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A B S T R A C T 

An appropriate model of a solar photovoltaic (SPV) cell is essential for control, operation, 

and prediction of SPV systems. Simultaneously, it is equally vital for determining as 

accurately as possible the parameters of that model. There are currently single-diode (SD), 

double-diode (DD) and triple-diode (TD) SPV cell models needing to be determined for 

various applications. A simple and effective approach is proposed for determining the 

parameters of SPV cell models through voltage and current measurements; as well as the 

transformation of the estimation problem into the optimization problem. Then, stochastic 

fractal search (SFS) algorithms with the benefits of finding the global optimal solution in 

a few generations and avoiding getting stuck in locally optimal solutions are proposed to 

apply for the above one. The achievements are compared to those by other existing 

algorithms such as a particle swarm optimization (PSO) and Chaos PSO algorithms to 

validate the proposals. 

 

1. INTRODUCTION 

Amongst renewable energy sources, solar energy has been 

confirmed for its efficiency and popularity in utilization, 

especially through SPV systems. It is realized that these 

systems can be easily installed, conveniently maintained, 

and certainly reduced pollution. These are the reasons why 

a significant amount of research is devoted in scenarios of 

irradiation and temperature [1]. Currently, most designs are 

based on SPV cell models through parameters describing the 

working process. Each SPV cell model with its parameters 

will be meaningful to a specific problem. Amongst the 

models, the SD model is used commonly with an acceptable 

accuracy [2]. However, the saturation current of the SPV cell 

is a linear superposition of charge diffusion and 

recombination. Thus, it is contributed by two Shockley 

terms or two diodes. Then, the DD model is introduced [3]. 

Several previous studies show that the DD model obtains 

greater precision [4]-[5]. Nevertheless, the greater simplicity 

of the SD model is also an option that should be considered 

in the research. Meanwhile, the TD model leads to higher 

precision in describing the losses of the SPV cell. Then, 

parameter estimation in the above models is necessary and 

this becomes a challenge. The more precisely the parameters 

of the models are estimated, the more efficiently the SPV 

systems can be analyzed, controlled, and operated. There 

have been several estimation approaches as follows. 

The analytical approach utilizes the Lambert W function 

[6], nonlinear least-squares fitting algorithms [7], and 

Nyquist and Bode plots-based algorithms [8]. It is 

considered the simplest approach amongst estimation 

approaches and is appropriate for the SD model. To the DD 

and TD models, there is no exact solution for the parameter 

estimation results because of the high non-linearity of these 

models [9]-[10].   

The numerical approach is based on iterative procedures 

[11]-[12]. This leads to the burden of computational time to 

achieve the parameter estimation results. Furthermore, the 

numerical methods are mostly supported by the gradient-

descent procedure tending to converge to local rather than 

global minima Thus, it is strongly dependent on and 

influenced by the choice of initialization values of the 

algorithms which results in a significant deviation between 

the results of the estimation and experiment. It is realized 

that both the analytical methods and the numerical methods 

require a long computation time.  

To reduce the computational burden and enhance the 

efficiency of the existing approaches, stochastic 

optimization algorithm-based approach is recently 

introduced to overcome the above-mentioned 

disadvantages. In a search space, these algorithms do not 

require predictive information, mainly depend on random 

initialization and optimization, and especially, can explore 

multi-dimensions to avoid sticking in locally optimal 

solutions until the best solution is achieved after the 

predefined maximum iteration number or accepted error is 

reached. Amongst the stochastic optimization algorithms, 
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meta-heuristic algorithms are becoming increasingly 

popular in many applications. These meta-heuristic 

algorithms are briefly analyzed in the following Table 1. 

  

 

Fig. 1. Parameter estimation proposals for a SPV cell. 

 

It is realized that each algorithm shows its advantages and 

disadvantages through criteria related to precision and 

consistency of optimal solutions; performance; and 

parameters tuning.  

Recently, a stochastic fractal search (SFS) algorithm is 

introduced for many applications [2], [27]. It specially has 

fewer parameters tuning than COA, ABC, DE, GA, PSO, 

and EM algorithms [2]. Furthermore, it also easily achieves 

the globally optimal results with the appropriate number of 

iterations. In this paper, the SFS algorithm and its variant, 

called a Chaos SFS algorithm are proposed to solve this 

problem. The research results demonstrate that the SFS 

algorithm overcomes the premature convergence and low 

robustness of other meta-heuristic algorithms. Furthermore, 

the Chaos SFS algorithm is proposed to direct the local 

exploitation. The overview and proposals of this problem 

are described in Fig. 1 where the yellow blocks and blue 

dashed lines are proposed to improve the accuracy as well 

as the time to achieve the estimated results. 

Table 1 shows that the PSO algorithms are superior to 

other existing meta-heuristic algorithms. Thus, they should 

be selected to perform the comparisons with the SFS 

algorithms. This choice is relevant and competitive. 

Table 1. Analysis of meta-heuristic algorithms 

Algorithm Advantage Disadvantage Refe-

rence 

Electromag-

netic-like 

(EM) 
algorithms 

- Effective for 

continuous 

optimization 
problems; 

- Flexible to 

global 

optimization 
problems.   

- Complicated 

algorithm with 4 

procedures 

including 

initialization, 

computation of 

total force, 

movement, and 

local search; 

- The performance 

strongly depends 

on the initial 
solution; 

- Poor performance 

in a local search 

process. 

[13] 

Particle 

swarm 

optimization 

(PSO) 
algorithms 

- Fewer 

parameters 
tuning; 

- Easy 
constraints; 

- Good for 

multi-

objective 

optimization. 

- Low-quality 

solution; 

- Limited memory 

for updating 
velocity; 

- Premature 
convergence. 

[14], 

[15], 

[16], 
[17] 

Genetic 

algorithms 
(GA) 

- Effective 

with 

searching 

optimal 
solutions; 

- Good for 

multi-

objective 
optimization. 

- More parameters 

tuning; 

- Highly dependent 

on the parameters 
tuning;  

- Difficult to 

design an objective 
function; 

- Computationally 

expensive. 

[12], 

[18] 

Differential 

evolution 

(DE) 
algorithms 

- Fewer 

parameters 
tuning. 

- Significant 

reliance on the trial 

vector generating 
method; 

- Highly dependent 

on the selection of 

the parameter 

tuning. 

[19], 

[20], 

[21], 
[22] 

Artificial 

bee colony 

(ABC) 
algorithms 

- Simplicity; 

- Good 

exploration 
ability.  

- Poor exploitation 

ability; 

- Premature 
convergence. 

[3], 

[23]  

Coyote 

optimization 

algorithms 
(COA) 

- Fewer 

parameters 
tuning; 

- Diverse 

mechanisms 

for balancing 

exploration 

and 
exploitation. 

- Computationally 

expensive; 

- Poor quality of 
solutions; 

- Poor stability in 
the search process. 

[24], 

[25] 

Solar PV cell 

SD 
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DD 
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TD 
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System of 
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In the remaining, Section 2 is the models of a SPV cell. 

Section 3 is the application proposal of the SFS algorithms. 

Section 4 is the application result. Section 5 is the proposal 

validation. 

2. SPV CELL MODELS 

2.1. SD model 

This SD model is described in Fig. 2 [23].  

 

 

Fig. 2. SD model. 

From Fig. 2, the load current in the equivalent circuit is: 
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Then, the load current is modified as follows: 
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where 

ID1
SD and UD1

SD: the current (A) and voltage (V) of D1 in 

the SD model; 

Il
SD and Ul

SD: the load current (A) and voltage (V) in the 

SD model; 

I01
SD: the saturation current of D1 in the SD model (A); 

q: the charge on the electron, q = 1.602  10-19 (C); 

k: Boltzmann’s constant, k = 1.38  10-23 (m2kg/s2); 

T: the absolute temperature of a SPV cell in Kelvin (0K);  

Rsh
SD and Rs

SD: the shunt and series resistances in the SD 

model (); 

Ut
SD: the panel’s thermal voltage in the SD model (V); 

Iph
SD: the source current in the SD model (A); 

n1
SD: the ideality coefficient of D1 in the SD model. 

In this SD model, Iph
SD, I01

SD, Rs
SD, Rsh

SD, and n1
SD are 

required to estimate. 

2.2. DD model 

This DD model is more detailed than the SD model shown 

in Fig. 3 [3].  

Similarly, the load current in the DD model is: 
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where 

Il
DD and Ul

DD: the load current (A) and voltage (V) in the 

DD model; 

I01
DD and I02

DD: the saturation currents of D1 and D2 in 

the DD model (A); 

Rsh
DD and Rs

DD: the shunt and series resistances in the DD 

model (); 

Iph
DD: the source current in the DD model (A); 

n1
DD and n2

DD: the ideality coefficients of D1 and D2 in 

the DD model. 

 

 

Fig. 3. DD model. 

In this DD model, Iph
DD, I01

DD, I02
DD, Rs

DD, Rsh
DD, n1

DD, 

and n2
DD are required to estimate. 

2.3. TD model 

This TD model is more detailed than the DD and SD models 

shown in Fig. 4 [26]. 
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Fig. 4. TD model. 

Similarly, the load current in the TD model is given by: 
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where 

Il
TD and Ul

TD: the load current (A) and voltage (V) in the 

TD model; 

I01
TD, I02

TD, and I03
TD: the saturation currents of D1, D2, 

and D3 in the TD model (A); 

Rsh
TD and Rs

TD: the shunt and series resistances in the TD 

model (); 

Iph
TD: the source current in the TD model (A); 

n1
TD, n2

TD, and n3
TD: the ideality coefficients of D1, D2, 

and D3 in the TD model. 

In this TD model, Iph
TD, I01

TD, I02
TD, I03

TD, Rs
TD, Rsh

TD, n1
TD, 

n2
TD, and n3

TD are required to estimate. 

3. PARAMETER ESTIMATION BY SFS 

ALGORITHMS 

The unavailable parameters of the models are estimated by 

minimizing a root mean square error (RMSE) of the load 

currents between the experiment and estimation under 

various scenarios [23]. 

The RMSE of the load currents is given by: 

 



samplen

i

li
est
li

sample

II
n

RMSE
1

2exp1
 (8) 

where 

nsample: the sample number; 

Ili
exp and Ili

est: the ith load currents in the experiment and 

estimation respectively (A). 

The SFS and Chaos SFS algorithms are utilized to solve 

this problem. 

3.1. SFS algorithm 

The SFS algorithms are inspired by the growing 

phenomenon in the nature of random fractals [27]-[28]. Let 

P be the vector of the estimated parameters including [Iph
SD, 

I01
SD, Rs

SD, Rsh
SD, and n1

SD], [Iph
DD, I01

DD, I02
DD, Rs

DD, Rsh
DD, 

n1
DD, and n2

DD], and [Iph
TD, I01

TD, I02
TD, I03

TD, Rs
TD, Rsh

TD, n1
TD, 

n2
TD, and n3

TD] for the SD, DD, and TD models respectively.    

During the diffusion process, the Gaussian walk is chosen 

to create solutions with a preset maximum diffusion number, 

nmd surrounding each particle for diffusing around its 

solution as well as implementing the exploitation.  

The following is a description of the Gaussian walk. 

     ibesti PPrandPGGW  1,0,  
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The Gaussian function is given by: 
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where 

G: Gaussian function; 

: the standard deviation; 

Pbest: the best solution; 

Pi: the ith solution, i = 1, 2, 3, ..., ns; 

ns: the size of swarm. 

 

The standard deviation is as follows: 
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where, nG is the number of generation. 

During the update process, each solution is updated under 

other solutions. Then, each particle executes the exploration 

with two statistical procedures.    

The first update procedure is: 

 
      

 

 


otherwisejP

rifjPjPrjP
jP

i

iirr
i

  21'
(12) 

where 

P’i: the new solution of Pi; 

Pr1 and Pr2: the solutions chosen randomly;   

j: the index of each optimization parameter, j = 1, 2, 3, 

…, d; 

d: the number of optimization parameters; 

i: the selection probability of a particle, Pi. 
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s

i
i

n

Prank
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where, rank(Pi) is the fitness order of the ith particle in the 

swarm. 

The second update procedure is: 
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where, P’r1 and P’r2 are the solutions chosen randomly. 

The process of searching and determining the parameters 

of the models is implemented and ended when the stopping 

condition is satisfied by the SFS algorithm.  

3.2. Chaos SFS algorithm 

In the search procedure, the local exploitation should be 

adaptive around the best solution for enhancing the quality 

of the final solution. Then, a chaos SFS algorithm is 

proposed for identifying the best solution as follows [29]: 
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(15)  

where 

P*: the new solution compared to the worst solution, 

Pworst in the current swarm. 

zk: the chaotic map, zk = 4z(k-1)[1-z(k-1)] is the logistic map 

utilized to generate the kth chaotic value; 

z0: the initial chaotic value, z0  [0,1]; 

nf and nfmax: the current and maximum numbers of 

function evaluations.  

The flowchart of the SFS and Chaos SFS algorithms is 

described in Fig. 5. In which, the white blocks and black 

solid lines represent the SFS algorithm, and the yellow 

blocks and blue dashed lines represent the Chaos SFS 

algorithm.  

Similarly, the process of searching and determining the 

parameters of the models is also implemented and ended 

when the stopping condition is satisfied by the Chaos SFS 

algorithm.  

4.  NUMERICAL RESULT 

The SFS and Chaos SFS algorithms are applied for 

estimating the parameters of the SD, DD and TD models. 

Then, the estimated curves of the SPV cell models are 

compared to those of the manufacturer’s datasheet of the 

tested cell to validate the proposal [23].  

The experiment is implemented with the irradiance, 1000 

W/m2 and the temperature, 330C. The sample number, nsample 

is 20. The maximum diffusion number, nmd is 1. The 

numbers of the estimated parameters, d are 5, 7, and 9 in the 

SD, DD, and TD models respectively. 

The swarm size, ns is 50 and the maximum iteration, 

Itermax is 1000. These parameters are the same in all 

algorithms to have a proper comparative condition. The 

cognitive and social parameters, c1 and c2 are 2 in the PSO 

and Chaos PSO algorithms respectively. The weight factors, 

wPSO and wChaosPSO are 0.6 and the logistic map in the PSO 

and Chaos PSO algorithms respectively [30]-[36]. 

The solution space of estimated parameters is shown in 

Table 2. 

The estimation results are shown in Tables 3-5 through 

the estimated currents of each model. These currents are 

demonstrated in Tables 6-8 by the Chaos SFS algorithm 

compared to the experimental currents. 

 

Table 2. Solution space of estimated parameters 

Parameter 
Limit 

Lower Upper 

Iph
SD; Iph

DD; and Iph
TD

 (A) 0 1 

I01
SD; I01

DD, I02
DD; and I01

TD, I02
TD, I03

TD (A) 0 1 

Rs
SD; Rs

DD; and Rs
TD

 () 0 0.5 

Rsh
SD; Rsh

DD; and Rsh
TD () 0 100 

n1
SD; n1

DD, n2
DD; and n1

TD, n2
TD, n3

TD 1 2 

 

Table 3. Parameter estimation results in the SD model 

Parameter 

Algorithm 

PSO 
Chaos 

PSO 
SFS 

Chaos 

SFS 

Iph
SD (A) 0.73810 0.74852 0.76020 0.76076 

I01
SD (A) 0.29170 0.31175 0.30226 0.30910 

Rs
SD () 0.03101 0.03202 0.03601 0.03646 

Rsh
SD () 51.26771 52.35243 52.55642 52.81363 

n1
SD 1.27290 1.31851 1.46111 1.47236 

 

Table 4. Parameter estimation results in the DD model 

Parameter Algorithm 

PSO 
Chaos 

PSO 
SFS 

Chaos 

SFS 

Iph
DD (A) 0.73806 0.74850 0.76010 0.76073 

I01
DD (A) 0.29180 0.28160 0.24713 0.24475 

I02
DD (A) 0.30158 0.34160 0.36195 0.38038 

Rs
DD () 0.03090 0.03211 0.03586 0.03680 

Rsh
DD () 51.26781 52.35263 53.05625 53.50295 

n1
DD 1.27280 1.31830 1.39091 1.45460 

n2
DD 1.37624 1.72183 1.78083 1.99615 
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Fig. 5. Flowchart of the SFS and Chaos SFS algorithms. 

 

Table 5. Parameter estimation results in the TD model 

Parameter 

Algorithm 

PSO 
Chaos 

PSO 
SFS 

Chaos 

SFS 

Iph
TD (A) 0.72106 0.75115 0.76006 0.76071 

I01
TD (A) 0.17531 0.19047 0.20126 0.20947 

I02
TD (A) 0.15325 0.16258 0.18614 0.19109 

I03
TD (A) 0.19241 0.20761 0.22813 0.23711 

Rs
TD () 0.02714 0.02965 0.03261 0.03676 

Rsh
TD () 50.15314 52.03658 53.48124 53.45398 

n1
TD 1.65141 1.82021 1.70615 1.75401 

n2
TD 1.18013 1.30865 1.39254 1.43865 

n3
TD 2.07627 1.96511 1.92046 1.87025 

Table 6. Voltage and current in the SD model by the 

experiment and estimation using Chaos SFS algorithm 

Data 
Experiment Estimation 

Ul
SD (V) Il

SD (A) Il
SD (A) Il

SD (%) 

1 0.0057 0.7605 0.76076 0.034 

2 0.0646 0.7600 0.75982 0.024 

3 0.1185 0.7590 0.75878 0.029 

4 0.1678 0.7570 0.75721 0.028 

5 0.2132 0.7570 0.75693 0.009 

6 0.2545 0.7555 0.75572 0.029 

7 0.2924 0.7540 0.75398 0.003 

8 0.3269 0.7505 0.75057 0.009 

9 0.3585 0.7465 0.74653 0.004 

10 0.3873 0.7385 0.73861 0.015 

11 0.4137 0.7280 0.72816 0.022 

12 0.4373 0.7065 0.70671 0.030 

13 0.4590 0.6755 0.67559 0.013 

14 0.4784 0.6320 0.63196 0.006 

15 0.4960 0.5730 0.57315 0.026 

16 0.5119 0.4990 0.49889 0.022 

17 0.5265 0.4130 0.41292 0.019 

18 0.5398 0.3165 0.31655 0.016 

19 0.5521 0.2120 0.21198 0.009 

20 0.5633 0.1035 0.10353 0.029 

 

Table 7. Voltage and current in the DD model by the 

experiment and estimation using Chaos SFS algorithm 

Data 
Experiment Estimation 

Ul
DD (V) Il

DD (A) Il
DD (A) Il

DD (%) 

1 0.0057 0.7605 0.76073 0.030 

2 0.0646 0.7600 0.75964 0.047 

3 0.1185 0.7590 0.75881 0.025 

4 0.1678 0.7570 0.75718 0.024 

5 0.2132 0.7570 0.75686 0.018 

6 0.2545 0.7555 0.75569 0.025 

7 0.2924 0.7540 0.75383 0.023 

8 0.3269 0.7505 0.75048 0.003 

9 0.3585 0.7465 0.74621 0.039 

10 0.3873 0.7385 0.73882 0.043 

11 0.4137 0.7280 0.72816 0.022 

12 0.4373 0.7065 0.70681 0.044 

13 0.4590 0.6755 0.67525 0.037 

14 0.4784 0.6320 0.63171 0.046 

15 0.4960 0.5730 0.57296 0.007 

16 0.5119 0.4990 0.49915 0.030 

17 0.5265 0.4130 0.41306 0.015 

18 0.5398 0.3165 0.31641 0.028 

19 0.5521 0.2120 0.21193 0.033 

20 0.5633 0.1035 0.10346 0.039 

 

Begin 

Initialize a random 

solution space 

Evaluate solutions 

Determine the best 

solution, Pbest based on a 

description of Gaussian 

walk (9) 

Meet stopping 

scenario? 

The best 

solution, Pbest 

Yes 

Produce a new solution 
with Gaussian walk 

Select the best solution 

Rank all solutions 

Update Pi using (12) 
and (14) 

End 

No 

For m = 1 to nmd 

Initialize a chaos 

solution space  

Determine the best 

solution, Pbest based on a 

chaos description (15) 
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Table 8. Voltage and current in the TD model by the 

experiment and estimation using Chaos SFS algorithm  

Data 
Experiment Estimation 

Ul
TD (V) Il

TD (A) Il
TD (A) Il

TD (%) 

1 0.0057 0.7605 0.76071 0.028 

2 0.0646 0.7600 0.76032 0.042 

3 0.1185 0.7590 0.75934 0.045 

4 0.1678 0.7570 0.75685 0.020 

5 0.2132 0.7570 0.75716 0.021 

6 0.2545 0.7555 0.75532 0.024 

7 0.2924 0.7540 0.75409 0.012 

8 0.3269 0.7505 0.75062 0.016 

9 0.3585 0.7465 0.74681 0.042 

10 0.3873 0.7385 0.73823 0.037 

11 0.4137 0.7280 0.72821 0.029 

12 0.4373 0.7065 0.70665 0.021 

13 0.4590 0.6755 0.67518 0.047 

14 0.4784 0.6320 0.63214 0.022 

15 0.4960 0.5730 0.57318 0.031 

16 0.5119 0.4990 0.49881 0.038 

17 0.5265 0.4130 0.41286 0.034 

18 0.5398 0.3165 0.31642 0.025 

19 0.5521 0.2120 0.21191 0.042 

20 0.5633 0.1035 0.10347 0.029 

 

Table 9 is the error percentages of the load currents 

between the experiment and Chaos SFS algorithm-based 

estimation. The maximum, minimum, and average error 

percentages are shown in Table 10. The more detailed the 

model, the larger the average error of the load currents 

between the experiment and estimation is. According to Fig. 

6, the average error percentage of the load current in the TD 

model, 0.0303% is greater than that in the SD and DD 

models, 0.0188% and 0.0289% respectively. However, the 

differences in the average error percentages between the TD 

model; and SD and DD models are not significant, 0.0115% 

and 0.0014% respectively. All average error percentages are 

less than 0.0303% and accepted in the parameter estimation 

application. This means that the results in Tables 3-5 are 

validated with high accuracy. 

Figs. 7-12 respectively demonstrate the U-I and U-P 

curves of the models achieved by the experiment and 

estimation using the Chaos SFS algorithm. These are 

extremely close together. The achieved parameter 

estimation results show that the Chaos SFS algorithm has 

driven the exploitation towards the best estimation result 

during the search strategy. This is clearly illustrated in 

Tables 11-13. 

 

Table 9. Error percentage of load current in the models 

between the experiment and estimation using Chaos SFS 

algorithm 

Dat

a 
Il

SD 

(%) 

Il
DD 

(%) 

Il
TD 

(%) 

1 0.034 0.030 0.028 

2 0.024 0.047 0.042 

3 0.029 0.025 0.045 

4 0.028 0.024 0.020 

5 0.009 0.018 0.021 

6 0.029 0.025 0.011 

7 0.003 0.023 0.012 

8 0.009 0.003 0.016 

9 0.004 0.039 0.042 

10 0.015 0.043 0.037 

11 0.022 0.022 0.029 

12 0.030 0.044 0.021 

13 0.013 0.037 0.047 

14 0.006 0.046 0.022 

15 0.026 0.007 0.014 

16 0.022 0.030 0.018 

17 0.019 0.015 0.010 

18 0.016 0.028 0.025 

19 0.009 0.033 0.042 

20 0.029 0.039 0.029 

 

Table 10. Maximum, minimum, and average error 

percentages of the load current in the models between the 

experiment and estimation using Chaos SFS algorithm 

Error 

percentage 

(%) 

SD model DD model TD model 

Maximum 

error 
percentage (%) 

0.034 0.047 0.047 

Minimum error 

percentage (%) 

0.003 0.003 0.012 

Average error 

percentage (%) 

0.0188 0.0289 0.0303 

 

Figs. 13-15 are the convergence curves of the algorithms.  

The Chaos SFS algorithm always has a solution 

initialization which is better than that in the remaining 

algorithms. This benefit confirms the efficient role of 

initializing a solution space based on a chaotic map. 

Premature convergence always exists in the SFS, Chaos 

PSO, and PSO algorithms. The shortcoming of premature 

convergence has been overcome through the procedure of 

searching and determining the best solution based on a 

chaotic map. Through the above proposals, the convergence 



274 D. C. Huynh, L. D. Ho, and M. W. Dunnigan / GMSARN International Journal 18 (2024) 267-277 

 

iteration number and the convergence value are significantly 

improved in the Chaos SFS algorithm. This is a great 

advantage leading to the accurate and fast parameter 

estimation results by the Chaos SFS algorithm. 

 

 
Fig. 6. Error percentages of the load current in the models 

between the experiment and estimation using Chaos SFS 

algorithm. 

 

 

Fig. 7. U-I curves in the SD model achieved by the experiment 

and estimation using Chaos SFS algorithm. 

 

Fig. 8. U-P curves in the SD model achieved by the experiment 

and estimation using Chaos SFS algorithm. 

 

Fig. 9. U-I curves in the DD model achieved by the experiment 

and estimation using Chaos SFS algorithm. 

 

 

Fig. 10. U-P curves in the DD model achieved by the experiment 

and estimation using Chaos SFS algorithm. 

 

 

Fig. 11. U-I curves in the TD model achieved by the experiment 

and estimation using Chaos SFS algorithm. 
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Fig. 12. U-P curves in the TD model achieved by the experiment 

and estimation using Chaos SFS algorithm. 

 

 

Fig. 13. Convergence curves of the algorithms in the SD model-

based parameter estimation. 

 

 

Fig. 14. Convergence curves of the algorithms in the DD model-

based parameter estimation. 

 

Fig. 15. Convergence curves of the algorithms in the TD model-

based parameter estimation. 

 

Table 11. Convergence result of the algorithms in the SD 

model-based parameter estimation 

Algorithm 
Convergence 

value 

Convergence 

iteration 

PSO 0.0086 551 

Chaos PSO 0.0063 432 

SFS 0.0028 389 

Chaos SFS 0.000058 187 

 
Table 12. Convergence result of the algorithms in the DD 

model-based parameter estimation 

Algorithm 
Convergence 

value 

Convergence 

iteration 

PSO 0.0089 563 

Chaos PSO 0.0072 448 

SFS 0.0036 401 

Chaos SFS 0.000063 209 

 
Table 13. Convergence result of the algorithms in the TD 

model-based parameter estimation 

Algorithm 
Convergence 

value 

Convergence 

iteration 

PSO 0.0094 574 

Chaos PSO 0.0075 469 

SFS 0.0041 418 

Chaos SFS 0.000076 226 

 

The convergence value and iteration in the application in 

the TD model are always greater than those in the SD and 

DD models, Tables 11-13, because the TD model is more 

detailed than the SD and DD models. Then, the algorithms 
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must suffer from a computational burden that directly affects 

the convergence iteration number. However, the effect is not 

great enough to make the estimation results bad. The 

convergence values of the Chaos SFS algorithm are still very 

good enough to ensure the highest accuracy in the parameter 

estimation results, Tables 3-5. This re-confirms the 

robustness of the proposed algorithms in this application. 

5. CONCLUSION 

The SFS and Chaos SFS algorithms are proposed for the 

parameter estimation of the SD, DD, and TD models. 

Especially, the Chaos SFS algorithm has overcome the low 

robustness of the SFS algorithm and the premature 

convergence of the PSO algorithms.  

The achievements confirm the crucial role and 

effectiveness of chaotic maps in the definition of the solution 

space and the identification of the optimum solution.  

The Chaos SFS algorithm-based estimations are verified 

for accuracy through comparisons of the error percentage 

between estimations. The comparisons demonstrate that the 

error percentages of the Chaos SFS algorithm-based 

estimations are consistently lower than those using the SFS, 

Chaos PSO, and PSO algorithms. 
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