig. 3. The best cost obtained form 50 independent runs for 

System 1. 

 

 

Fig. 4. The convergence curve of three methods of System 1. 

 

Figure 4 shows the convergence curves reached by three 

applied methods for the system. The black curve represents 

the convergence of SMA method while the blue and red 

ones are for the convergence of MPA and MSA, 

respectively. In this figure, SMA shows its outstanding 

performance because the black curve reaches the optimal 

fitness value much earlier than both MPA and MSA. 

Specifically, SMA can reach the best cost at the 155th 

iteration while MPA and MSA can reach this value at the 

170th and 195th iteration, respectively. Clearly, SMA is 

much faster and more effective than MPA and SMA for the 

system.  

 

 
Fig. 5. The power output generation by two type of power 

plant at particular time period found by SMA. 

 

According to Figure 5, the power demand is represented 

as the light blue bars while the power supplied by HPP and 

TPP are modelled by the yellow bars and the dark blue 

bars, respectively. During 24 intervals of the entire 

schedule, the total amount of power generated by both 

hydro power plant and thermal power plant surely satisfied 

the power demand. 

In Table 1, the cost values in terms of Min. Cost, Aver. 

Cost, Max. Cost and STD obtained by three applied 

methods are compared with the similar values from others. 

Among three applied methods, SMA is the most effective 

method about the Min. Cost. Namely, the Min. Cost given 

by SMA is $96024.35 while that reached by MPA method 

and MSA method are $96024.41 and $96024.76, 

respectively. Even the Max. Cost of SMA is better than the 

Min. Cost of MSA and approximatively equals the Min. 

Cost of MPA. That means that the application of SMA 

helps save more costs than MPA and MSA. As compared 

to other methods, the Min. Cost of SMA is better than the 

similar values reported by EM [1] with $96024.37, GA [2] 

with $96028.65, CS [3] with $96024.68, and slightly 

greater than that of IGA [2] with $96024.34. However, the 

results in terms of STD, Ns, and Hi of IGA were not 

reported. Therefore, it lacks adequate information in order 

to make a final conclusion that the IGA method is more 

effective than SMA. Regarding to STD, that of SMA is 

0.036 and smaller than that of MPA, MSA but higher than 

that of CS [3]. It is noted that CS [3] was run by using 

1000 iterations but SMA was run by using 200 iterations. 
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4.2. Comparison and discussion on system 2 

System 2 is formed from System 1 by adding one PVP. So, 

data of HPP and TPP of such system are the same as those 

in System 1. The data of PVP are taken from [35] and 

reported in Table A3 in Appendix. Due to the presence of 

PVP, the number of control variables are increased, so 

System 2 is more complicated than System 1. In addition, 

the uncertainty of solar radiation is also considered. 

Therefore, factor electricity prices such as the direct, 

underestimation and overestimation costs are used for 

determining the cost of PVP. These costs are considered as 

a part in function objective of the OPHTSOS problem.  

Similar to System 1, these parameters such Ns and Hi for 

running SMA, MPA and MSA remain unchanged as 

reported in Table 2.  The costs from fifty solutions 

obtained by implementing the three methods are displayed 

in Figure 6. 

 
Table 2.  The comparison of cost values for Case 2 

Method MSA MPA SMA 

Min. Cost ($/h) 93475.33 93442.89 93438.83 

Aver. Cost ($/h) 93550.64 93457.14 93440.44 

Max. Cost ($/h) 93681.23 93505.85 93468.65 

STD (s) 47.22 14.08 4.11 

Ns 50 25 50 

Hi 200 200 200 

 
Fig. 6. The best cost obtained from 50 independent runs for 

System 2. 

 

The observation of Figure 6 indicates that the fluctuation 

between each independent run of the SMA method is very 

small. The values of SMA are below those of MPA and 

SMA, excepting the solution at the 39th iteration. In 

contrast to SMA, the fluctuations of MSA are the highest. 

Clearly, the SMA method is the most stable method whilst 

the MSA method is still the most unstable method. Figure 

7 shows the convergence curves. The convergence speed in 

the whole process of finding the optimal results of SMA is 

the quickest among the three methods. Specifically, the 

SMA needs only around 150 iterations for reaching the 

optimal results. The value of MSA is about 175 iterations 

meanwhile MPA cannot reach the optimal value even for 

one solution after running out of 200 iterations.  

 
Fig. 7. The convergence curve of three methods of System 2 

 

 

Fig. 8. The power output generation by two type of power 

plant at particular time period found by SMA. 

 

Figure 8 presents the distribution of power output 

generated by HPP, TPP and PVP over 24 intervals given 

by SMA. The power output from HPP, TPP and PVP are 

shown by different color bars. The power output allocation 

of HPP is the same values over 24 intervals. This proves 

that HPP always generates the maximum power output 

because HPP’s cost is insignificant. The contribution of 

TPP vividly fluctuates following each particular interval. 

That of PVP only exists at 8h until 17h. On the remaining 

intervals, the solar radiation does not happen, leading to 

power of zero. The power output from PVP is much less 
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than that from HPP and TPP during the entire day. In 

addition, total generation of the three plant types can meet 

the power demand illustrated by the light blue bars. The 

results obtained by three applied methods in terms of Min. 

Cost, Aver. Cost, Max. Cost and Std are tabled in Table 2. 

The results obtained by SMA method are $93438.83, 

$93440.44, $93468.65 and better than those of both MPA 

and MSA method. 

The exact calculation indicates that SMA can find less 

cost than MPA and MSA by $4.06 and $36.5 for Min. 

Cost, by $16.70 and $110.20 for Aver. Cost, by $37.199 

and $212.58 for Max. Cost. Also, STD reached by the 

SMA is also smaller than that of MPA and MSA. 

Essentially, SMA’s STD is only 4.11 while the similar 

values of MPA and MSA are 14.08 and 47.22. Clearly, 

SMA is the most efficient method among three methods 

applied in this case and the MSA is the most inefficient 

method.  

5. CONCLUSIONS 

In this paper, Slime mould algorithm (SMA), Marine 

predator algorithm (MPA) and Moth Swarm Algorithm 

(MSA) are applied to find the optimal operation parameters 

for thermal power plants, hydroelectric plants and 

photovoltaic power plants in OPHTSOS problem. The 

performance of three methods is investigated on two test 

systems. The second system is modified from the first 

system, so it becomes more complicated by considering 

PVP and the uncertainty of solar radiation. Results from 

two systems indicate that SMA could reach the best 

performance among the three applied methods. Namely, 

the minimum cost, the average cost, the maximum cost and 

standard deviation found by the SMA method are better 

than those of MPA and MSA. As compared to previously 

published optimization tools, SMA is also superior to 

almost all compared methods. Clearly, SMA demonstrated 

its promising ability to deal with the optimization problem 

of reducing the cost of electricity generation from thermal 

power plants and photovoltaic power plants while 

satisfying all system and generator constraints. In the 

future, it will be applied for larger systems with higher 

number of power plants and wind power plants considering 

the uncertainty of solar and wind. 
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APPENDIX 

Table A1. Data of TPP in System 1 

i asi bsi csi Psi,min (MW) Psi,max (MW) 

1 373.7 9.606 0.001991 0 505 

 

Table A2. Generation function coefficients and generation limits of HPP of System 1 

j ahj bhj chj wqhj,min (Acre-ft) wqhj,max (Acre-ft) WVhj (Acre-ft) 

1 61.53 -0.009079 0.007749 61.53 128.5473 2559.6 

  

Table A3. Optimal discharges (Acre-ft/h) found by three applied methods for System 1 

n MSA MPA SMA n MSA MPA SMA 

1 102.312 102.302 102.387 13 106.463 106.616 106.537 

2 101.190 101.222 101.439 14 107.683 107.420 107.357 

3 100.512 101.009 101.005 15 107.923 107.922 107.800 

4 100.878 100.801 100.764 16 109.280 109.148 109.219 

5 100.768 100.513 100.489 17 112.367 111.648 111.843 

6 101.450 101.304 100.977 18 112.683 112.335 112.462 

7 102.526 103.247 103.320 19 110.872 110.878 110.865 

8 107.679 107.335 107.413 20 110.191 110.277 110.205 

9 109.812 109.660 109.585 21 107.981 108.345 108.413 

10 110.073 110.081 110.045 22 106.522 106.798 106.619 

11 110.870 110.705 110.761 23 105.024 105.226 105.018 

12 110.712 111.000 111.257 24 103.831 103.808 103.820 

 

 

Fig. A1. Load demand of Systems 1 and 2 

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A
ct

iv
e 

p
o

w
er

 (
M

W
)

Time (h)

https://doi.org/10.1109/IRSEC.2018.8702843
https://doi.org/10.1109/IRSEC.2018.8702843
https://doi.org/10.1016/j.enconman.2017.06.071
https://doi.org/10.1016/j.enconman.2017.06.071


202 V. S. Vo, L. H. Pham, and H. M. Hoang / GMSARN International Journal 17 (2023) 192-202 

 

Table A5. Optimal solutions found by three methods for System 2 

n 

MSA MPA SMA 

wq 

(Acre-ft) 

Tpvf 

(MW) 

wq 

(Acre-ft) 

Tpvf 

(MW) 

wq 

(Acre-ft) 

Tpvf 

(MW) 

1 104.753 0.000 103.602 0.000 103.095 0.000 

2 102.686 0.000 102.304 0.000 101.847 0.000 

3 102.416 0.000 100.673 0.000 101.587 0.000 

4 100.232 0.000 102.407 0.000 101.629 0.000 

5 100.572 0.000 100.200 0.000 100.249 0.000 

6 103.257 0.000 103.463 0.000 101.604 0.000 

7 105.638 6.699 104.044 6.708 103.548 6.721 

8 102.901 16.144 107.563 16.329 107.410 16.329 

9 108.418 35.480 108.397 35.500 109.110 35.500 

10 108.098 43.912 108.463 44.020 109.107 44.020 

11 108.727 48.259 108.219 48.280 108.714 48.280 

12 108.227 49.698 108.611 49.700 109.688 49.700 

13 104.047 49.683 106.026 49.700 105.442 49.700 

14 106.942 48.911 106.643 48.988 106.253 48.990 

15 113.876 45.256 106.356 45.440 106.524 45.440 

16 108.297 38.288 107.817 38.340 109.144 38.333 

17 109.852 22.658 112.315 22.720 111.866 22.720 

18 110.165 8.235 113.512 8.518 113.329 8.520 

19 116.754 0.000 111.318 0.000 112.238 0.000 

20 109.720 0.000 110.895 0.000 110.855 0.000 

21 106.739 0.000 110.451 0.000 109.294 0.000 

22 104.095 0.000 109.250 0.000 107.482 0.000 

23 107.148 0.000 103.715 0.000 105.390 0.000 

24 106.042 0.000 103.355 0.000 104.194 0.000 

 


