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A B S T R A C T 

In practice, the conductor resistance of elements in power systems is not a constant but 

depends on the temperature. The conventional power flow problem considering the 

conductor resistance as a constant may lead to not exact results, especially for the power 

losses. In this paper, a combined particle swarm optimization and differential evolution 

(CPSO-DE) method is proposed to solve the temperature dependent optimal power flow 

(TDOPF) problem in power systems. The considered TDOPF problem is a very large-

scale and complex problem in power systems due to the consideration of the effect of 

temperature on the resistance of transmission lines in the conventional OPF problem. On 

the other hand, the proposed CPSO-DE is a powerful method suitable for solving OPF 

problems by utilizing the advantages of both PSO and DE algorithms to find the optimal 

solution. For implementing the proposed method to the TDOPF problem, the PSO 

algorithm with constriction factor guided by a pseudo-gradient method is first used to 

explore the global search space of the problem and then the DE algorithm is used to exploit 

the local search space of the problem to guarantee that the near optimal solution can be 

found. To validate the effectiveness of the proposed method for the considered problem, 

the IEEE 30-bus and IEEE 118-bus systems have been used for testing and the results 

obtained from the proposed method have been compared to those from other methods for 

the both conventional OPF and TDOPF problems. The test results have indicated that the 

proposed method can effectively solve these problems compared to other methods for the 

considered cases. Therefore, the proposed CPSO-DE method is a very effective method 

for solving the large-scale and complex TDOPF problem in power systems. 

 

1. INTRODUCTION 

The power flow analysis is an important problem in 

planning, expansion and state evaluation of power systems. 

The power flow analysis results also are used in optimal 

power flow, transient stability, and economy dispatch 

problems. Therefore, the accuracy of the power flow plays a 

very important part in the power system analysis and 

operation [1]. As the temperature changed, the resistance of 

conductors in transmission systems will also change 

accordingly. In fact, the difference of conductor resistance 

values in winter and summer is nearly 15% [2]. However, 

the temperature effect on the conductors is usually neglected 

in the conventional power flow problem. Therefore, 

conventional power flow usually results a difference 

compared to the practical case, especially in the total branch 

and system losses. For a more exact result, the temperature 

effect on the conductor resistance should be considered in 

the power flow calculation.  

On the other hand, the optimal power flow (OPF) is one 

of the problems that use the power flow result to determine 

the best operating levels for generators, transformers, and 

shunt capacitors in power systems to minimize a specified 

objective while satisfying all generators, transformers, shunt 

capacitors, and system constraints [3]. The OPF problem is 

widely used in the power system operation, expansion 

planning, and electricity market assessment and solved by 

using several conventional and heuristic methods in the 

literature. Some conventional methods have been developed 

in the early decades to solve the OPF problem such as 

nonlinear programming (NLP) [3-7], quadratic 

programming (QP) [7], linear programming (LP) [8-10], 

Newton method and interior point method (IP) [11]. These 

methods have been successfully applied for solving the 
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problem with the advantages of robust and fast for obtaining 

the optimal solution for the problem and many of them can 

be used in the industrial practice. However, these methods 

still suffer difficulty when dealing with the OPF problem 

with non-convex objective functions as well as finding the 

global optimal solution for the large-scale OPF problem 

with complex constraints. Moreover, the OPF problems 

solved by these methods did not consider the effect of the 

temperature on the conductor resistance. In fact, it will be 

more difficult for applying these methods for solving the 

OPF problem considering the effect of the temperature on 

the conductors due to increasing the complexity and 

dimension of the problem.  

Recently, the  methods based on meta-heuristic search 

have been developed to overcome the disadvantages of the 

conventional optimization techniques and widely applied for 

solving different optimization problems. Several meta-

heuristic search methods have been implemented to solve 

the OPF problem such as basic particle swarm optimization 

(PSO) [12], PSO with inertia weight factor (IWPSO) [13], 

PSO using adaptive acceleration factors and different 

mutation formulas (APSO) [14], weights aggregated multi-

objective PSO (WAMOPSO) [15], PSO with graphics 

processing unit (GPU-PSO) [16], PSO with pseudo-gradient 

search and constriction factor (PG-CF-PSO) [17], PSO with 

evolving ant direction (EADPSO) [18], basic differential 

evolution algorithm (DE) [19, 20], modified DE (MDE) 

[21], moth swarm algorithm (MSA) [22], artificial bee 

colony algorithm (ABC) [23], evolutionary programming 

(EP) [24], Adaptive Real Coded Biogeography-Based 

Optimization (ARCBBO) [25], Grey Wolf Optimizer 

(GWO) [26], Krill Herd algorithm (KHA) and improved 

Krill Herd algorithm (IKHA) [27], tabu search algorithm 

(TS) [28], Gaussian bare-bones imperialist competitive 

algorithm (GBICA) and modified Gaussian bare-bones 

imperialist competitive algorithm [29], moth-flame 

optimization algorithm (MFO) and improved moth-flame 

optimization algorithm (IMFO) [30], harmony search 

algorithm (HSA) and fuzzy harmony search algorithm 

(FHSA) [31], backtracking search optimization algorithm 

(BSA) [32], improved colliding bodies optimization 

algorithm (ICBO) [33], Salp swarm optimizer (SSA) [34], 

fuzzy adaptive hybrid self-adaptive particle swarm 

optimization (FAHSPSO-DE) [35]. The MDE method in 

[21] has used a vector 𝑥𝑏𝑒𝑠𝑡  instead of random vector 𝑥1 in 

the mutation stage to improve convergence rate and the 

differential weight F value is calculated based on the current 

iteration. The MSA method in [22] is inspired by the 

orientation of moths towards the light source and applied to 

achieve the fuel cost in a 30-bus system. The ABC method 

[23] is inspired by the bees looking for food based on three 

types of bees including employed bees, onlooker bees, and 

scout bees. The EP method in [24] uses the mutation, 

competition, and selection mechanisms to achieve the global 

best solution. The ARCBBO [25] uses the improved 

mutation mechanism to enhance the convergence rate for 

solving the OPF problem. The GWO method [26] is based 

on four types of wolves in a wolf pack those are α, β, δ and 

ω and the pack activities which are hunting, searching for 

prey, encircling prey, and attacking prey are implemented 

on the algorithm. The GWO method has been successfully 

used to solve OPF problem in 30 and 118 bus systems. The 

KHA method and its improved version, namely IKHA, are 

proposed in [27] and have successfully solved the OPF 

problem with different objective functions on 30, 57 and 118 

bus systems. On the other hand, some other studies have also 

consider other factors affecting to the OPF problem such as 

IPSO applied for solving the OPF problem with FACTS 

devices [36] and Equilibrium optimizer (EO) method for 

solving the OPF problem considering wind power integrated 

in the system [37]. These problem is more complex than the 

original OPF problem due to considering other factors. In 

general, the advantages of meta-heuristic search methods for 

solving optimization problems are easy for implementation, 

able to deal with different types of complex optimization 

problems, and able to find the near-optimum solution. 

However, these methods may still suffer local optima due to 

their initialization and parameter dependent. Moreover, the 

OPF problem solved by the mentioned methods did not 

consider the effect of the temperature on the conductor 

resistance in power systems.   

In recent studies, the temperature dependent of 

transmission lines in power systems has been considered in 

the power flow problem [38-40]. In these studies, the 

temperature of transmission lines is considered as a control 

variable vector which will be included in the calculation. 

Consequently, the power flow becomes a more complex and 

larger scale problem compared to the conventional power 

problem. However, as the temperature dependent power 

flow problem will lead to a more exact result on the power 

loss calculation in power systems. Therefore, the 

temperature dependent power flow problem has become a 

basis for further studies in power systems. One of the 

optimization problems in power systems considering the 

temperature dependent of transmission lines which have 

attracted the attention of researchers recently is the 

temperature dependent optimal power flow (TDOPF) [41-

46]. In [41], the authors have implemented a simplified 

interior point for dealing with the TDOPF and decoupled 

TDOPF problems for large-scale systems up to 3012 buses. 

However, the obtained results from this study are only 

verified to those from the conventional OPF problem. The 

gbest-guided artificial bee colony (GABC) algorithm [43] 

has been proposed for solving the TDOPF problem and test 

on the IEEE 30 bus system and large-scale Polish systems. 

Similar to the study in [41], the results obtained in this study 

are also only verified by comparing to those from the 

conventional OPF problem. In another study, a sine cosine 

algorithm (SCA) has been implemented to solve the TDOPF 

problem [44]. This study only considered the IEEE 30 bus 
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system and also verified the obtained result via comparing 

to that from the conventional OPF problem. The chaotic 

whale optimization algorithm (CWOA) has been also 

proposed for solving the TDOPF problem and applied to the 

IEEE 30 bus and large-scale Polish systems. The results 

comparisons have indicated that the CWOA is more 

effective than the GABC in terms of the fuel cost and power 

loss for the test cases. The TDOPF problem with the 

integration of distributed generations has been solved by the 

quantum-behaved particle swarm optimization (QPSO) as in 

[44]. Generally, the TDOPF problem has started attracting 

the attention of researchers recently due to its ability to 

provide an exact solution to the practice. 

Among several meta-heuristic search methods developed 

for solving different optimization problems, PSO and DE 

are the most widely used methods in the literature with many 

their variants. The advantages of the PSO method are 

simple, fast calculation, easy to combine with other 

methods, and able to deal with large-scale problems while 

the advantages of the DE method are good at exploration 

with diversification and able to converge to the global 

minimum. However, both the methods have also 

disadvantaged like many other meta-heuristic search 

methods. The PSO may suffer a local optimum due to its 

premature convergence meanwhile the DE method requires 

a parameter tuning and may not be stable convergence for 

large-scale optimization problems. Therefore, their 

improved versions are continually developed to enhance 

their performance for effective dealing different 

optimization problems. In this paper, a combined PSO and 

DE (CPSO-DE) method is proposed to solve the TDOPF 

problem. The proposed method can overcome the 

disadvantages of the both for effectively dealing with large-

scale and complexity-constrained optimization problems 

where the PSO method is used to explore the search space 

of the problem for the global search and then the DE is used 

to exploit the local search. By using the combination, the 

proposed method can effectively solve the large-scale with 

complex constraints of the TDOPF problem. The proposed 

CPSO-DE has been validated on the benchmark systems 

such as the IEEE 30-bus and IEEE 118-bus systems by 

comparing the obtained results to those from other methods 

in the literature as well as the PSO and DE methods.      

The main contributions of this paper are as follows: 

• Development of a combined method of PSO and DE 

for effectively dealing with large-scale optimization 

problems with complex constraints. 

• Implementation of the proposed CPSO-DE method for 

solving the very large-scale and complexity-constrained 

TDOPF problem. 

• The proposed method has been verified on test systems 

including the IEEE 30 and 118 bus systems. 

• The test results obatined from the proposed method 

have been validated via comparing to those obtained from 

the mature optimization methods in the literature as well as 

the PSO and DE methods. 

• The result comparisons have indicated that the 

proposed method is more effective than the compared 

methods. Thus, the proposed CPSO-DE can effectively deal 

with the TDOPF problem.  

The remaining parts of the paper are organized as 

follows. Section 2 presents the mathematical model of the 

TDOPF problem, the proposed CPSO-DE method and 

implementation to the TDOPF problem are introduced in 

Section 3, the simulation results are provided in Section 4 

and finally the conclusion is given. 

2. FORMULATION OF TEMPERATURE 

DEPENDENT OPTIMAL POWER FLOW PROBLEM 

The objective of temperature dependent optimal power flow 

(TDOPF) problem is to minimize a specified objective while 

satisfying a set of equality and inequality constraints. 

Similar to the conventional OPF problem, the mathematical 

model of the TDOPF problem can be formulated as follows: 

Minimize 𝑓(𝑥, 𝑢) (1) 

subject to following constraints: 

𝑔(𝑥, 𝑢) = 0 (2) 

ℎ(𝑥, 𝑢) ≤ 0 (3) 

where, f is the objective function of the problem, x is the 

vector of dependent (state) variables, u is the vector of 

independent (control) variables, g is the set of equality 

constraints and ℎ is the set of inequality constraints. 

The vector of control variables u for the OPF problem 

including the power outputs at generation buses excluding 

the slack bus, voltage at generation buses, reactive power at 

buses with shunt capacitors, and step ratio in the on-load tap 

changer of transformers can be described as follows: 

𝑢𝑇

= [𝑃𝑔2, … , 𝑃𝑁𝑔, 𝑉𝑔1, … , 𝑉𝑁𝑔
, 𝑄1, … , 𝑄𝑁𝑐

, 𝑇1, … , 𝑇𝑁𝑡
] (4) 

where, 𝑃𝑔 is the active power of generator, 𝑉𝑔 is the voltage 

at generator bus, 𝑄 is the reactive power of compensator, 𝑇 

is the tap ratio of transformer; 𝑁𝑔, 𝑁𝑐, and 𝑁𝑡 are the number 

of generators, number of shunt compensators and number of 

transformers.  

The vector of state variables x may be represented by: 

𝑥𝑇

= [𝑃𝑔𝑠𝑙𝑎𝑐𝑘 , 𝑄𝑔1, … , 𝑄𝑁𝑔, 𝑉1, … , 𝑉𝑁𝑃𝑄
, 𝑆1, … , 𝑆𝑁𝑇𝐿

] (5) 

where, 𝑃𝑔𝑠𝑙𝑎𝑐𝑘  is the active power output of slack bus 

generator, 𝑄𝑔 is the reative power output at generator bus, 𝑉 

is the voltage at load bus, 𝑆 is the loading of transmission 

line; 𝑁𝑃𝑄  and 𝑁𝑇𝐿 are number of load buses and number of 

transmission lines. 
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2.1 Objective function 

In this paper, total fuel cost is used as objective function and 

can be described as: 

𝑀𝑖𝑛 𝑓(𝑥, 𝑢) = ∑(𝑎𝑘 + 𝑏𝑘𝑃𝑔𝑘 + 𝑐𝑘𝑃𝑔𝑘
2 )

𝑁𝑔

𝑘=1

 (6) 

where, 𝑓(𝑥, 𝑢) is the total cost of all generators, 𝑃𝑔𝑘 is the 

active power output of 𝑘th generator; 𝑎𝑘, 𝑏𝑘 and 𝑐𝑘 are the 

cost coefficients of 𝑘th generator. 

2.2 The equality and inequality constraints 

All the constraints of the TDOPF problem are shown as 

below: 

1) Power balance for each bus and heat balance for each 

branch 

𝑃𝑔𝑘 − 𝑃𝑑𝑘 − 𝑉𝑘 ∑
(𝑉𝑖(𝐺𝑘𝑖(𝑇). 𝑐𝑜𝑠(𝛿𝑘 − 𝛿𝑖)

+𝐵𝑘𝑖(𝑇). 𝑠𝑖𝑛 (𝛿𝑘 − 𝛿𝑖))
𝑁𝑏𝑢𝑠
𝑖=1 = 0 (7) 

𝑄𝑔𝑘 − 𝑄𝑑𝑘 − 𝑉𝑘 ∑
(𝑉𝑖(𝐺𝑘𝑖(𝑇). 𝑠𝑖𝑛(𝛿𝑘 − 𝛿𝑖)

−𝐵𝑘𝑖(𝑇). 𝑐𝑜𝑠 (𝛿𝑘 − 𝛿𝑖))
𝑁𝑏𝑢𝑠
𝑖=1 = 0 (8) 

𝑇𝑘𝑖 − (𝑇𝑎𝑚𝑏 + 𝑅𝜃,𝑘𝑖 . (𝑔𝑘𝑖(𝑇). (𝑉𝑘
2 + 𝑉𝑖

2) −

2𝑔𝑘𝑖(𝑇). 𝑉𝑘𝑉𝑖 𝑐𝑜𝑠(𝛿𝑘 − 𝛿𝑖))) = 0 (9) 

2) Real and reactive power limit at generation buses 

𝑃𝑔𝑘
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑘 ≤ 𝑃𝑔𝑘

𝑚𝑎𝑥     𝑘 = 1,…𝑁𝑔 (10) 

𝑄𝑔𝑘
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑘 ≤ 𝑄𝑔𝑘

𝑚𝑎𝑥     𝑘 = 1,…𝑁𝑔 (11) 

3) Voltage limit at generation buses 

𝑉𝑔𝑘
𝑚𝑖𝑛 ≤ 𝑉𝑔𝑘 ≤ 𝑉𝑔𝑘

𝑚𝑎𝑥     𝑘 = 1,…𝑁𝑔 (12) 

4) Reactive power limit of shunt capacitor 

𝑄𝑐𝑘
𝑚𝑖𝑛 ≤ 𝑄𝑐𝑘 ≤ 𝑄𝑠ℎ𝑘

𝑚𝑎𝑥     𝑘 = 1,…𝑁𝑐 (13) 

5) Transformer tap changer limit 

𝑇𝑘
𝑚𝑖𝑛 ≤ 𝑇𝑘 ≤ 𝑇𝑘

𝑚𝑎𝑥     𝑘 = 1,… 𝑁𝑡 (14) 

6) Voltage limit at load buses 

𝑉𝑙𝑘
𝑚𝑖𝑛 ≤ 𝑉𝑙𝑘 ≤ 𝑉𝑙𝑘

𝑚𝑎𝑥     𝑘 = 1,…𝑁𝑃𝑄 (15) 

7) Power limit on transmission lines 

𝑆𝑘 ≤ 𝑆𝑘
𝑚𝑎𝑥 , 𝑘 = 1, … 𝑁𝑇𝐿 (16) 

where, 𝑃𝑔𝑘 is the active power output of 𝑘th generator, 𝑉𝑔𝑘 

is the voltage of 𝑘th generator bus, 𝑇𝑘 is the tap ratio of 𝑘th 

transformer, 𝑄𝑐𝑘  is the reactive power output of 𝑘 th shunt 

compensator, 𝑄𝑔𝑘  is the reactive power output of 𝑘 th 

generator, 𝑉𝐿𝑘  is the voltage of 𝑘th load bus, and 𝑆𝑘  is the 

rating of 𝑘th transmission line.  

3. IMPLEMENTATION OF CPSO-DE FOR THE 

PROBLEM 

3.1 Temperature dependent power flow problem 

In power systems, all elements have resistance which are 

actually non-linear ones, that means the resistance in the 

elements will vary following the change of temperature. The 

resistance of conductors is a function of temperature and 

described by [47- 48]: 

𝑅 = 𝑅𝑟𝑒𝑓 ∗
𝑇 + 𝑇𝑓

𝑇𝑅𝑒𝑓 + 𝑇𝑓

 (17) 

in which, 𝑅 is conductor resistance at 𝑇0C, 𝑇 is conductor 

temperature, 𝑅𝑟𝑒𝑓  is conductor resistance at reference 

temperature, 𝑇𝑅𝑒𝑓  is the reference temperature, 𝑇𝑓  is the 

temperature constant. 

The thermal modelling of power system elements is 

given in [1-2, 49]. In temperature dependent power flow, it 

is assumed that power system is operating at steady state. 

Also, TDPF has modifications in state vector, mismatch 

equations and Jacobian matrix. Besides voltage 𝑉  and 

voltage angle 𝛿, TDPF has an additional state variable which 

is a set of branch temperature 𝑇. Like 𝑉, 𝑇 is expressed in 

per – unit relative to a base quantity. Therefore, state vector 

in TDPF can be represented as: 

𝑥 = [
𝛿
𝑉
𝑇
] (18) 

In addition to real power mismatch equations and reactive 

power mismatch equations, TDPF also requires temperature 

mismatch equations to calculate the system state. These 

mismatch equations are given as follows [50]: 

∆𝑃𝑖 = (𝑃𝑔𝑒𝑛,𝑖 − 𝑃𝑙𝑜𝑎𝑑,𝑖) − 𝑃𝑖(𝛿, 𝑉, 𝑇) (19) 

∆𝑄𝑖 = (𝑄𝑔𝑒𝑛,𝑖 − 𝑄𝑙𝑜𝑎𝑑,𝑖) − 𝑄𝑖(𝛿, 𝑉, 𝑇) (20) 

∆𝐻𝑖𝑗 = 0 − 𝐻𝑖𝑗(𝛿, 𝑉, 𝑇) (21) 

Due to the additional state vector, the Jacobian matrix is 

modified as follows [50]: 

𝐽(𝛿, |𝑉|, 𝑇)  =

[
 
 
 
 
 
 
𝜕𝑃

𝜕𝛿

𝜕𝑃

𝜕|𝑉|

𝜕𝑃

𝜕𝑇
𝜕𝑄

𝜕𝛿

𝜕𝑄

𝜕|𝑉|

𝜕𝑄

𝜕𝑇
𝜕𝐻

𝜕𝛿

𝜕𝐻

𝜕|𝑉|

𝜕𝐻

𝜕𝑇]
 
 
 
 
 
 

 (22) 
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3.2 Constraint handling method 

It is worth to mention that the control variables are self-

constrained. The inequality constraints 𝑃𝑔𝑠𝑙𝑎𝑐𝑘, 𝑉𝐿, 𝑄𝑔, and 

𝑆 can be incorporated in the objective function as quadratic 

penalty terms (penalty functions). Therefore, the objective 

function can be augmented as: 

Min 𝐹(𝑥, 𝑢) = (∑ 𝑎𝑘𝑃𝑔𝑘
2 + 𝑏𝑘𝑃𝑔𝑘 +

𝑁𝑔

𝑘=1

𝑐𝑘) + 𝜆1(𝑃𝑔𝑙𝑎𝑠𝑘 − 𝑃𝑔𝑠𝑙𝑎𝑐𝑘
𝑙𝑖𝑚 )

2
 

+( 𝜆2 ∑(𝑄𝑔𝑘 − 𝑄𝑔𝑘
𝑙𝑖𝑚)

2

𝑁𝑔

𝑘=1

)

+ ( 𝜆3 ∑(𝑉𝑙𝑘 − 𝑉𝑙𝑘
𝑙𝑖𝑚)

2

𝑁𝑃𝑄

𝑘=1

) 

+ ( 𝜆4 ∑(𝑆𝑘 − 𝑆𝑘
𝑙𝑖𝑚)

2

𝑁𝑇

𝑘=1

) 

(23) 

where, 𝑃𝑔𝑠𝑙𝑎𝑐𝑘
𝑙𝑖𝑚  is the active power limit of slack bus 

generator, 𝑄𝑔𝑘
𝑙𝑖𝑚 is the reactive power limit of 𝑘th generator, 

𝑉𝑙𝑘
𝑙𝑖𝑚  is the upper and lower voltage limit of 𝑘th load bus, 

𝑆𝑘
𝑙𝑖𝑚 is the rating of 𝑘th tranmission line, 𝜆1, 𝜆2, 𝜆3 and 𝜆4  

are penalty factors. The objective of OPF problem is to 

minimize the objective function while all constraints are 

satisfied. Therefore, the penalty should be zero. To prevent 

constraints from violation, penalty factors should be 

precisely chosen. Too large values will lead to a slow 

convergence rate and in the worst case, global minimum 

can’t be found. On the contrary, if values are too small, 

constraints can easily be violated.  

3.3 The proposed CPSO-DE method 

Differential evolution (DE) and particle swarm optimization 

(PSO) are two famous and powerful methods among swarm 

intelligence algorithms for solving different optimization 

problems.  

The PSO method [51] is an optimizatimal method to 

optimize a problem by iteratively improve a swarm of 

candidate solutions regarding to a given measure of quality. 

The method solves an optimization problem by using a 

population set of candidate solutions which are aclled 

paticles to find the optimal solution by moving these 

particles in the search-space of the problem based on the 

simple mathematical formulae preresented by the position 

and velocity of these particles. The movement of each 

paticle is affected by its local best position and it is also 

guided toward the best position known before in the search-

space of the problem, which will be updated as long as better 

positions are found by other particles. This mechanism is 

expected to move the population swarm moving toward the 

best global solution of the problem. In fact, the PSO method 

is a metaheuristic as it makes few or no assumptions about 

the optimal problem being considered and it can also search 

in very large spaces of candidate solutions. Moreover, the 

PSO method does not also use the gradient of the optimal 

problem being considered, this means that the PSO method 

does not require the optimal problem to be differentiable 

similar to the classic optimal methods such as gradient 

descent or quasi-newton method. Although it has been 

successfully used for solving the continuous optimization 

problem, the PSO method is easily getting stuck in local 

optimal due to the loss of population diversity. 

On the other hand, the DE method introduced in 1997 by 

Storn and Price [52] is also a effective method for dealing 

with optimization problems by iteratively improving the 

quality of a candidate solution. The DE method can finding 

the optimal solution of a problem via maintaining a 

candidate population of solutions as well as creating new 

candidate population of solutions by combining with the 

existing ones, and then whichever candidate solution has the 

better quality will be updated for the next step. By this way, 

the optimization problem can be easily solved merely by 

comparing the measure of quality from the candidate 

solutions. In this method, the gradient is also not needed. 

The DE algorithm has some advantages those are its ability 

to maintain the diversity of population as well as to explore 

the local search. However, it has no mechanism to memorize 

the previous process as well as uses the global information 

about the search space in the problem being considered, thus 

it easily gets trapped in local optima, leading to a waste of 

computing power. Therefore, the differential information 

can be helpful for the search ability of this method, but it 

may also lead to instability of some solutions.  

Considering the advantages and disadvantages of DE and 

PSO, a combined pseudo-gradient based PSO with 

constriction factor and the DE method is proposed for 

solving the security-constrained OPF problem [40] which 

aim to achieve both fast convergence speed and efficient 

global optimization. PGPSO-DE has proved to be an 

effective algorithm for solving OPF problem in small as well 

as large-scale systems. As mentioned, solving the TDOPF 

problem might be challenging since it includes the 

temperature effect into calculation. Therefore, some 

improvements are implemented in the original PGPSO-DE 

algorithm to make it more effective for dealing with the 

complex TDOPF problem. 

The main steps of the proposed CPSO-DE method for an 

optimization problem is as follows: 

• Initialization phase 

In this step, position and velocity of each particle are 

randomly selected by uniform probability: 

𝑥𝑖,𝑑
0 = 𝑥𝑑

𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(0,1)(𝑥𝑑
𝑚𝑎𝑥 − 𝑥𝑑

𝑚𝑖𝑛) (24) 

𝑣𝑖,𝑑
0 = 𝑣𝑑

𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(0,1)(𝑣𝑑
𝑚𝑎𝑥 − 𝑣𝑑

𝑚𝑖𝑛) (25) 
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𝑖 = 1, …, 𝑁𝑝 and 𝑑 = 1, …, 𝐷 

where, 𝑁𝑝  is the number of particles, D is the number of 

control variables, 𝑥𝑖 and 𝑣𝑖 are the position and velocity of 

𝑖th particle, 𝑥𝑑
𝑚𝑎𝑥 and 𝑥𝑑

𝑚𝑖𝑛 are the upper and lower limit of 

𝑑th control variable, 𝑣𝑑
𝑚𝑎𝑥 and 𝑣𝑑

𝑚𝑖𝑛  are the maximum and 

minimum velocity which are calculated as follows: 

𝑣𝑑
𝑚𝑎𝑥 = 𝑅(𝑥𝑑

𝑚𝑎𝑥 − 𝑥𝑑
𝑚𝑖𝑛) (26) 

𝑣𝑑
𝑚𝑖𝑛 = −𝑣𝑑

𝑚𝑎𝑥  (27) 

where, 𝑅 is the velocity scale factor. 

• Applying PSO mechanism to generate the first 

generation: 

At this step, velocity and position of each particle are 

achieved using PSO algorithm: 

𝑣𝑖𝑑
𝑘+1 = 𝜔. 𝑣𝑖𝑑

𝑘 + 𝑐1. 𝑟𝑎𝑛𝑑1(0,1)(𝑝𝑏𝑒𝑠𝑡𝑖
𝑘 − 𝑥𝑖𝑑

𝑘 )

+ 𝑐2. 𝑟𝑎𝑛𝑑2(0,1)(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖𝑑
𝑘 ) 

(28) 

𝑥𝑖𝑑
𝑘+1 = 𝑥𝑖𝑑

𝑘 + 𝑣𝑖𝑑
𝑘+1 (29) 

where, 𝑘  is the iteration, 𝑐1  and 𝑐2  are the acceleration 

constants, 𝑝𝑏𝑒𝑠𝑡𝑖 is the best known position of 𝑖th particle, 

𝜔 is the inertia weight, 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are two random 

numbers within [0,1], 𝑔𝑏𝑒𝑠𝑡 is the best known position of 

population. If velocity and position are outside the bounds, 

they will be set equal to the bounds they violate: 

𝑣𝑖𝑑
𝑘+1 = {

𝑣𝑑
𝑚𝑎𝑥       𝑖𝑓 𝑣𝑖𝑑

𝑘+1 > 𝑣𝑑
𝑚𝑎𝑥

𝑣𝑑
𝑚𝑖𝑛       𝑖𝑓 𝑣𝑖𝑑

𝑘+1 < 𝑣𝑑
𝑚𝑖𝑛  (30) 

𝑥𝑖𝑑
𝑘+1 = {

𝑥𝑑
𝑚𝑎𝑥       𝑖𝑓 𝑥𝑖𝑑

𝑘+1 > 𝑥𝑑
𝑚𝑎𝑥

𝑥𝑑
𝑚𝑖𝑛       𝑖𝑓 𝑥𝑖𝑑

𝑘+1 < 𝑥𝑑
𝑚𝑖𝑛  (31) 

• Applying three DE mechanisms to generate the second 

generation 

* Mutation process 

The mutation strategy is employed on first generation: 

𝑥𝑖𝑑
′𝑘+1 = 𝑥𝑟1𝑑

𝑘+1 + 𝐹(𝑥𝑟2𝑑
𝑘+1 − 𝑥𝑟3𝑑

𝑘+1) (32) 

where, 𝑟1, 𝑟2, 𝑟3 are three random particles that are different 

from particle 𝑖, 𝐹 is the differential weight. If positions are 

outside the bound, they will be set similarly to (31). 

* Crossover process  

At this step, the crossover operator is performed to 

generate second generation: 

𝑥𝑖𝑑
′′ 𝑘+1

= {𝑥𝑖𝑑
′ 𝑘+1

 𝑖𝑓 𝑟𝑎𝑛𝑑(0,1) ≤ 𝐶𝑅 𝑜𝑟 𝑑 = 𝐷𝑟𝑎𝑛𝑑

𝑥𝑘+1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                             
 

(33) 

where, 𝐶𝑅 is the crossover rate, 𝐷𝑟𝑎𝑛𝑑  is a random control 

variable. Then the fitness value will be calculated. 

* Selection process 

The selection operator is utilized to choose a better 

position between 𝑥𝑖𝑑
𝑘+1 and 𝑥𝑖𝑑

′′ 𝑘+1
 based on fitness values. 

The selection criterion may be expressed as follows: 

𝑥𝑖𝑑
𝑘+1 = {

𝑥𝑖𝑑
′′ 𝑘+1

 𝑖𝑓 𝑓(𝑥𝑖𝑑
′′ 𝑘+1

) ≤ 𝑓(𝑥𝑖𝑑
𝑘+1)

𝑥𝑖𝑑
𝑘+1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                            

 (34) 

3.4 Implementation of CPSO-DE method for the TDOPF 

problem 

The proposed CPSO-DE method is implemented for solving 

the temperature dependent optimal power flow problem is 

shown in Figure 1. 

4. SIMULATION RESULTS  

In this paper, the quadratic cost function is selected as 

objective function. CPSO-DE algorithm will be applied to 

solve conventional OPF and TDOPF problem in the IEEE 

30 bus and 118 bus system. 

For TDOPF simulation, the rated temperature rise values, 

which directly affect the thermal resistances and 

temperature of transmission lines (17) will be increased with 

a step of 50C and the fuel cost relative to each rated 

temperature rise value will be compared to those from 

GABC [43]. 

4.1 The IEEE 30 bus system 

4.1.1 Conventional optimal power flow 

The IEEE 30 bus system has six generators at bus 1, 2, 5, 8, 

11 and 13; forty-one transmission lines; four tap changing 

transformers and nine shunt compensators at bus 10, 12, 15, 

17, 20, 21, 23, 24 and 29. The upper and lower limits of tap 

changing transformers are 1.1 and 0.9 p.u. respectively. The 

load bus upper and lower voltage limits are 1.05 and 0.95 

p.u. The PV bus upper and lower voltage limits are 1.1 and 

0.9 p.u. Base power is selected as 100 MVA. Bus data, line 

data, generator cost data, limit of control variables and state 

variables are taken from Matpower 7.1 [53]. Maximum 

number of iterations and number of particles are selected as 

100 and 50 respectively. All CPSO-DE, DE and PSO 

parameters are given in Table A.1 in Appendix. Fifty 

successful runs are obtained using CPSO-DE, DE and PSO 

and results are shown in Figure 2. The best cost, worst cost, 

mean cost, standard deviation and success rate of CPSO-DE, 

DE, PSO are given in Table 1. 

 
Table 1. Fuel cost obtained from the conventional OPF for the 

IEEE 30 bus system 

Algorithm Best cost 
Worst 

cost 

Mean 

cost 

Standard 

deviation 

Success 

rate 

CPSO-DE 800.4353 801.7535 801.1814 0.4483 100% 

DE 800.6882 809.9819 801.7580 2.1034 100% 

PSO 800.7292 804.8902 801.8953 0.94 98.04% 
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Fig. 1. Flow chart of CPSO-DE algorithm for solving the TDOPF problem. 
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The best cost obtained from CPSO-DE is 800.4353 ($/h). 

Some papers get better cost (under 800 $/h) but either load 

bus voltage limit or reactive power source limit is set higher. 

The comparison of CPSO-DE algorithm with other 

algorithms is shown in Table 2. All control variables of the 

best run are provided in Table A.2 of the Appendix. The 

convergence characteristic of the CPSO-DE algorithm 

compared to that from DE and PSO is shown in Figure 3. It 

can be seen that the CPSO-DE can achieve good fuel cost 

compared to other recent algorithms. When compared with 

original DE and PSO, best cost obtained from CPSO-DE is 

better with lower or equal success rate. 

 

 

Fig. 2. Fuel cost obtained from 50 runs on the IEEE 30 bus 

system. 

 
Table 2. Comparison of minimum costs obtained for the IEEE 

30 bus system 

Algorithm 
Min fuel cost 

($/h) 
Algorithm 

Min fuel cost 

($/h) 

CPSO-DE 800.4353 RCBBO [25] 800.8703 

EADPSO [15] 800.2276* GWO [26] 801.41 

GPU-PSO [17] 800.53 KHA [27] 801.4675 

MDE [21] 802.376 IKHA [27] 800.4143 

MSA [22] 800.5099 TS [28] 802.29 

ABC [23] 800.66 GBICA [29] 801.1513 

GABC [43] 800.440 MGBICA [29] 801.1409 

EP [24] 802.62 IMFO [30] 800.3848 

ARCBBO [25] 800.5159 MFO [30] 800.6206 

 * Not applicable or violated solution 

 
4.1.2 Temperature dependent optimal power flow 

Base temperature and ambient temperature are selected as 

1000C and 250C. Changes in fuel cost and power loss 

obtained from CPSO-DE, DE and PSO with different 

temperature rises are given in Table 3, Table 4, and Table 5. 

Fig 4 shows convergence characteristic of CPSO-DE 

algorithm compared to DE and PSO for 250C temperature 

rise. Fig 5 shows changes in fuel cost and power loss with 

different rated temperature rise values. 

 

 
Fig. 3. Convergence characteristic of solution methods for the 

IEEE 30 bus system. 

 

All control variables for 250C temperature rise TDOPF 

are given in Table A.3. Changes in transmission line 

resistance for 250C temperature rise TDOPF are given in 

Table A.4.  

 
Table 3. The changes in fuel cost and power loss obtained 

from the CPS-DE with different temperature rise values in 

the IEEE 30 bus system 

𝑇𝑅𝑎𝑡𝑒𝑑𝑅𝑖𝑠𝑒  

CPSO-DE 

Best cost 

($) 

Worst 

cost ($) 

Average 

cost ($) 

Standard 

deviation 

Success 

rate (%) 

0 799.8645 801.1151 799.9788 0.1805 96.15 

5 800.0937 801.9153 801.4722 0.5090 98.04 

10 800.2781 802.6343 801.7335 0.5050 98.04 

15 800.4430 802.4918 801.9216 0.5081 94.34 

20 800.6130 802.5384 802.1245 0.5135 98.04 

25 800.8220 801.2235 800.9529 0.0907 100 

30 800.9373 803.1326 802.4740 0.5036 92.59 

35 801.1429 803.2672 802.6902 0.5055 92.59 

40 801.2721 803.6831 802.8831 0.5095 98.04 

45 801.4604 803.6515 803.0187 0.5347 98.04 

50 801.6438 803.5469 802.4721 0.7595 100 

 

For a fair comparison with [24], a different TDOPF 

simulation version in which maximum load bus voltage limit 

is set to 1.06 is performed to prove the effectiveness of 

CPSO-DE algorithm. Fuel cost and power loss with 

different temperature rises are compared to those obtained 
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from [24] and shown in Table 6. It is clear that fuel cost and 

power loss values obtained from CPSO-DE in different 

temperature rise are equal to values obtained from GABC 

algorithm in [24]. 

 
Table 4. The changes in fuel cost and power loss obtained 

from the DE method with different temperature rise values in 

the IEEE 30 bus system 

𝑇𝑅𝑎𝑡𝑒𝑑𝑅𝑖𝑠𝑒  

DE 

Best cost 
Worst 

cost 

Average 

cost 

Standard 

deviation 

Success 

rate (%) 

0 800.0460 854.3342 803.6966 9.9702 98.04 

5 800.3272 854.4943 802.5606 7.8815 100 

10 800.3909 802.9909 801.2025 0.7778 98.04 

15 800.7552 816.8187 802.6462 3.8894 94.34 

20 800.7764 802.4606 801.4685 0.4706 96.15 

25 801.0791 853.3587 805.9503 11.9353 98.04 

30 801.1942 857.8659 804.9678 12.4828 100 

35 801.3709 821.3207 803.0891 4.4110 92.59 

40 801.7318 861.6661 807.9160 17.3366 96.15 

45 801.8348 824.4426 804.6547 6.9905 92.59 

50 801.7628 824.8126 803.7472 4.6633 100 

 

 

Table 5. The changes in fuel cost and power loss obtained 

from the PSO method with different temperature rise values 

in the IEEE 30 bus system 

𝑇𝑅𝑎𝑡𝑒𝑑𝑅𝑖𝑠𝑒  

PSO 

Best cost 
Worst 

cost 

Average 

cost 

Standard 

deviation 

Success 

rate (%) 

0 800.0200 803.6747 801.3373 1.0572 100 

5 800.3159 806.2028 802.5404 1.2602 100 

10 800.5849 811.6553 802.7386 1.7888 100 

15 800.8228 806.3119 802.6954 1.2048 98.04 

20 801.0740 806.63 802.9475 1.0639 98.04 

25 801.1638 808.9018 803.2543 1.6092 96.15 

30 801.3076 806.6973 803.3267 1.1784 94.34 

35 801.4624 803.7264 807.0175 1.0954 98.04 

40 801.5847 807.9979 803.9199 1.3565 96.15 

45 801.9010 805.7534 803.1781 0.4777 100 

50 801.7784 807.9800 803.5424 1.2274 100 

 

 

 

Table 6. Comparison of the changes in fuel cost and power 

loss for the IEEE bus system 

𝑇𝑅𝑎𝑡𝑒𝑑𝑅𝑖𝑠𝑒  

CPSO-DE GABC [43] 

Best cost 
Total power 

loss 
Best cost 

Total power 

loss 

0 799.8645 8.8296 800.0627 8.9120 

5 800.0937 8.9033 800.2598 8.9712 

10 800.2781 8.9632 800.4531 9.0293 

15 800.4430 8.9935 800.6429 9.0863 

20 800.6130 9.0246 800.8292 9.1422 

25 800.8220 9.0237 801.0123 9.1972 

30 800.9373 9.0435 801.1922 9.2512 

35 801.1429 9.1084 801.3690 9.3042 

40 801.2721 9.1511 801.5429 9.3564 

45 801.4604 9.1541 801.7139 9.4077 

50 801.6438 9.2579 801.8822 9.4582 

 

 
Fig. 4. The convergence characteristic of solution methods for the fuel 

cost at 250C rated temperature rise for the IEEE 30 bus system. 

 

 
Fig. 5. The changes in fuel cost and power with different rated 

temperature rise values in the IEEE 30 bus system. 
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4.2 The IEEE 118 bus system 

4.2.1 Conventional optimal power flow 

The IEEE 118 bus system has 54 generators, 9 transformers, 

14 shunt compensators at bus 5, 34, 37, 44, 45, 46, 48, 74, 

79, 82, 83, 105, 107 and 110. The upper and lower limits of 

tap changing transformers are 1.1 and 0.9 p.u. The load bus 

upper and lower voltage limits are 1.06 and 0.94 p.u. The 

PV bus upper and lower voltage limits are 1.1 and 0.9 p.u. 

Base power is selected as 100 MVA. Bus data, line data, 

generator cost data, limits of control variables and state 

variables are taken from Matpower 7.1 [53]. All the CPSO-

DE, DE and PSO parameters are given in Table A.5. Twenty 

success runs are performed using CPSO-DE algorithm and 

results are shown in Figure 6. Best cost, worst cost, mean 

cost, standard deviation and success rate compared to DE 

and PSO are given in Table 7.  

 
Table 7. The fuel cost obtained from conventional OPF for the 

IEEE 118 bus system 

Algorithm CPSO-DE DE PSO 

Best cost ($/h) 129796.169 7.736e7* 137988.546 

Worst cost ($/h 147981.848 - 157209.027 

Mean cost ($/h) 141190.872 - 143286.032 

Standard 

deviation 

5459.726 - 5477.647 

Success rate (%) 95.23 0 86.95 

 

 

Fig. 6. The fuel cost obtained by the CPSO-DE method from 20 

runs for the IEEE 118 bus system. 

 
The best cost obtained is 129796.169 ($/h). All control 

variables of the best run are provided in Table A.6. 

Convergence characteristic of CPSO-DE algorithm 

compared to DE and PSO is shown in Figure 7. Also, the 

comparison of CPSO-DE algorithm with other algorithms is 

shown in Table 8.  

The best cost obtained from CPSO-DE algorithm 

(129796.169 $/h) is equal to recently published algorithms. 

When compared to DE and PSO, CPSO-DE has better 

performance. Basic DE struggles with large scale system (as 

seen in Table 7) and cannot converge. Although PSO can 

converge and find optimal fuel cost, the value is higher than 

CPSO-DE. 

 
Table 8. Comparison of minimum cost for the IEEE 118 bus 

system 

Algorithm Min fuel cost 

($/h) 

Algorithm Min fuel cost 

($/h) 

CPSO-DE 129796.169 IMFO [30] 131,820 

PG-CF-PSO 

[16] 

145,520.01  HSA [31] 132,138.3 

MSA [22] 129,640.7191 FHSA [31] 132,319.6 

MDE [21] 130,444.5728 BSA [32] 135,333.4743 

MFO [30] 129,708.0821 ICBO [33] 135,121.5704 

IKHA [27] 131,427.2636 SSA [34] 129,675.0 

KHA [27] 136,051.9664 FAHSPSO-

DE [35] 

129,519.38 

 

 

Fig. 7. The convergence characteristic of fuel cost for the IEEE 

118 bus system. 
 

4.2.2 Temperature dependent optimal power flow 

Changes in fuel cost and power loss with different 

temperature rise values are given in Table 9. Fig 8 shows 

convergence characteristic of CPSO-DE algorithm 

compared to DE and PSO for 250C temperature rise. Fig 9 

shows changes in fuel cost and power loss with different 

rated temperature rise values 

All control variables for 250C temperature rise TDOPF 

are given in Table A.7. Changes in transmission line 

resistance for 25 0C temperature rise TDOPF are given in 

Table A.8. 
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Table 9. The changes in fuel cost and power loss by the 

CPSO-DE method with different temperature rises for the 

IEEE 118 bus system 

𝑇𝑅𝑎𝑡𝑒𝑑𝑅𝑖𝑠𝑒  Best cost ($/h) Total power loss (MW) 

5 129926.0610 83.3381 

10 129944.2022 83.5589 

15 129962.8933 84.2619 

20 129966.1416 84.3649 

25 129960.3155 84.1887 

30 129970.7443 84.3962 

35 130035.8744 86.0553 

40 130056.3034 86.6652 

45 130071.1035 86.6945 

50 130082.9944 87.2156 

 

 
Fig. 8. The convergence characteristic of fuel cost at 250C rated 

temperature rise for the IEEE 118 bus system. 
 

 
Fig. 9. The changes in fuel cost and power with different rated 

temperature rise values by the CPSO-DE method for the IEEE 

118 bus system. 

 

According to Table A.4, when temperature effect is 

included (250C rated temperature rise) in the IEEE 30 bus 

system, maximum relative error in branch resistance is 

6.42% (line 1-2). Also fuel cost and power loss increase 

when rated temperature rise value increase, approximately 

0.0051% increase in cost per temperature rise and 0.0905% 

increase in power loss per temperature rise.  

In the IEEE 118 bus system, maximum relative error in 

branch resistance for 250C rise is considerably large (5.86%, 

Table A.8, line 9-10). Fuel cost and power loss increase per 

temperature rise are 0.22% and 4.85% respectively.  

Beside the increases of fuel cost and power loss, the 

temperature effect has also a huge impact on the power 

output of generators. More specifically, if temperature effect 

is not included, lower cost generator tends to generate more 

power than higher cost ones. For example, in the IEEE 30 

bus system, the slack bus generator which has the lowest 

cost generated the most power of all generators (177.1821 

MW). But when temperature effect is considered, for 

example 250C rise, the lowest cost generator cannot generate 

as much power (175.9398 MW) because it will make the 

temperature of branches connecting to that generator bus 

rise. This results in increase in those branches resistance and 

power losses, so power need to be generated goes up and 

causes the increase in generation cost. Therefore, in TDOPF, 

power of all generators should suitably be distributed to 

minimize the generation cost. 

5. CONCLUSION 

In this paper, the mathematical model of the temperature 

dependent optimal power flow problem has been presented 

and the combined particle swarm optimization and 

differential evolution method has been implemented to solve 

this problem. The considered temperature dependent 

optimal power flow problem is very a very large-scale and 

complex one with the integrated of the temperature of 

transmission lines, leading to a big challenge for solution 

methods. The proposed method for dealing with the problem 

is a combined particle swarm optimization and differential 

evolution which has utilizes the advantages of each 

component method to find the optimal solution for the 

problem. The proposed method for the problem has been 

tested on the IEEE 30 and 118 bus systems and the obtained 

results have been validated via comparing to those from 

other methods in the literature. The result comparison has 

indicated that the proposed combined particle swarm 

optimization and differential evolution method can deal with 

the complex and large-scale temperature dependent optimal 

power flow problem in power systems.   
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APPENDIX 

Table A.1. The control parameters of CPSO-DE, PSO, and 

DE algorithms for the IEEE 30-bus test system 

Parameter CPSO-DE PSO DE 

Np 50 50 50 

itermax 100 100 100 

c1 2 2 - 

c2 2 2 - 

 0.8 0.8 - 

𝐹 0.6 - 0.6 

CR 0.9 - 0.9 

R 0.02 0.02 - 

 
Table A.2. The optimal solution by the proposed CPSO-DE in 

the conventional OPF problem for the IEEE 30-bus system 

Control 

variables 
Value 

Control 

variables 
Value 

𝑃𝑔2 (MW) 48.73314281 𝑄c15 (MVAr) 3.52141682 

𝑃𝑔5 (MW) 21.35930373 𝑄c17 (MVAr) 4.85375734 

𝑃g8 (MW) 21.20182901 𝑄c20 (MVAr) 4.11343274 

𝑃g11 (MW) 11.92441013 𝑄c21 (MVAr) 4.89443506 

𝑃g13 (MW) 12.01257730 𝑄c23 (MVAr) 3.37161548 

𝑉g1 (pu) 1.082036941 𝑄c24 (MVAr) 4.86458281 
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𝑉g2 (pu) 1.063484023 𝑄c29 (MVAr) 2.21078133 

𝑉g5 (pu) 1.032167830 𝑇6−9 (pu) 1.01441682 

𝑉g8 (pu) 1.036732029 𝑇6−10 (pu) 0.94975349 

𝑉g11 (pu) 1.062570745 𝑇4−12 (pu) 0.97832438 

𝑉g13 (pu) 1.047330539 𝑇28−27 (pu) 0.97147248 

𝑄c10 (MVAr) 4.910600075 Fuel cost 

($/h) 

800.435313 

𝑄c12 (MVAr) 4.86519437 Ploss (MW) 9.01340750 

  Pslack (MW) 177.182144 

 
Table A.3. The optimal solution by the proposed CPSO-DE in 

the TDOPF problem for the IEEE 30-bus system with the 

temperature rise of 25oC  

Control 

variables 
Value 

Control 

variables 
Value 

𝑃g2 (MW) 48.90839 𝑄c12 (MVAr) 3.606704 

𝑃g5 (MW) 21.65961 𝑄c15 (MVAr) 4.184024 

𝑃g8 (MW) 21.75972 𝑄c17 (MVAr) 4.36245 

𝑃g11 (MW) 12.13954 𝑄c20 (MVAr) 3.265375 

𝑃g13 (MW) 12.01667 𝑄c21 (MVAr) 4.919097 

𝑉g1 (pu) 1.093115 𝑄c23 (MVAr) 4.303744 

𝑉g2 (pu) 1.073456 𝑄c24 (MVAr) 3.896 

𝑉g5 (pu) 1.042182 𝑄c29 (MVAr) 2.501176 

𝑉g8 (pu) 1.046714 𝑇6−9 (pu) 0.992415 

𝑉g11 (pu) 1.061485 𝑇6−10 (pu) 0.970375 

𝑉g13 (pu) 1.060757 𝑇4−12 (pu) 0.980508 

𝑄c10 (MVAr) 3.408454 𝑇28−27 (pu) 0.97296 

Fuel cost ($/h) 800.8220 

Ploss (MW) 9.0237 

Pslack (MW) 175.9398 

 

Table A.4. The resistance difference in branches for 250C 

temperature rise in the TDOPF problem for the IEEE 30-bus 

system 

Branch 

no. 
From To PF TDOPF 

Relative 

difference 

(%) 

1 1 2 0.0192 0.02043367 6.425407 

2 1 3 0.0452 0.04585745 1.454539 

3 2 4 0.057 0.05821105 2.124664 

4 3 4 0.0132 0.01345898 1.961991 

5 2 5 0.0472 0.0480626 1.827707 

6 2 6 0.0581 0.06034427 3.862773 

7 4 6 0.0119 0.01226139 3.036967 

8 5 7 0.046 0.04610028 0.218002 

9 6 7 0.0267 0.02684100 0.528101 

10 6 8 0.012 0.01220396 1.699674 

11 6 9 0 0 0 

12 6 10 0 0 0 

13 9 11 0 0 0 

14 9 10 0 0 0 

15 4 12 0 0 0 

16 12 13 0 0 0 

17 12 14 0.1231 0.12368078 0.471802 

18 12 15 0.0662 0.06781009 2.432175 

19 12 16 0.0945 0.09486901 0.390489 

20 14 15 0.221 0.22116546 0.074872 

21 16 17 0.0824 0.08270539 0.370623 

22 15 18 0.1073 0.10840454 1.029399 

23 18 19 0.0639 0.06403853 0.216792 

24 19 20 0.034 0.03415971 0.469738 

25 10 20 0.0936 0.09429941 0.747243 

26 10 17 0.0324 0.03249629 0.297215 

27 10 21 0.0348 0.03566777 2.493614 

28 10 22 0.0727 0.07306739 0.505355 

29 21 22 0.0116 0.01160342 0.02956 

30 15 23 0.1 0.10086886 0.86887 

31 22 24 0.115 0.11630191 1.132103 

32 23 24 0.132 0.13211574 0.087689 

33 24 25 0.1885 0.18863886 0.073668 

34 25 26 0.2544 0.25545220 0.413604 

35 25 27 0.1093 0.11016908 0.795136 

36 28 27 0 0 0 

37 27 29 0.2198 0.22260310 1.275297 

38 27 30 0.3202 0.32544085 1.636743 

39 29 30 0.2399 0.24101200 0.463531 

40 8 28 0.0636 0.06366400 0.100636 

41 6 28 0.0169 0.01720423 1.800187 
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Table A.5. The control parameters of CPSO-DE, PSO, and 

DE algorithms for the IEEE 118-bus test system 

Parameter CPSO-DE DE PSO 

Np 75 75 75 

itermax 300 300 300 

c1 2 - 2 

c2 2 - 2 

 0.8 - 0.8 

F 0.6 0.6 - 

CR 0.9 0.9 - 

R 0.02 - 0.02 

 

 
 

Table A.6. The optimal solution by the proposed CPSO-DE in the conventional OPF problem for the IEEE 118-bus system 

Control variable Value Control variable Value Control variable Value 

𝑃𝑔1 (MW) 30.6299 𝑃𝑔103 (MW) 38.1213 𝑉𝑔77 (pu) 1.0304 

𝑃𝑔4 (MW) 1.0874 𝑃𝑔104 (MW) 0.5086 𝑉𝑔80 (pu) 1.0503 

𝑃𝑔6 (MW) 0.0552 𝑃𝑔105 (MW) 11.2697 𝑉𝑔85 (pu) 1.0213 

𝑃𝑔8 (MW) 0.0121 𝑃𝑔107 (MW) 25.6520 𝑉𝑔87 (pu) 1.0246 

𝑃𝑔10 (MW) 401.0669 𝑃𝑔110 (MW) 8.7079 𝑉𝑔89 (pu) 1.0387 

𝑃𝑔12 (MW) 85.4522 𝑃𝑔111 (MW) 36.5486 𝑉𝑔90 (pu) 1.0136 

𝑃𝑔15 (MW) 18.5857 𝑃𝑔112 (MW) 39.6947 𝑉𝑔91 (pu) 1.0216 

𝑃𝑔18 (MW) 13.1349 𝑃𝑔113 (MW) 0.5737 𝑉𝑔92 (pu) 1.0276 

𝑃𝑔19 (MW) 21.1157 𝑃𝑔116 (MW) 0.6740 𝑉𝑔99 (pu) 1.0394 

𝑃𝑔24 (MW) 0.1115 𝑉𝑔1 (pu) 1.0098 𝑉𝑔100 (pu) 1.0381 

𝑃𝑔25 (MW) 194.8113 𝑉𝑔4 (pu) 1.0350 𝑉𝑔103 (pu) 1.0298 

𝑃𝑔26 (MW) 281.9627 𝑉𝑔6 (pu) 1.0311 𝑉𝑔104 (pu) 1.0120 

𝑃𝑔27 (MW) 12.2253 𝑉𝑔8 (pu) 1.0289 𝑉𝑔105 (pu) 1.0063 

𝑃𝑔31 (MW) 7.3672 𝑉𝑔10 (pu) 1.0414 𝑉𝑔107 (pu) 0.9878 

𝑃𝑔32 (MW) 12.9233 𝑉𝑔12 (pu) 1.0294 𝑉𝑔110 (pu) 1.0170 

𝑃𝑔34 (MW) 3.3962 𝑉𝑔15 (pu) 1.02807 𝑉𝑔111 (pu) 1.0250 

𝑃𝑔36 (MW) 3.5608 𝑉𝑔18 (pu) 1.03093 𝑉𝑔112 (pu) 1.0159 

𝑃𝑔40 (MW) 49.8937 𝑉𝑔19 (pu) 1.02852 𝑉𝑔113 (pu) 1.0445 

𝑃𝑔42 (MW) 40.6650 𝑉𝑔24 (pu) 1.0491 𝑉𝑔116 (pu) 1.0086 

𝑃𝑔46 (MW) 17.5645 𝑉𝑔25 (pu) 1.0582 𝑄𝑐5 (MVAr) 0.4502 

𝑃𝑔49 (MW) 192.5920 𝑉𝑔26 (pu) 1.0536 𝑄𝑐34 (MVAr) 0.1154 

𝑃𝑔54 (MW) 49.3221 𝑉𝑔27 (pu) 1.0497 𝑄𝑐37 (MVAr) 0.0207 

𝑃𝑔55 (MW) 29.4698 𝑉𝑔31 (pu) 1.0407 𝑄𝑐44 (MVAr) 1.2862 

𝑃𝑔56 (MW) 36.7466 𝑉𝑔32 (pu) 1.0435 𝑄𝑐45 (MVAr) 4.7030 

𝑃𝑔59 (MW) 149.6279 𝑉𝑔34 (pu) 1.0450 𝑄𝑐46 (MVAr) 3.1860 

𝑃𝑔61 (MW) 148.6880 𝑉𝑔36 (pu) 1.0426 𝑄𝑐48 (MVAr) 3.8094 

𝑃𝑔62 (MW) 0 𝑉𝑔40 (pu) 1.0210 𝑄𝑐74 (MVAr) 3.9307 

𝑃𝑔65 (MW) 352.3260 𝑉𝑔42 (pu) 1.0148 𝑄𝑐79 (MVAr) 0.1570 
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𝑃𝑔66 (MW) 351.3875 𝑉𝑔46 (pu) 1.0225 𝑄𝑐82 (MVAr) 2.5184 

𝑃𝑔70 (MW) 0.0647 𝑉𝑔49 (pu) 1.0372 𝑄𝑐83 (MVAr) 3.2868 

𝑃𝑔72 (MW) 0.0402 𝑉𝑔54 (pu) 1.0213 𝑄𝑐105 (MVAr) 0.6844 

𝑃𝑔73 (MW) 0.0571 𝑉𝑔55 (pu) 1.0183 𝑄𝑐107 (MVAr) 1.6332 

𝑃𝑔74 (MW) 15.2900 𝑉𝑔56 (pu) 1.0189 𝑄𝑐110 (MVAr) 0.3811 

𝑃𝑔76 (MW) 28.6599 𝑉𝑔59 (pu) 1.0253 𝑇8−5 0.9915 

𝑃𝑔77 (MW) 0.0471 𝑉𝑔61 (pu) 1.0416 𝑇26−25 1.0191 

𝑃𝑔80 (MW) 430.9242 𝑉𝑔62 (pu) 1.0377 𝑇30−17 1.0092 

𝑃𝑔85 (MW) 0.0433 𝑉𝑔65 (pu) 1.0361 𝑇38−37 0.9556 

𝑃𝑔87 (MW) 3.8517 𝑉𝑔66 (pu) 1.0416 𝑇63−59 1.0320 

𝑃𝑔89 (MW) 501.9555 𝑉𝑔69 (pu) 1.0509 𝑇64−61 0.9884 

𝑃𝑔90 (MW) 0.0359 𝑉𝑔70 (pu) 1.0190 𝑇65−66 1.0080 

𝑃𝑔91 (MW) 0.0548 𝑉𝑔72 (pu) 1.0396 𝑇68−69 0.9816 

𝑃𝑔92 (MW) 0.5454 𝑉𝑔73 (pu) 1.0178 𝑇70−71 0.9751 

𝑃𝑔99 (MW) 0.5563 𝑉𝑔74 (pu) 0.9948   

𝑃𝑔100 (MW) 220.5270 𝑉𝑔76 (pu) 0.9924   

Fuel cost ($/h) 129796.169 

Ploss (MW) 80.2349 

Pslack (MW) 452.0475 

 
Table A.7. The optimal solution by the proposed CPSO-DE in the TDOPF problem for the IEEE 118-bus system with the 

temperature rise of 250C 

Control variable Value Control variable Value Control variable Value 

𝑃𝑔1 (MW) 25.7631 𝑃𝑔103 (MW) 37.2384 𝑉𝑔77(pu) 1.0288 

𝑃𝑔4 (MW) 1.3256 𝑃𝑔104 (MW) 1.8052 𝑉𝑔80(pu) 1.0529 

𝑃𝑔6 (MW) 1.5787 𝑃𝑔105 (MW) 5.8617 𝑉𝑔85(pu) 1.0082 

𝑃𝑔8 (MW) 1.2296 𝑃𝑔107 (MW) 28.2478 𝑉𝑔87(pu) 1.0058 

𝑃𝑔10 (MW) 401.4343 𝑃𝑔110 (MW) 7.8972 𝑉𝑔89(pu) 1.0282 

𝑃𝑔12 (MW) 85.7002 𝑃𝑔111 (MW) 34.9499 𝑉𝑔90(pu) 1.0308 

𝑃𝑔15 (MW) 20.910 𝑃𝑔112 (MW) 35.9154 𝑉𝑔91 (pu) 1.0398 

𝑃𝑔18 (MW) 12.1952 𝑃𝑔113 (MW) 1.0716 𝑉𝑔92 (pu) 1.0228 

𝑃𝑔19 (MW) 21.8435 𝑃𝑔116 (MW) 1.8061 𝑉𝑔99 (pu) 1.0229 

𝑃𝑔24 (MW) 1.1894 𝑉𝑔1 (pu) 0.9932 𝑉𝑔100 (pu) 1.0360 

𝑃𝑔25 (MW) 192.7152 𝑉𝑔4 (pu) 1.0326 𝑉𝑔103 (pu) 1.0293 

𝑃𝑔26 (MW) 278.4323 𝑉𝑔6 (pu) 1.0178 𝑉𝑔104 (pu) 1.0209 

𝑃𝑔27 (MW) 9.2948 𝑉𝑔8 (pu) 1.0385 𝑉𝑔105 (pu) 1.0212 

𝑃𝑔31 (MW) 6.7389 𝑉𝑔10 (pu) 1.0336 𝑉𝑔107 (pu) 1.0463 
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𝑃𝑔32 (MW) 14.0845 𝑉𝑔12 (pu) 1.0194 𝑉𝑔110 (pu) 1.0179 

𝑃𝑔34 (MW) 5.3929 𝑉𝑔15 (pu) 1.0191 𝑉𝑔111 (pu) 1.0327 

𝑃𝑔36 (MW) 9.5964 𝑉𝑔18 (pu) 1.0230 𝑉𝑔112 (pu) 1.0074 

𝑃𝑔40 (MW) 48.2025 𝑉𝑔19 (pu) 1.0181 𝑉𝑔113 (pu) 1.0482 

𝑃𝑔42 (MW) 40.6905 𝑉𝑔24 (pu) 1.0259 𝑉𝑔116 (pu) 1.0213 

𝑃𝑔46 (MW) 18.2240 𝑉𝑔25 (pu) 1.0380 𝑄𝑐5 (MVAr) 4.1280 

𝑃𝑔49 (MW) 192.6964 𝑉𝑔26 (pu) 1.0270 𝑄𝑐34 (MVAr) -10.8799 

𝑃𝑔54 (MW) 49.6978 𝑉𝑔27 (pu) 1.0194 𝑄𝑐37 (MVAr) 2.8466 

𝑃𝑔55 (MW) 32.7158 𝑉𝑔31 (pu) 1.0050 𝑄𝑐44 (MVAr) -14.9920 

𝑃𝑔56 (MW) 31.8982 𝑉𝑔32 (pu) 1.0145 𝑄𝑐45 (MVAr) -3.3721 

𝑃𝑔59 (MW) 148.8603 𝑉𝑔34 (pu) 1.0350 𝑄𝑐46 (MVAr) -12.7190 

𝑃𝑔61 (MW) 147.9663 𝑉𝑔36 (pu) 1.0341 𝑄𝑐48 (MVAr) 2.3262 

𝑃𝑔62 (MW) 1.6034 𝑉𝑔40 (pu) 1.0173 𝑄𝑐74 (MVAr) 14.0724 

𝑃𝑔65 (MW) 353.0448 𝑉𝑔42 (pu) 1.0236 𝑄𝑐79 (MVAr) -1.4608 

𝑃𝑔66 (MW) 348.3026 𝑉𝑔46 (pu) 1.0340 𝑄𝑐82 (MVAr) 0.3659 

𝑃𝑔70 (MW) 1.9474 𝑉𝑔49 (pu) 1.0430 𝑄𝑐83 (MVAr) 16.5073 

𝑃𝑔72 (MW) 0.9042 𝑉𝑔54 (pu) 1.0226 𝑄𝑐105 (MVAr) -3.0656 

𝑃𝑔73 (MW) 1.1883 𝑉𝑔55 (pu) 1.0184 𝑄𝑐107 (MVAr) 8.2513 

𝑃𝑔74 (MW) 16.2106 𝑉𝑔56 (pu) 1.0190 𝑄𝑐110 (MVAr) -1.7496 

𝑃𝑔76 (MW) 22.5001 𝑉𝑔59 (pu) 1.0184 𝑇8−5  0.9879 

𝑃𝑔77 (MW) 2.1456 𝑉𝑔61 (pu) 1.0388 𝑇26−25  1.0268 

𝑃𝑔80 (MW) 430.9408 𝑉𝑔62 (pu) 1.0330 𝑇30−17  1.0422 

𝑃𝑔85 (MW) 1.7732 𝑉𝑔65 (pu) 1.0490 𝑇38−37  0.9694 

𝑃𝑔87 (MW) 1.7700 𝑉𝑔66 (pu) 1.0451 𝑇63−59  1.0087 

𝑃𝑔89 (MW) 501.4367 𝑉𝑔69 (pu) 1.0476 𝑇64−61  0.9942 

𝑃𝑔90 (MW) 1.3511 𝑉𝑔70 (pu) 1.0145 𝑇65−66  1.0194 

𝑃𝑔91 (MW) 1.6585 𝑉𝑔72 (pu) 1.0397 𝑇68−69  0.9441 

𝑃𝑔92 (MW) 1.5981 𝑉𝑔73 (pu) 1.0186 𝑇70−71  0.9707 

𝑃𝑔99 (MW) 1.2326 𝑉𝑔74 (pu) 0.9984   

𝑃𝑔100 (MW) 230.2928 𝑉𝑔76 (pu) 0.9825   

Fuel cost ($/h) 129960.315 

Ploss (MW) 84.1887 

Pslack (MW) 451.1151 
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Table A.8. The resistance difference in branches for 25oC temperature rise in the TDOPF problem for the IEEE 118-bus system 

Branch 

number 
From To PF TDOPF 

Relative 

difference (%) 

1 1 2 0.0303 0.03031 0.033944 

2 1 3 0.0129 0.01293 0.232694 

3 4 5 0.00176 0.00177 0.316209 

4 3 5 0.0241 0.02433 0.975006 

5 5 6 0.0119 0.01212 1.887922 

6 6 7 0.00459 0.0046 0.254335 

7 8 9 0.00244 0.00257 5.459195 

8 8 5 0 0 0 

9 9 10 0.00258 0.00273 5.86197 

10 4 11 0.0209 0.0211 0.949555 

11 5 11 0.0203 0.02058 1.372458 

12 11 12 0.00595 0.00597 0.268896 

13 2 12 0.0187 0.01875 0.247344 

14 3 12 0.0484 0.04841 0.028523 

15 7 12 0.00862 0.00862 0.046184 

16 11 13 0.02225 0.02232 0.306399 

17 12 14 0.0215 0.02151 0.068448 

18 13 15 0.0744 0.07441 0.009045 

19 14 15 0.0595 0.0595 0.000553 

20 12 16 0.0212 0.0212 0.023576 

21 15 17 0.0132 0.01323 0.224864 

22 16 17 0.0454 0.04544 0.079835 

23 17 18 0.0123 0.01243 1.058049 

24 18 19 0.01119 0.0112 0.063857 

25 19 20 0.0252 0.02521 0.026818 

26 15 19 0.012 0.012 0.005274 

27 20 21 0.0183 0.01833 0.139672 

28 21 22 0.0209 0.02097 0.34264 

29 22 23 0.0342 0.0344 0.570816 

30 23 24 0.0135 0.01351 0.087752 

31 23 25 0.0156 0.01572 0.746448 

32 26 25 0 0 0 

33 25 27 0.0318 0.03197 0.525448 

34 27 28 0.01913 0.01918 0.277177 

35 28 29 0.0237 0.02371 0.051784 

36 30 17 0 0 0 

37 8 30 0.00431 0.00438 1.588164 
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38 26 30 0.00799 0.0081 1.389124 

39 17 31 0.0474 0.04746 0.135988 

40 29 31 0.0108 0.0108 0.033962 

41 23 32 0.0317 0.03254 2.641076 

42 31 32 0.0298 0.02987 0.226428 

43 27 32 0.0229 0.02291 0.028756 

44 15 33 0.038 0.03801 0.014976 

45 19 34 0.0752 0.07521 0.013508 

46 35 36 0.00224 0.00224 0.001434 

47 35 37 0.011 0.01103 0.282928 

48 33 37 0.0415 0.04154 0.105098 

49 34 36 0.00871 0.00872 0.158049 

50 34 37 0.00256 0.00257 0.364703 

51 38 37 0 0 0 

52 37 39 0.0321 0.03221 0.350811 

53 37 40 0.0593 0.0594 0.166835 

54 30 38 0.00464 0.0047 1.251003 

55 39 40 0.0184 0.0184 0.013047 

56 40 41 0.0145 0.01452 0.117139 

57 40 42 0.0555 0.05551 0.016581 

58 41 42 0.041 0.04104 0.088569 

59 43 44 0.0608 0.06084 0.059295 

60 34 43 0.0413 0.04134 0.089495 

61 44 45 0.0224 0.02244 0.182432 

62 45 46 0.04 0.04016 0.406214 

63 46 47 0.038 0.03808 0.207649 

64 46 48 0.0601 0.06014 0.060986 

65 47 49 0.0191 0.01912 0.08402 

66 42 49 0.0715 0.07183 0.462157 

67 42 49 0.0715 0.07183 0.462157 

68 45 49 0.0684 0.06884 0.639144 

69 48 49 0.0179 0.01796 0.328481 

70 49 50 0.0267 0.02685 0.565409 

71 49 51 0.0486 0.04903 0.887419 

72 51 52 0.0203 0.02034 0.195092 

73 52 53 0.0405 0.04051 0.019225 

74 53 54 0.0263 0.02632 0.090976 

75 49 54 0.073 0.07319 0.266995 

76 49 54 0.0869 0.08712 0.257152 
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77 54 55 0.0169 0.0169 0.009543 

78 54 56 0.00275 0.00276 0.401437 

79 55 56 0.00488 0.00488 0.009277 

80 56 57 0.0343 0.03432 0.07242 

81 50 57 0.0474 0.0475 0.219857 

82 56 58 0.0343 0.0343 0.010157 

83 51 58 0.0255 0.02551 0.050938 

84 54 59 0.0503 0.05038 0.150199 

85 56 59 0.0825 0.08259 0.114143 

86 56 59 0.0803 0.0804 0.125354 

87 55 59 0.04739 0.04747 0.167647 

88 59 60 0.0317 0.03182 0.392474 

89 59 61 0.0328 0.03299 0.58958 

90 60 61 0.00264 0.00265 0.399533 

91 60 62 0.0123 0.0123 0.019941 

92 61 62 0.00824 0.00826 0.246465 

93 63 59 0 0 0 

94 63 64 0.00172 0.00173 0.583136 

95 64 61 0 0 0 

96 38 65 0.00901 0.00907 0.615079 

97 64 65 0.00269 0.00272 0.934785 

98 49 66 0.018 0.01807 0.37063 

99 49 66 0.018 0.01807 0.37063 

100 62 66 0.0482 0.04835 0.313819 

101 62 67 0.0258 0.02583 0.120854 

102 65 66 0 0 0 

103 66 67 0.0224 0.02255 0.653199 

104 65 68 0.00138 0.00139 0.792472 

105 47 69 0.0844 0.08488 0.572191 

106 49 69 0.0985 0.09885 0.356664 

107 68 69 0 0 0 

108 69 70 0.03 0.03009 0.291722 

109 24 70 0.00221 0.00221 0.002417 

110 70 71 0.00882 0.00883 0.09824 

111 24 72 0.0488 0.04882 0.031829 

112 71 72 0.0446 0.04462 0.053496 

113 71 73 0.00866 0.00866 0.006584 

114 70 74 0.0401 0.04013 0.076462 

115 70 75 0.0428 0.04281 0.023408 
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116 69 75 0.0405 0.04063 0.317142 

117 74 75 0.0123 0.01235 0.425989 

118 76 77 0.0444 0.0447 0.665984 

119 69 77 0.0309 0.03132 1.345437 

120 75 77 0.0601 0.06021 0.177414 

121 77 78 0.00376 0.0038 0.944634 

122 78 79 0.00546 0.00547 0.129148 

123 77 80 0.017 0.01704 0.264549 

124 77 80 0.0294 0.02942 0.058678 

125 79 80 0.0156 0.0158 1.250179 

126 68 81 0.00175 0.00175 0.014297 

127 81 80 0 0 0 

128 77 82 0.0298 0.02984 0.147428 

129 82 83 0.0112 0.01121 0.115457 

130 83 84 0.0625 0.06256 0.091996 

131 83 85 0.043 0.0431 0.234355 

132 84 85 0.0302 0.03026 0.200963 

133 85 86 0.035 0.035 0.013643 

134 86 87 0.02828 0.02828 0.000588 

135 85 88 0.02 0.02008 0.41225 

136 85 89 0.0239 0.02413 0.975016 

137 88 89 0.0139 0.01394 0.259285 

138 89 90 0.0518 0.05186 0.106477 

139 89 90 0.0238 0.02389 0.386357 

140 90 91 0.0254 0.02541 0.036803 

141 89 92 0.0099 0.00998 0.78241 

142 89 92 0.0393 0.03933 0.077564 

143 91 92 0.0387 0.03876 0.16565 

144 92 93 0.0258 0.02591 0.433525 

145 92 94 0.0481 0.04826 0.322606 

146 93 94 0.0223 0.02235 0.220266 

147 94 95 0.0132 0.01326 0.465204 

148 80 96 0.0356 0.03569 0.26222 

149 82 96 0.0162 0.01621 0.074968 

150 94 96 0.0269 0.02692 0.077555 

151 80 97 0.0183 0.01838 0.413008 

152 80 98 0.0238 0.02385 0.221977 

153 80 99 0.0454 0.04544 0.093603 

154 92 100 0.0648 0.06485 0.074903 
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155 94 100 0.0178 0.01788 0.452525 

156 95 96 0.0171 0.01711 0.082804 

157 96 97 0.0173 0.01732 0.142104 

158 98 100 0.0397 0.03971 0.013636 

159 99 100 0.018 0.01803 0.182436 

160 100 101 0.0277 0.02772 0.062257 

161 92 102 0.0123 0.01233 0.219867 

162 101 102 0.0246 0.02464 0.149002 

163 100 103 0.016 0.01603 0.182554 

164 100 104 0.0451 0.04529 0.424811 

165 103 104 0.0466 0.04668 0.175199 

166 103 105 0.0535 0.05364 0.261316 

167 100 106 0.0605 0.0608 0.487851 

168 104 105 0.00994 0.00996 0.228144 

169 105 106 0.014 0.01401 0.036541 

170 105 107 0.053 0.05307 0.13169 

171 105 108 0.0261 0.0261 0.017863 

172 106 107 0.053 0.05306 0.105787 

173 108 109 0.0105 0.0105 0.0104 

174 103 110 0.03906 0.03917 0.272105 

175 109 110 0.0278 0.0278 0.001325 

176 110 111 0.022 0.02208 0.36775 

177 110 112 0.0247 0.02477 0.30248 

178 17 113 0.00913 0.00924 1.166608 

179 32 113 0.0615 0.06151 0.00986 

180 32 114 0.0135 0.0135 0.036098 

181 27 115 0.0164 0.01642 0.113328 

182 114 115 0.0023 0.0023 0.002708 

183 68 116 0.00034 0.00035 1.666898 

184 12 117 0.0329 0.03294 0.127844 

185 75 118 0.0145 0.01457 0.49083 

186 76 118 0.0164 0.0164 0.013192 

 


