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A B S T R A C T 

This paper introduces a novel approach for classifying textile fibers using near-infrared 

(NIR) spectra obtained from the NeoSpectra-Micro sensor. The spectra as an input is 

applied to two matched filters, and each 65th element of both output spectra is used to 

construct a 2x1 feature vector. The first element is matched for natural fibers, the second 

elements for synthetic fibers, and both elements for blended fibers. After that, this vector 

is an input into the proposed three-class classifier based on support vector machine 

technique to identify textile fibers group. In the experiment to three groups of 210, 480, 

270 spectral samples from types of 7 natural, 16 synthetic, and 9 blended between natural 

and synthetic fibers, respectively. The dataset is divided into train and test datasets in three 

case ratios: 60:40, 70:30, and 80:20, utilized for both training to get hyperplane parameters 

and evaluating to measure the efficiency of the novel approach. The experimental result 

was found that the novel approach is robustness, and can generalize well to new data to 

achieve 100% accuracy in classifying the three groups of textile fibers with three case 

ratios. This method, which utilizes NIR sensors demonstrates rapid and reliable 

performance when compared with traditional methods using spectrometers or chemical 

analysis, could be crucial in optimizing the automation of textile recycling processes and 

promoting the transition to a circular textile economy. 

. 

1. INTRODUCTION 

Textile fiber classification is a crucial role in the textile industry 

as it helps to inspect the composition of fibers during the 

production process, determine the quality and value of textile 

products [1], [2], and especially for identifying textile fibers and 

automatic sorting of textile waste in recycling process [3], [4], 

[5]. The textile factory is widely recognized as a waste pollution 

because of its textile production and post-consumer textile 

waste. The textile manufacturing process has significant 

environmental impacts, including the extensive use of non-

renewable resources, making it the second highest user of land 

and the fourth highest user of water. It is also associated with 

high energy consumption, water pollution, and greenhouse gas 

emissions. According to estimates, the textile factory alone gives 

rise to approximately one and half a billion tons of carbon 

dioxide (CO2) equivalent per year, which represents about 10% 

of the world’s greenhouse gas emissions. Furthermore, it is 

responsible for 20% of the world’s water pollution. In addition, 

textile waste with landfill is gotten rid of contributes to ocean 

pollution through microfibers [6], [7]. These factors clearly 

show that the textile factory provides a major effect on both 

environmental pollution and climate change. 

Textile waste recycling is an essential solution to 

decrease the environmental effect on either the textile or 

fashion industry by reusing resources and minimizing waste 

disposal. However, global textile consumption has nearly 

doubled from 58 million to 109 million tons per year in the 

past decade, which has resulted in continuously rising post-

consumer textile waste. Unfortunately, less than one 

percentage of the textile waste can be recycled into new 

clothes due to the limitations of recycling methods. The 

major challenge in textile recycling is not only the effective 

classification, but also the sorting technology of fiber 

component due to the property difference of synthetic 

fabrics made from polymer fibers and natural fabrics made 

from cellulose fibers, which require different reuse methods 

[8], [9]. Classification of textile fibers is difficult due to their 

complex structure, but NIR spectroscopy can be performed 

and has become a popular method for its convenience, 

efficiency, low cost, and efficacy to avoid time-consuming 

work when compared to traditional laboratory-based 

chemical analysis methods [10], [11], [12]. However, due to 

the huge amount of textile waste, it is need requires to 

develop the automated sorting system. To address this 

challenge, Du et al. [3] developed a classification and 

automatic sorting system using NIR devices (BIFT 

NIRMagic 6701), while Cura et al. [4] utilized NIR sensors 

(SIPTex) instead of traditional laboratory-based 

spectrometers. Both devices have been found to be efficient 
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for identifying textile materials in automated sorting 

systems. These reasons clearly demonstrate the critical need 

to develop rapid and reliable methods for accurately 

identifying and separating textile materials using NIR 

sensors before the recycling process. This is essential to 

make textile recycling more efficient circular economy in 

textiles. 

One of the main challenges in interpreting and efficiently 

classifying NIR data is its high dimensionality, complexity, 

wide variability, and strong correlation. Therefore, feature 

extraction or dimensionality reduction methods are necessary 

to eliminate redundant features or noise from the original 

spectra and create a new feature set that significantly improves 

classification accuracy. Reducing dimensionality in textile 

fiber classification widely applies Analysis of Principal 

Component (APC). Zhou et al. [1] applied PCA to reduce 601 

variables in NIR spectra from the Brimrose Luminar 3060 

AOTF-NIR to three Principal Components (PCs), which were 

used as input to SIMCA analysis, achieving 100% classification 

accuracy for seven types of fabric, grouped into three 

categories. Similarly, X. Sun et al. [12] utilized PCA to 

reduce 3,000 variables in NIR spectra from the Antaris II 

FT-NIR spectrometer to three PCs and used them as input 

for the ELM method, resulting in the recognition of all six 

fabrics with 100% accuracy. 

In our previous study [13], we successfully classified 

natural fiber textiles using spectral data from the Neo-

Spectra Micro sensor. Our research revealed that the signal 

enhancement in the proposed methods significantly improved 

the accuracy and precision of classification, increasing from 

0.932±0.002 to 0.997±0.002 and from 0.773±0.004 to 

1.000±0.000, respectively. To further improve the algorithm 

[14], we utilized matched filtering, a widely employed signal 

processing technique, to enhance the detection of specific 

pattern signals in the presence of noise. The primary goal of 

employing a matched filter is to maximize the SNR (the ratio 

of signal and noise), and facilitating both detection and extraction 

of the desired signals from background noise. The extracted 

features from the matched filter output, such as peak 

amplitudes, energy distributions, and other discriminative 

information, effectively represent the specific characteristics 

of each fiber group. Consequently, we developed two 

matched filter detectors from normalized reference spectra 

of natural and synthetic groups, enhanced by the 𝑙2 norm. 

Our results demonstrate that the best overall accuracy for 

classifying textile fibers into three groups: natural, synthetic, 

and blended, was 0.9922±0.0078 with an 80:20 train-to-test 

ratio for original the dataset. In fact, the overall accuracy 

decreased slightly to 0.9899±0.0087 with a 60:40 train-to-

test ratio, indicating the possibility of incorrect predictions, 

especially when tested on new, unseen data. Further 

exploration and refinement are required to enhance the 

generalization of our method for real-world applications. 

This paper presents a novel method for textile fiber 

classification using NIR sensor data. The approach involves 

implementing two matched filters to enhance the detection 

of characteristic patterns found in both natural and synthetic 

fibers spectra. The output for the matched filter is then 

utilized to extract relevant features, which are subsequently 

used as input to create a three-class Support Vector Machine 

(SVM) model, which classifies into: natural, synthetic, and 

blended textile fibers. To evaluate classifiers performance, 

three evaluation metrics were used: overall accuracy, 

precision, and recall. The proposed method achieves 100% 

overall accuracy for three case of ratios of training and 

testing datasets, demonstrating its robustness and ability to 

generalize well to new data. In addition, the method requires 

less features for classification which reduces computation 

time and resource consumption. This makes it well-suited 

for use on embedded systems and has potential for real-

world applications in automatic sorting of textile waste. 

This paper is organized into five sections. The first 

section is an introduction. Section 2 describes the process of 

fabric sample preparation and NIR spectra collection used. 

Section 3 provides how to create the proposed approach 

including signal enhancement, matched filters, feature 

extraction and three-class SVM classification. Section 4 also 

shows performance results and its discussion. This paper are 

summaries, and recommended future work in section 5. 

2. SAMPLE AND ACQUISITION 

2.1. Sample preparation 

The fabric samples used in this paper consisted of woven 

and knitted fabrics, which were obtained from fabric 

distributors and factories in Thailand and comprised various 

types commonly used in clothing production. To confirm the 

fiber composition of all fabric samples, we were sent to the 

Textile Testing Center, Thailand’s Textile Institute (THTI), 

which that performs under the Foundation for Industrial 

Development (FID) of the Ministry of Industry. The fiber 

composition was determined based on the clean dry mass 

with percentage additions for moisture method under Thai 

Industrial Standard (TIS), Standards No.121 part 26-2552, 

which is a recognized method for identifying the quantity of 

binary mixtures of fibers in textile products. 

The samples were categorized into three fiber groups 

based on their composition: natural fibers, synthetic fibers, 

and blended fibers. Samples containing cotton or rayon 

fibers were categorized as natural fibers, while samples 

containing polyester or spandex fibers were categorized as 

synthetic fibers. Samples with a mixture of cotton or rayon 

and polyester fibers were categorized as blended fibers. In 

total, there were seven, sixteen and nine fabric types of 

natural, synthetic, and blended fiber groups, respectively. 

Additionally, the blended fiber group were further divided 

into seven different ratios of natural to synthetic fiber: 68:32, 

52:48, 48:52, 36:64, 35:65, 34:66 and 17:83. Therefore, 

there are ninety-six fabric specimens for training and testing 

the performance of the proposed method from thirty-two 



394 W. Limsripraphan and S. Yammen / GMSARN International Journal 18 (2024) 392-400 

 

fabric types which have three distinct colors. The used 

dimensions for all fabric specimens were 30 centimeters by 

50 centimeters. 

2.2. Spectral Acquisition 

  

Fig. 1. The NeoSpectra Micro Development Kit and its 

housing for getting spectrum. 
Previous studies have confirmed the potential of the 

NeoSpectra-Micro Development Kit as shown in the left 

side of Figure 1, is a portable NIR instrument as an easy, 

low-cost, reduced time-consuming and reliable device for 

analysis and classification in various fields, including food 

[15-17] healthcare [18], agriculture [19], and textile fibers 

[14]. 

 

  
(a) raw spectra for natural fibers (d) normalize a spectral for (a) 

  
(b) raw spectra for synthetic fibers (e) normalize a spectral for (b) 

  
(c) raw spectra for blended fibers (f) normalize a spectral for (c) 

Fig. 2. Spectrum of fiber some samples {𝒙[𝝀𝒏]} in each group; 

normalized spectrum of fiber some samples {𝒙[𝒏]}. 

We utilized the NeoSpectra-Micro Development Kit to scan 

all fabric specimens with a NIR wavelength from 1350 nm to 

2500 nm by applying the Fourier transform infrared spectrometer. 

The sensor was connected and controlled by a Raspberry Pi 

computer board via serial peripheral interface (SPI), and all 

spectral data were stored in a CSV file for use in the proposed 

method. To avoid external light interference, the device was 

enclosed in a housing, as shown on the right of Figure 1. 

The developed device generates each value of spectral 

signals in format of sixty-five pairs between absorbance and 

wavelength (𝜆𝑛) ranging from 1350 nm to 2550 nm, where 𝑛  

is negative integer between zero and sixty-four. A total of 

ninety-six fabric samples were measured at ten fixed locations 

to obtained 960 spectral specimen representing signals {𝑥[𝜆𝑛]} 
divided into 210 from 7 fabric types in natural fiber group, 480 

from 16 fabric types in synthetic fiber group, and 270 from 9 

fabric types in blended fiber group. Figure. 2 (a–c) show some 

fabrics samples from each fiber group with different fiber and 

fiber blend ratios. 

3. PROPOSED METHODS 

Figure. 3 shows the proposed method. The raw spectral data 

is divided into two datasets, and signal enhancement is 

performed before designing the matching filter. The 

resulting outputs are used to construct a three-class SVM 

classification model, and the performance of the novel 

approach is evaluated. 

 

Fig. 3. Diagram of the novel method of novel textile fiber 

classification algorithm with matched filter and SVM. 

 

Table 1: Number of Samples in each ratio 

Ratio 

Train dataset Test dataset 

Natural 

(𝑁𝑛) 

Synthetic 

(𝑁𝑠) 

Blended 

(𝑁𝑏) 

Natural 

(𝑁𝑛) 

Synthetic 

(𝑁𝑠) 

Blended 

(𝑁𝑏) 

60:40 126 288 162 84 192 108 

70:30 147 336 189 63 144 81 

80:20 168 384 216 42 96 54 

3.1. Train and Test Datasets 

To assess the accuracy of the proposed method, it is a 
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common practice to divide all spectral signals samples {𝑥[𝜆𝑛]} 
of three types of fiber groups into two datasets: the train 

dataset and test datasets. Three ratios: 60:40, 70:30 and 

80:20 as shown in Table 1 were also randomly used in this 

research. 

3.2. Spectral Signal Improvement 

To remove noise in input spectral signals {𝑥[𝜆𝑛]} for 𝑛 ∈
{0, 1, 2, 3, … , 64} in a train dataset for each ratio, each input 

signal is normalized by its mean subtraction and its scalar 

division such that all signals have equal power to one, as 

shown in Figure 4. 

 

Fig. 4. Diagram of spectral signal enhancement and create a 

representative signal of natural and synthetic fibers. 

3.3. Representative Signals for Natural and Synthetic 

The proposed method involves developing two well-

matched filters to detect characteristic patterns in the natural 

and synthetic fiber spectra. To achieve this, we generated 

representative signals for both groups, as shown in Figure 4. 

For the natural fiber group, we computed the mean of the 

spectral signal {𝑥[𝜆𝑛]} with reduced variability, where use 

spectral signals from the natural group (𝑁𝑛  samples) for 

each ratio in train dataset, and then divided the result by the 

𝑙2 norm of its signal to obtain a normalized representative 

signal {𝑟𝑛[𝑛]} as shown in Figure 5(a).  

 

  

  

  
(a)  representative signal of  

the natural group 

(b)  representative signal of  

the synthetic group 

Fig. 5. The representative signal of natural and synthetic  

for train to test ratio 60:40,70:30, 80:20, respectively. 

 

In the similar fashion, a representative signal for 

synthetic {𝑟𝑠[𝑛]}  by used the spectral signal {𝑥[𝜆𝑛]}  with 

reduced variability from the synthetic group (𝑁𝑠  samples) 

for each ratio in train dataset, as shown in Figure 5(b). The 

representative signals from various ratio in train data set 

exhibited very little variance, as evident from the figures. 

The mean standard deviation of the representative signals 

was 0.0004 and 0.0002 for natural and synthetic groups, 

respectively. 

3.4. Matched Filter and Feature Extraction 

After signal enhancement, the training datasets, including the 

normalized spectral signal {𝑥[𝑛]}  and the representative 

signals {𝑟𝑛[𝑛]} and {𝑟𝑠[𝑛]},were further normalized to have 

an equal power of one. These datasets were then utilized to 

create the matched filters in the proposed method.  

 

 

Fig. 6. The matched filter and three-class SVM for fiber 

classification. 

The matched filters consist of two linear time-invariant 

(LTI) operators, where the desired filter is the reversed 

replica of the representative signals for natural fibers {ℎ𝑛[𝑛]} 
and the other impulse response is the reversed replica of the 

representative signals for synthetic fibers {ℎ𝑠[𝑛]}, as governed 

by: 

    ℎ𝑛[𝑛] =  𝑟𝑛[65 − 𝑛];         𝑛 ∈ {1,2,3,… 65}    (1) 

 ℎ𝑠[𝑛] =  𝑟𝑠[65 − 𝑛];          𝑛 ∈ {1,2,3, … 65} (2) 

Figure. 6 shows the novel approach, where the input 

sequence {𝑥[𝑛]} is apply to both matched filters {ℎ𝑛[𝑛]} and 

{ℎ𝑠[𝑛]} providing the two output sequences are specific by: 

    𝑦𝑛[𝑛] =  ℎ𝑛[𝑛] ∗ 𝑥[𝑛];         𝑛 ∈ {1,2,3, … 65}    
(3) 

 𝑦𝑠[𝑛] =  ℎ𝑠[𝑛] ∗ 𝑥[𝑛];          𝑛 ∈ {1,2,3, … 65} 
(4) 

Next, through the comparison of the output of two 

matched filters using the normalized spectral signals {𝑥[𝑛]} 
of natural, synthetic, and blended fiber spectra, respectively, 

as shown in Fig.7. We observed that the output values of 

𝑦𝑛[𝑛] and 𝑦𝑠[𝑛]at 𝑛 = 65 from both matched filters enable 

efficient identification of fiber types based on their spectral 

characteristics. For example, in Fig. 7(a), when natural spectra 

signals are used as input, the impulse response of 𝑦𝑛[𝑛] almost 

the one, while the impulse response of 𝑦𝑠[𝑛] does not peak 

more than 0.7. Conversely, if the input is a synthetic spectra 

signal, the impulse response will give the opposite effect, as 

shown in Fig. 7(b). Furthermore, when the input is a blended 

spectra signal, both impulse responses will be above 0.7 but 

not peak nearly one, as shown in Fig. 7(c).  

These output values denoted as 𝑦𝑛 and 𝑦𝑠, respectively, 

represent extracted features from the original normalized 

spectral signals input {𝑥[𝑛]}. They effectively reduce the 
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number of features from 65 to 2, enabling more efficient 

processing. These extracted feature vectors 𝑦𝑛  and 𝑦𝑠 , are 

then utilized to construct a new feature vectors 𝑑 , which 

serves as  the input for creating the proposed three-class 

Support Vector Machine (SVM) model for textile fiber 

classification in the subsequent step. 

 

 
a)  output of two matched filter with spectral signal of natural sample 

 
b)  output of two matched filter with spectral signal of synthetic sample 

 
c)  output of two matched filter with spectral signal of blended sample 

Fig. 7. Comparison of the output of each matched filters with 

input from each fiber type.    

3.4 Three-Class SVM Technique 

The machine learning technique developed by V. Vapnik [15] 

that is mainly used for binary classification tasks. Asually 

the machine learning is the SVM that can handle both 

linearly and non-linearly separable data by finding 

hyperplanes. They separate the data by the largest possible 

margin. In Figure 8, we can observe that the newly created 

feature vector {𝑑}  which consists of 𝑦𝑛  and 𝑦𝑠 , represent 

linearly separable for each fiber group. Therefore, a hard-

margin SVM with linear constraints can be a suitable 

classification method [16]. The optimization problem for 

this type of SVM can be formulated as follows [17]  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

2
 ‖𝑤‖2 (5) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦 (𝑤
𝑇𝑑  + 𝑏) ≥ 1  

where, 𝑤 is the weight vector that we want to learn; 𝑦  is the 

label of train data set 𝑦 ∈ {+1,−1} ; 𝑑  is a new feature 

vector of train data set; 𝑏  is the bias term , 𝑏 ∈ 𝑅 . 
To solve optimization problem in equation (5), we used 

the quadprog function in MATLAB, by transform it into a 

standard form. The parameters 𝑤 and 𝑏 are used to find the 

separating hyperplane and equation (6) represents the decision 

function of binary classification using a linear SVM classifier, 

where one class is for ℎ(𝑑) > 0 and the another class is for 

ℎ(𝑑) < 0. 

ℎ(𝑑) = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑑 + 𝑏) (6) 

 
Fig. 8. The newly created feature vector from the proposed 

matched filter of the train: test Dataset (60:40). 

Although Support Vector Machines (SVMs) are 

normally used for classification tasks into binary classes, by 

decomposing an M-class problem into the two-class 

problems, the SVM can be modified to multi-class 

scenarios. One-against-one is a common multi-class SVM 

method that creates M(M-1)/2 binary classifiers [18],[19] . 

This paper presented a novel approach to classify therefore, 

the three fibers groups: natural, blended, and synthetic. 

Traditionally, the one-against-one scenario would require 

creating three hyperplanes for each pairwise comparison. 

Therefore, we proposed using only two hyperplanes. The first 

hyperplane ℎ1(𝑑)  is constructed with the synthetic area if 
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ℎ1(𝑑) > 0, and the blended area if ℎ1(𝑑) < 0. Conversely, the 

second hyperplane ℎ2(𝑑) is constructed with the blended area 

if ℎ2(𝑑) > 0   and the natural group if ℎ2(𝑑) < 0. Figure. 8 

shows both hyperplanes using the train dataset and test datasets 

with a 60:40 ratio, randomly divided ten times. To obtain the 

average values of these parameters, ten times of random 

iterations were performed on various dataset ratios. The results 

of the parameters 𝑤1  and 𝑏1 for building the hyperplane 

ℎ1(𝑑) are presented in Table 2, and the parameters 𝑤2and 𝑏2 for 

building the hyperplane ℎ2(𝑑) are presented in Table 3. 

 

Table 2: SVM classifier of hyperplanes 𝒉𝟏(𝒅) 

Train: Test Ratio 𝒘𝟏 𝒃𝟏 

60:40 -29.6810 13.6521 8.8004 

70:30 -30.1611 14.2165 8.6019 

80:20 -29.9821 13.9054 8.7847 

Mean -29.9414 13.9246 8.7290 

Std. 0.2426 0.2827 0.1104 

 

Table 3: SVM classifier of hyperplanes 𝒉𝟐(𝒅) 

Train: Test Ratio 𝒘𝟐 𝒃𝟐 

60:40 -34.5351 54.4167 -5.9332 

70:30 -33.5511 53.7046 -6.3976 

80:20 -31.9360 52.5011 -7.1342 

Mean -33.3407 53.5408 -6.4884 

Std. 1.3123 0.9683 0.6056 

 

From Table 2 and Table 3, the standard deviation values 

of 𝑤1 and 𝑏1 parameters of hyperplanes ℎ1(𝑑) are shown as 

0.2426, 0.2827 and 0.1104, respectively. These values have 

very little variance, indicating that the size of the training 

and sampling data does not affect the process of finding the 

necessary parameters to generate the hyperplane for separating 

the Synthetic and Blended groups. On the other hand, the 

standard deviation values of 𝑤2  and 𝑏2  parameters of 

hyperplanes ℎ2(𝑑) are shown as 1.3123, 0.9683 and 0.6056, 

respectively. These values have as slightly higher variance 

compared to ℎ1(𝑑). However, both hyperplanes generated 

from the newly extracted features of the matched filter 

output can still clearly separate the three groups of textile 

fibers, as evident from the figures in Fig. 8. 

For classifying textile fibers into three groups with the 

two hyperplanes which we proposed is simplified approach 

aims to maintain high accuracy while reducing the 

computational complexity. The algorithm of the designed 

three-class SVM shown in Figure 9. 

 

Fig. 9. The three-class SVM algorithm for textile fiber 

classification.  

4. ANALYSIS OF PROPOSED METHOD 

PERFORMANCE AND EXPERIMENT RESULT 

To evaluate our approach efficiency. Overall accuracy, 

Precision, and Recall are calculated by applying confusion 

matrix technique, as shown in Table 4. The prediction results 

are generated using a three-class SVM algorithm. 

4.1. Confusion Matrix 

Table 4: The confusion matrix to classify three classes 

Classes AN AS AB 

PN C11 C12 C13 

PS C21 C22 C23 

PB C31 C32 C33 

 

Table 4 shows a three classes confusion matrix, where 

𝐴𝑁 , 𝐴𝑆 and 𝐴𝐵 are actual class for natural textile fiber, actual 

class for synthetic textile fiber, and actual class for blended 

textile fiber, respectively. And 𝑃𝑁 , 𝑃𝑆  and 𝑃𝐵  are predicted 

class for natural textile fiber, predicted class for synthetic 

textile fiber, and predicted class for blended textile fiber, 

respectively. Each value in the diagonal (C11, C22 or C33) 

correct classification of its class. Rest values of C21 , C31 , 

C12 , C32 , C13 and C23 represent number of false positive 

samples which are incorrect prediction (Tharwat, 2021). 

4.2 The definition of Overall Accuracy 

In order to measure Overall Accuracy efficiency to correct 

classification, the Overall Accuracy is used and specified by  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =∑C𝑘𝑘

3

𝑘=1

∑∑C𝑖𝑗

3

𝑗=1

3

𝑖=1

⁄  (7) 
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4.3 The definition of Precision Value  

Precision value (PV) is the ratio of the number of each 

predicted class to the total number of three correct or 

incorrect actual class, and is specific by: 

𝑃𝑉

=  

{
 
 
 
 

 
 
 
 C11 ∑C1𝑘

3

𝑘=1

⁄ , 𝑓𝑜𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝐶𝑙𝑎𝑠𝑠 

C22 ∑C2𝑘

3

𝑘=1

⁄ , 𝑓𝑜𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝐶𝑙𝑎𝑠𝑠 

C33 ∑C3𝑘

3

𝑘=1

⁄ , 𝑓𝑜𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐵𝑙𝑒𝑛𝑑𝑒𝑑 𝐶𝑙𝑎𝑠𝑠 

 
(8) 

4.4 The definition of Recall Value  

Recall value (RV) is the ratio of the number of each actual 

class to the total number of three correct or incorrect 

predicted class, and is specific by: 

𝑅𝑉

= 

{
 
 
 
 

 
 
 
 C11 ∑C𝑘1

3

𝑘=1

⁄ , 𝑓𝑜𝑟 𝑎𝑐𝑡𝑢𝑎𝑙 𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝐶𝑙𝑎𝑠𝑠 

C22 ∑C𝑘2

3

𝑘=1

⁄ , 𝑓𝑜𝑟 𝑎𝑐𝑡𝑢𝑎𝑙 𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝐶𝑙𝑎𝑠𝑠 

C33 ∑C𝑘3

3

𝑘=1

⁄ , 𝑓𝑜𝑟 𝑎𝑐𝑡𝑢𝑎𝑙 𝐵𝑙𝑒𝑛𝑑𝑒𝑑 𝐶𝑙𝑎𝑠𝑠 

 
(9) 

To evaluate the proposed method’s performance in 

classifying textile fibers into the natural, synthetic, and blended 

groups, we utilize the spectral signal input {𝑥[𝜆𝑛]} from the 

test dataset along with the parameters, i.e., {ℎ𝑛[𝑛]} , {ℎ𝑠[𝑛]}  , 

ℎ1(𝑑) and ℎ2(𝑑) obtained from ten rounds (𝑖) of random 

iterations with three ratios of a train to test data during the 

training process. The evaluation process consists of the 

following steps: 

Step 1:  Enhance the spectral signal input {𝑥[𝜆𝑛]}  to 

obtain the normalized spectral signal {𝑥[𝑛]}. 

Step 2:  Extract features from the output of two matched 

filters {ℎ𝑛[𝑛]}  and {ℎ𝑠[𝑛]} , which were 

obtained from the training process at 𝑛 = 65, 

resulting in a new feature vector {𝑑}.  

Step 3:  Utilize the newly feature vector {𝑑} as input to 

classify textile fibers using the three-Class 

SVM algorithm with hyperplanes ℎ1(𝑑)  and 

ℎ2(𝑑), which were obtained from the training 

process. 

Step 4:  Count and record the classification results in the 

format of the confusion matrix for three-class 

classification. Then, the overall accuracy, 

precision, and recall are calculated to evaluate 

the classification performance. 

 
Table 5. Classification performance in case 60:40 ratio 

Round 

𝒊 

Natural  

Class 

Synthetic 

 Class 

Blended 

Class 

PV RV PV RV PV RV 

I 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

II 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

III 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

IV 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

V 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

VI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

VII 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

VIII 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

IX 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

X 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

𝝁 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

𝝈 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 
Table 6. Classification performance in case 70:30 ratio 

Round 

𝒊 

Natural  

Class 

Synthetic 

 Class 

Blended 

Class 

PV RV PV RV PV RV 

I 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

II 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

III 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

IV 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

V 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

VI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

VII 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

VIII 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

IX 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

X 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

𝝁 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

𝝈 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table 7: Classification performance in case 80:20 ratio 

Round 

𝒊 

Natural  

Class 

Synthetic 

 Class 

Blended 

Class 

PV RV PV RV PV RV 

I 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

II 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

III 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

IV 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

V 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

VI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

VII 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

VIII 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

IX 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

X 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

𝝁 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

𝝈 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Table 8: Overall accuracy for fiber classification 

Round 

𝒊 
Overall Accuracy 

60:40 70:30 80:20 

1 1.0000 1.0000 1.0000 

2 1.0000 1.0000 1.0000 

3 1.0000 1.0000 1.0000 

4 1.0000 1.0000 1.0000 

5 1.0000 1.0000 1.0000 

6 1.0000 1.0000 1.0000 

7 1.0000 1.0000 1.0000 

8 1.0000 1.0000 1.0000 

9 1.0000 1.0000 1.0000 

10 1.0000 1.0000 1.0000 

Mean 1.0000 1.0000 1.0000 

Std. 0.0000 0.0000 0.0000 

 

Tables 5 – 7 show that the proposed method has high 

precision and recall is 1.0 as well as high overall accuracy is 

1.0 in all ratios of train and test data as shown in Table 8 It 

indicates that proposed method is performing extremely 

well in accurately identifying and classifying the data into 

their respective groups. This high level of performance 

suggests that the proposed technique is robust and can 

generalize well to new data. It also implies that the features 

used for training the three-class SVM classification are 

highly informative and relevant to the classification. 

5. CONCLUSION 

The paper presents the novel method classifying the fibers 

and applying NIR spectrum signals from NIR sensor. The 

proposed method uses two matched filters to create a new 

feature that is then used as input for training a three-class 

SVM classification. In Experimental result, the novel 

approach achieved an overall accuracy with 100% for three 

cases of ratios of train and test data indicating that it is robust 

and can generalize well to new data. Particularly in 

comparison to our previous study, the highest accuracy 

achieved is 0.9922±0.0078, exclusively with the use of an 

80:20 training-to-test dataset. However, this accuracy 

decreases to 0.9899±0.0087 when tested under a 60:40 

training-to-test dataset, further emphasizing the efficiency 

of the novel approach. Furthermore, the feature extraction 

vector used in this study is highly informative and relevant 

to the classification task. The findings of this study can be 

applied in various industries including fashion, textiles and 

materials science to get better accuracy and performance of 

the fiber classification in an automation process. In the 

future work, we improve to analytical methods in predicting 

the proportional of fiber composition either natural or 

synthetic in blended fabric. 
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