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A B S T R A C T 

Climate variability and climate change cause of drought events. Drought is a significant 

impact of economic, environment and social. The suitable methods in inspecting and 

monitoring provide useful information that can be used to build up prevention and 

mitigation planning from drought impacts. The study purposes were to find out the 

suitable drought index and its trend for the Northern of Thailand. The 10 stations 

meteorological data during 1951-2020 were used for the drought indices calculation. The 

indices were Standardized Precipitation Index (SPI), Deciles index and Moisture 

Available index (MAI) at 1, 3, 6 month timescales and monthly Palmer Drought Severity 

Index (PDSI). It found that PDSI was the most appropriate index. Consequently, the 

Mann-Kendal test was used to investigate the trend of PDSI for long-term (40 years) and 

short-term (20 years) periods. There was no trend of drought intensity for long-term period 

but found in 4 stations for short-term period. The PDSI can be used for drought monitoring 

and prediction by using numerical weather prediction products. 

 

1. INTRODUCTION 

Today, the healthcare industry’s top priority is to prevent 

falls, which impair people’s physical and emotional health, 

especially the elderly. A significant portion of society has 

entered an era of ageing, and this problem is gaining more 

attention among researchers. Many technologies are 

currently being researched to prevent it. As people age or 

have health issues like cardiovascular disease, reason to 

certain medication or muscle instability, falls become more 

common. Support for the physical and mental health will be 

essential if elders wish to continue living independently. 

A trustworthy fall detection and emergency aid system is 

therefore required by several stakeholders in the healthcare 

ecosystem. Some systems have used gyroscopes, inertial 

sensors, and barometers to detect falls. In these applications, 

sensors are generally employed to detect sudden changes in 

a person’s activities. These sensors can be added to cell-

phones, smart bracelets, or smart necklaces, to make them 

"wearable" gadgets. The fact that these devices need to be 

attached to the subject’s body and that monitoring is sensor- 

dependent is their biggest drawback. As a result, individuals 

without sensors are invisible during any situations that 

resemble falls. There are numerous options for these 

products in the market. These items’ main drawbacks are 

their high price and extensive hardware component 

requirements. Despite these sensor-based methods for fall 

detection, computer vision can be seen as a less intrusive 

field. The researchers have presented a few image/video 

datasets and investigated a wide range of methodologies.  

In 2025, the population will consist of over 300 million 

individuals aged 60 and above, representing 20.7 percent of  

the total population [1]. The growing population of elderly 

individuals, particularly those living alone, has raised 

significant concerns about their daily safety. Both their 

families and society at large are increasingly worried about 

ensuring the well-being of elderly individuals who are living 

independently. Falls are identified as the second-leading 

cause of unintentional injuries and fatal accidents, making 

them a critical concern for the safety of elderly people. 

Unfortunately, falls constitute the leading cause of injury- 

related fatalities in this particular age group [2]. Hence, 

investigating geriatric fall detection holds great importance 

due to its substantial societal consequences [3].  

Since there are various methods for detecting falls, let’s 

begin with conventional signal-based methods. The three 

most common types of fall detection systems currently in 

use are those based on wearable sensor devices, computer 

vision, and sensors deployed in the surrounding [4]. The 

senior activity area should have a variety of monitoring 

devices to collect data such as sound, vibration, and pressure. 

Based on the sensors deployed in various environmental 

circumstances, this data will be used to determine whether a 

fall has occurred. 

This method’s detection area has several restrictions, the 
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sensors are susceptible to interference from the 

surroundings, and the detection accuracy is low [5], [6]. 

Wearable sensor devices are needed for fall detection 

depending on the old person’s waist, limbs, chest, or back. 

These devices incorporate sensors such magnetic needles, 

gyroscopes, and accelerators. The movement of the elderly 

during a specific time period is then detected and analysed 

using the sensor data, which can help identify whether a fall 

has occurred. Although this technology offers easy 

installation and a high rate of detection, its effectiveness 

relies on consistent wear, which can disrupt the daily lives of 

the elderly. Opting not to wear the device hinders swift status 

determination, and the necessity for frequent recharging 

adds to the inconvenience [7], [8]. 

Traditional algorithms analyze video frame indicators, 

such as the person’s angle from the vertical and the rate 

at which their height varies, and then estimate if a fall 

will occur under particular predetermined circumstances [9]. 

Although there are some clear drawbacks, this oversimplifies 

the issue. The complexity of actual falls cannot be simplified 

to merely determining whether certain features are below or 

over a given threshold. The features obtained through 

machine learning methods are similar in quality to those 

derived from traditional techniques. These characteristics 

are employed for the purpose of training a machine learning 

classifier, that determines whether or not a fall has occurred, 

as opposed to having a predetermined criterion. 

Methods for identifying targets through the use of 

Convolutional Neural Networks (CNNs) generally fall into 

two primary categories [10]. A two-stage detection 

approach is involved in the first category, where the process 

of locating and recognizing the target is divided into distinct 

phases. The first method within this category, known as 

Region-Convolutional Neural Network (R-CNN), 

demonstrated less-than-ideal results and did not meet the 

demands for processing in real-time. To overcome this 

drawback, subsequent innovations like Faster R-CNN [11] 

and Fast R- CNN [12] were introduced, yet they remained 

inadequate in satisfying the need for real-time performance. 

The second category encompasses one-stage detection 

methods, which streamline the target’s localization and 

identification into a single step. "You Only Look Once" 

(YOLO) and the single shot multi-box detector (SSD) series 

are well-known examples of this methodology. In 2020, Lu 

et al. [13] implemented a novel approach to detect falls by 

integrating a spatial visual attention mechanism utilizing 

long short-term memory (LSTM) with a three-dimensional 

convolutional neural network (3D CNN). 

Zhang et al. [14] devised a technique to predict the 

likelihood of a person experiencing a fall by analyzing 

spatial and temporal changes in body posture. Their 

approach incorporated a diagram depicting the evolution of 

human behavior in terms of time and space. In 2021, Zhu et 

al. introduced a method involving a deep vision sensor 

combined with a CNN [15]. The CNN was trained on three- 

dimensional body posture data to predict falls, although its 

real-time performance was not notably exceptional. Cao et 

al. [16] suggested an approach for detecting falls utilizing a 

combination of deep learning and motion characteristics. 

Their approach combined the deep features extracted by a 

CNN with human motion characteristics to identify fall 

incidents. For recognizing human subjects, the method 

employed the YOLO version3 (YOLOv3) algorithm. 

Notably, the YOLO algorithm has undergone updates, with 

the most recent version being YOLO version8 (YOLOv8). 

Compared to its predecessors YOLOv8 offers significantly 

improved detection speed alongside enhanced precision and 

a smaller model size. 

2. METHODOLOGY 

2.1 YOLO 

The world of object detection experienced a revolutionary 

transformation when the YOLO algorithm was introduced. 

This ground breaking advancement ushered in the era of 

real-time object recognition by executing just one forward 

pass of the neural network. Object detection was reimagined 

by YOLO as a regression task, with probabilities provided for 

the classes of detected objects. Redmon et al. [11] unveiled 

this remarkable achievement in 2016, making it possible to 

conduct seamless, real-time end-to-end training while 

maintaining outstanding average precision. Fig. 1 illustrates 

the YOLO architecture. 

The YOLO framework divides the input image into a grid 

of size SxS. When the central point of an object aligns with 

a grid cell, that particular cell becomes responsible for 

detecting the object. Within each grid cell, B bounding boxes 

and corresponding confidence scores are forecasted. These 

confidence scores indicate the model’s certainty regarding 

both the presence of an object and the accuracy of the pre- 

diction. To compute confidence, the intersection over union 

(IOU) between actual and predicted boxes is calculated. In 

grid cells where no objects are present, confidence scores 

remain at zero. 

Each bounding box prediction encompasses five key 

elements: w, h, x, y and confidence. The (x, y) coordinates 

signify the center of the box relative to the edges of the grid 

cell. The height (h) and width (w) are defined relative to the 

entire image. The confidence prediction serves as a 

representation of the IOU between the predicted and actual 

boxes. 
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Fig. 1. YOLO Architecture [11]. 

 

Table 1: Brief description YOLO variants 

S/N YOLO Variant Improvement Results 

 

1 

YOLOv1 

(Redmon et 2016) [11] 

The single shot detector addresses and resolves the i ssue  

of simultaneously drawing boundary boxes and 

identifying object classes. 

Higher accuracy and speed in 

contrast to a two-stage object 

detection system, such as Faster 

R-CNN 

 

2 

YOLOv2 

(Redmon Farhadi, 2018)[17] 

Successive advancements have been made to enhance 

batch normalization, enabling higher-resolution detection, 

and adopting anchor boxes for improved results. 

Architectural reduction, improved 

high resolution picture detection, 

and faster, more accurate 

detection 

3 YOLOv3 

(Redmon Farhadi, 2018)[17] 

Adding connections to the backbone network layers, 

adding the objectness score to bounding box prediction, 

and predictions at three different levels of granularity. 

Improves detection of smaller 

objects 

 

4 

YOLOv4 

(Alexey et al., 2020)[18] 

Improved feature aggregations, incorporating a bag of 

complimentary techniques, including mosaic 

augmentations, and embracing the mish activation 

function. 

Improved training efficiency and 

accuracy, as well as performance 

excellence and accessibility 

 

 

5 

 

YOLOv5 

(Nepal & Eslamiat, 

2022)[19] 

Reduced network parameters are employed, combining 

Cross Stage Partial Network (CSPNet) in the 

architectural head and PANet in the neck, with the 

inclusion of residual structures and auto-anchoring. 

Furthermore, mosaic augmentations are incorporated. 

Inference on batch, video feed, 

and webcam ports is incredibly 

simple to train. Using and 

transferring weights with ease. 

Lighter and faster than prior 

models. 

 

6 

YOLOv6 

(Chuyi et al., 2022)[20] 

Rep-PAN Neck and EfficientRep Backbone are the 

neck designs and new network backbone. Different 

features are separated from the final head by decoupling 

the network head. 

Improvement in small object 

detection, anchor-free model 

training. less flexible and stable 

than YOLOv5. 

7 YOLOv7 

(Wang et al., 2022)[21] 

Extended Efficient Layer Aggregation Network (E-

ELAN) layer aggregation, trainable freebies, and a 

reduction of 35% in network parameters. 

Improved accuracy and speed, and 

simplified training 

 

8 

YOLOv8 

(Ram, et al., 2023)[22] 

Introduces Darknet-53 backbone network, which is 

quicker and more precise than the one used in YOLOv7. 

And uses larger feature map for better detection 

Higher accuracy and speed 

compared to other algorithm. 

The foundational structure of YOLO draws inspiration 

from the GoogLeNet image classification model. This 

architecture boasts 24 convolutional layers, followed by 2 

fully connected layers. In place of GoogLeNet’s inception 

modules, 1x1 reduction layers and 3x3 convolutional layers 

are integrated. Over time, the YOLO architecture under- 

went substantial refinements, introducing algorithms and 

procedures aimed at bolstering accuracy, reducing network 

size, and amplifying detection speed. Subsequent versions 

like YOLOv5, YOLOv7 and YOLOv8 further refined the 
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architecture to achieve better detections. These versions 

incorporate various advancements summarized in Table 1. 

YOLOv5, YOLOv7, and YOLOv8 introduce enhancements 

in precision, accelerated detection speeds, and streamlined 

network architectures. 

2.2 Improvement of YOLO 

The primary distinctions between the YOLOv1, YOLOv2, 

YOLOv3, YOLOv4, and YOLOv5 architectures, according 

to Nepal and Eslamiat (2022), are that YOLOv1 utilises the 

softmax function and that YOLOv2 has a higher resolution 

classifier and is more accurate and efficient than YOLOv1. 

This is as a result of the CNN of YOLOv2 having a batch 

normalisation layer added. To extract features from the input 

image, YOLOv3 employs Darknet53 as its primary 

backbone, which has a greater efficiency and detection 

performance. Multi-object categorization, or the ability for 

an object to simultaneously belong to many categories, is 

available in YOLOv3. To determine the likelihood that an 

input image corresponds to a particular label, YOLOv3 

swaps out the softmax function with an independent 

logistics function. Additionally, YOLOv3 employs the 2- 

class entropy loss for each category, which lessens the 

computational complexity introduced by softmax functions. 

The CSPDarknet53 network, which combines Darknet53 

and CSP network, serves as the backbone of the YOLOv4 

architecture. Higher accuracy, greater object detection 

efficiency, and fewer hardware requirements are all features 

of YOLOv4. Focus structure, using CSP-Darknet53 as its 

skeleton, is used by YOLOv5. In YOLOv5, the Focus layer 

makes its debut. In the YOLOv3 algorithm, the Focus layer 

takes the place of the previous three layers. Incorporating a 

Focus layer offers several advantages, including reduced 

Compute Unified Device Architecture (CUDA) memory 

usage, a smaller layer size, and improved backward and 

forward propagation efficiency. 

Comparatively, YOLOv5 demonstrates impressive speed 

while being approximately 90 percent lighter in terms of size 

compared to YOLOv4. 

YOLOv6 adopts various advancements such as the 

EfficientRep Backbone, RepVGG Style structure, SimOTA 

algorithm, SIoU bounding box regression loss function and 

Rep-PAN Anchor-free paradigm. 

In contrast, YOLOv7 distinguishes itself by 

outperforming all current object detection systems in respect 

of both precision and speed across a frame rate spectrum 

spanning from 5 to 160 frames per second. Specifically, 

YOLOv7 uses rep-Path Aggregation Networks (PAN) and it 

attains the top accuracy rating of 56.8% among real-time 

object detectors running at 30 frames per second or higher 

on the GPU V100.  

YOLO’s seventh version has realized a noteworthy 

enhancement in real-time object detection precision while 

maintaining the same inference costs. Furthermore, it has 

managed to decrease the computational requirements for 

achieving a cutting-edge real-time object detector by 

roughly 40%, all while enhancing both detection and 

inference speed. 

2.3 YOLOv8 

Ultralytics, the creators of YOLOv5, introduced YOLOv8 

[23] in January 2023. YOLOv8 offers a range of five scaled 

versions: YOLOv8l (large), YOLOv8m (medium), 

YOLOv8s (small), YOLOv8x (extra-large), and YOLOv8n 

(nano). The capabilities of YOLOv8 include object 

identification, tracking, segmentation, pose estimation, and 

classification, among other computer vision tasks. Fig.2 

provides a comprehensive visualization of the YOLOv8 

architecture [23].  

By introducing modifications to the CSPLayer, now 

referred to as the C2f module, YOLOv8 maintains its 

structural resemblance to its predecessor, YOLOv5. One 

significant improvement introduced in YOLOv8 involves 

the incorporation of the C2f module, known as the cross-

stage partial bottleneck with two convolutions. This module 

effectively blends advanced features with contextual 

insights, leading to an increased level of precision in object 

detection. YOLOv8 demonstrates efficiency in 

autonomously handling objectness, classification, and 

regression tasks through the implementation of a decoupled 

head and an anchor-free model. This modular strategy 

contributes to improved accuracy and task specialization. 

In the output layer of YOLOv8, the objectness score, 

denoting the likelihood of object presence within a bounding 

box, is activated using the sigmoid function. For assessing 

class probabilities, YOLOv8 adopts the softmax function, 

providing insights into the likelihood of objects belonging to 

different classes. To handle loss functions, YOLOv8 uses 

the CIoU (Complete Intersection over Union) [24] and DFL 

(Distribution Focal Loss) methods for bounding box loss, 

while it employs binary cross-entropy for classification loss. 

This combination of loss functions is particularly effective 

in enhancing object detection accuracy, particularly for 

detecting smaller objects. 

Furthermore, YOLOv8 introduces an innovative model 

called YOLOv8-Seg, designed for semantic segmentation 

tasks. This model incorporates a CSPDarknet53 feature ex- 

tractor as its backbone, coupled with a C2f module. 

Positioned after the C2f module, two segmentation heads are 

employed to forecast semantic segmentation masks for input 

images. YOLOv8-Seg preserves the architecture of five 

detection modules along with a prediction layer, aligning 

with the configuration of YOLOv8’s detection heads. 

The YOLOv8-Seg model has demonstrated performance 

in a variety of benchmarks for both object detection and 

semantic segmentation, striking a balance between speed 

and efficiency. YOLOv8 can be conveniently installed as a 

PIP package or executed through a user- friendly command-

line interface (CLI). It offers seamless integrations for tasks 

such as labeling, training, and deployment. 
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Fig. 2(a). YOLOv8 Architecture. 

 

Fig. 2(b). YOLOv8 BCE Loss, Distribution Focal Loss and CIoU Loss. 

 

 

Fig. 2(c). C2f, SPPF, Conv, Detection block details. 
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In the assessment conducted on the MS COCO dataset, 

YOLOv8x garnered a remarkable performance score of 

53.9% while being evaluated at an image size of 640 pixels. 

This achievement notably outperforms YOLOv5, which 

secured a score of 50.7% using the identical input 

dimensions. An additional highlight is the operational speed 

of YOLOv8x, clocking in at an impressive 280 frames per 

second (FPS) on an NVIDIA 100 GPU enhanced with 

TensorRT. 

2.4. Dataset 

A fall detection dataset, comprising images and 

corresponding labels, was compiled by collecting 

photographs from diverse sources. The classifications was 

employed in this study pertain to "normal" and "falling" 

scenarios. The dataset encompasses two main 

subdirectories: "Training" (containing 374 photos) and 

"Validation" (comprising 111 images), both located within 

the "images" directory. These subdirectories serve distinct 

purposes in the dataset. Specifically, text files containing 

labels for individual images are present in this directory. 

Fig.3 illustrates various instances showcasing our dataset’s 

composition. 

 

 

Fig. 3. Sample images from dataset. 

2.5. Google Colab 

Google Colab comes equipped with pre-installed libraries 

like TensorFlow, Keras, and PyTorch, which are widely 

employed for deep learning applications such as object 

detection [25]. Moreover, it offers complimentary access to 

GPUs and TPUs, which can considerably expedite the 

training process of YOLOv8 models. 

In this study, Google Colab was employed, leveraging 

the availability of robust GPUs without cost. The model was 

trained for 100 epochs, with each training iteration 

consisting of a batch size of 16. 

2.6.  Performance Metrices 

Precision (P) in object detection assesses the accuracy of a 

model’s predictions by measuring the proportion of 

correctly identified objects among all objects predicted as 

positive. Conversely, Recall (R) gauges the model’s 

capability to detect all objects present in an image. The 

P-R Curve demonstrates the interplay between recall and 

precision across different confidence thresholds. The PR 

curve’s integral signifies the Average Precision (AP) score, 

providing a graphical representation of the model’s 

effectiveness. 

The AP is a measurement that merges recall and precision 

across varying confidence thresholds. The Mean Average 

Precision (mAP) defines the mean value of AP scores 

computed for distinct classes within a multi-class object 

detection scenario. The Intersection over Union metric 

quantifies the degree of intersection between the actual 

bounding box of an object and a predicted bounding box. 

The F1 Score, computed as the harmonic average of 

recall and precision, provides a balanced metric that takes 

into account both false negatives and false positives. It serves 

as a comprehensive metric for evaluating both recall and 

precision simultaneously. A higher F1 score signifies an 

improved balance between these two metrics. The 

mathematical representations of various performance 

metrics are provided below. 

 mAP = 
1

N
∑ APi

N
i=1  (1) 

The notation APi signifies the Average Precision score 

corresponding to class i, with N representing the overall 

count of classes. 

𝑃 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑝)

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑝) + 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑝)
 

 =
𝑇𝑝

𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 (2) 

𝑅 =
𝑇𝑝

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑝) + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑇𝑛)
 

 =
𝑇𝑝

𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 (3) 

 F1=  
𝑃𝑋𝑅

𝑃+𝑅
x2 (4) 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝+𝑇𝑛

𝐹𝑝+𝐹𝑛+𝑇𝑝+𝑇𝑛
  (5) 

where, Tp is the overall count of obstacles that were 

correctly detected, 𝐹𝑝 is the overall count of obstacles that 

were incorrectly detected objects, and Fn is the total number 

of obstacles are not correctly detected, Tn is the number of 

correctly classified negative instances. 

In summary, these performance metrics employed in 

YOLO provide a quantitative evaluation of the model’s 

accuracy, efficiency, and overall detection capabilities. 

3. EXPERIMENTAL RESULTS AND 

PERFORMANCE ANALYSIS 

Table 2 offers a summary of the training times for various 

iterations of the YOLOv8 model. Notably, YOLOv8n 

emerges as the fastest to train, with an approximate duration 

of 0.430 hours. This expedited training time may position 
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YOLOv8n as an attractive option for situations where swift 

model deployment is crucial, provided its performance 

metrics do not markedly lag behind other models. 

 
Table 2: Training time of different YOLOv8 models 

Model Training Time 

YOLOv8l 0.900 hours 

YOLOv8x 1.433 hours 

YOLOv8m 0.624 hours 

YOLOv8s 0.510 hours 

YOLOv8n 0.430 hours 

     

After YOLOv8n, YOLOv8s steps in with a training 

duration of 0.510 hours. Although it requires a bit more time 

compared to YOLOv8n, it still stands as a relatively short 

training period when compared to the other models. 

Positioned as the intermediate model, YOLOv8m requires a 

notably longer training period, clocking in at approximately 

0.624 hours. 

On the other hand, YOLOv8l takes even more time to 

train, approximately 0.900 hours. In comparison, YOLOv8x, 

which has the lengthiest training duration, demands around 

1.433 hours. These prolonged training periods are probably 

due to the more complex model architectures, potentially 

leading to improved performance metrics. 

 

Table 3: Performance metrices of different models 

Model P R mAP50 F1-Score 

YOLOv8x 0.775 0.832 0.869 0.80 

YOLOv8l 0.835 0.917 0.95 0.87 

YOLOv8m 0.886 0.783 0.882 0.83 

YOLOv8s 0.943 0.881 0.953 0.91 

YOLOv8n 0.897 0.914 0.952 0.90 

 

Table 3 provides a comparison of performance metrics 

for different YOLOv8 variants on the validation dataset. 

YOLOv8n attains a precision of 0.897 and a recall of 0.914. 

These metrics collectively result in an F1-score of 0.90 and 

an mAP@50 of 0.952, showcasing its comprehensive 

proficiency in object detection and localization tasks. In 

contrast, YOLOv8m, which is a comparatively more 

complex model than YOLOv8s and YOLOv8n, fails to 

outperform the other models, including YOLOv8s and 

YOLOv8n. YOLOv8m attains an mAP@50 of 0.882 and an 

F1 score of 0.83. 

Moving towards the YOLOv8x model, despite the longer 

training time, it does not deliver superior results. It achieves 

mAP@50 of 0.869 and an F1 score of 0.80. Fig. 4 illustrates 

a comparison of various metrics using a bar graph. Both 

YOLOv8s and YOLOv8l perform quite well, with YOLOv8l 

achieving an mAP@50 of 0.95, recall is 0.917 and an F1 

score of 0.87, and YOLOv8s achieving an mAP of 0.953 and 

an F1 score of 0.91. Fig. 5, 6, 7, and 8 illustrate the 

progression of metrics throughout the validation epochs. 

 

 

Fig. 4. A bar chart comparing various performance metrics 

between different YOLOv8 models. 
 

Table 4: Best recall of models 

Model Best Recall Epoch 

YOLOv8l 0.913 126 

YOLOv8x 0.861 126 

YOLOv8m 0.848 128 

YOLOv8s 0.91 126 

YOLOv8n 0.91 111 

 

In the early epochs, there is noticeable variability in 

metrics across all models, especially in recall and precision. 

F1-score and mAP@50, on the other hand, demonstrate 

comparatively less fluctuation. 

Achieving stability poses a significant challenge across 

the entire range of models, particularly with YOLOv8l and 

YOLOv8x encountering the most pronounced difficulties. It 

becomes evident from figures that a semblance of stability 

begins to emerge only after reaching approximately 

epoch120. Nevertheless, this stability predominantly applies 

to the metrics of mAP@50 and F1-score. Changes in recall 

and precision endure throughout the latter phases of training, 

with certain models exhibiting a decline in performance as 

they approach the conclusion of the training procedure. 

Concerning convergence, the YOLOv8l and YOLOv8x 

models display a more gradual convergence pattern across 

all metrics, with recall and precision showing particularly 

noticeable delays in attaining consistent performance. In 

contrast, the lighter models, namely YOLOv8m, YOLOv8s, 

and YOLOv8n, exhibit quicker convergence, greater overall 

stability, and no worrisome signs of performance decline 

over epochs. These observations shed light on the intricate 

connection between stability and convergence within the 

assessed models. The need for a greater number of training 

iterations to achieve optimal performance becomes evident 
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when considering the slower convergence and delayed 

stability observed in YOLOv8x and YOLOv8l models. 

Despite fluctuations, these YOLOv8l ultimately achieve a 

level of stability, especially concerning F1-score and 

mAP@50. 

 

 
Fig. 5. Evolution of recall for all YOLOv8 variants. 

 

 
Fig. 6. Evolution of precision for all YOLOv8 variants. 

 

 

Fig. 7. Evolution of mAP for all YOLOv8 variants. 

 

In the ongoing analysis, table 4 we examine the highest 

recall achieved along with the corresponding epoch for each 

variant of the YOLOv8 model during the validation process. 

The YOLOv8n model achieves a commendable recall of 

0.91. This indicates swift learning and robust detection 

capabilities, even with its relatively uncomplicated structure. 

This rapid convergence implies its suitability for scenarios 

with limited computational resources and time constraints, 

without significant compromises in recall. 

 

 
Fig. 8. Evolution of F1 Score for all YOLOv8 variants. 

 

On the other hand, YOLOv8s, despite its increased 

complexity compared to YOLOv8n, attains recall of 0.91. 

This indicates that although more training epochs are 

required, the increased complexity of the model does not 

lower recall. When considering YOLOv8m, it attains a 

recall score of 0.848, after 128 epochs. However, it doesn’t 

offer a substantial enhancement when compared to 

YOLOv8s or YOLOv8n. This prompts inquiries regarding 

the effectiveness of introducing additional complexity in 

this variant, as it fails to translate into superior performance. 

Interestingly, YOLOv8x manages to attain a recall score 

of 0.861 by the 126th epoch. This suggests that despite 

YOLOv8l having a higher level of intricacy compared to 

YOLOv8s, this increased complexity does not necessarily 

lead to enhanced performance or faster learning.  

At last, YOLOv8l, the sophisticated model, attains an 

impressive recall rate of 0.913 in epoch 126, surpassing all 

previous versions in terms of recall performance. What’s 

intriguing is that, despite its increased complexity, it reaches 

its peak performance more quickly when compared to both 

YOLOv8s and YOLOv8m. 

This implies that YOLOv8l may strike the optimal 

equilibrium between complexity and performance within 

this group of models, offering superior detection accuracy 

without a substantial increase in training time. These 

findings emphasize that there isn’t a straight- forward 

connection between recall performance and model 

complexity. While the advanced model, YOLOv8l, attains 

the highest recall rate, it’s clear that not every increase 

in complexity results in improved performance, as 

demonstrated by YOLOv8m and YOLOv8x.  

Images results of different models is shown in fig 9. 

according to the figures it is clear that YOLOv8l, YOLOv8x 

has quite decent detection. 
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Fig. 9. Here are the image results for various models: (a) The original set of images. (b) Images generated by YOLOv8x.(c) 

Images produced by YOLOv8l. (d) Images from YOLOv8m. (e) Images generated using YOLOv8s. (f) Images created 

with YOLOv8n. 

4. CONCLUSION 

Detecting elderly fall behavior and safeguarding human 

health are of utmost importance. In this study, an YOLOv8 

based network is presented for the purpose of detecting 

elderly fall. Using custom dataset, the experimental findings 
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show that YOLOv8l outperforms the other models in recall. 

but YOLOv8s gives better mAP value. YOLOv8s 

demonstrated a slight precision advantage over YOLOv8m 

and YOLOv8l. The model results indicate that YOLOv8n, 

YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x achieved 

mean average precision (mAP@50) values of 0.952, 0.953, 

0.882, 0.95, and 0.869, respectively. YOLOv8l outperformed 

other model with mAP@50 of 95% and best recall of 0.913, 

respectively. In conclusion, when assessing various 

architectures and iterations for fall detection, it becomes 

evident that there isn’t a single "optimal" model that 

performs exceptionally well in every aspect. 

The selection of a model should hinge on the particular 

requirements of the application, taking into account factors 

such as accuracy, recall, inference time, and the trade-offs 

among these metrics. Building upon these discoveries, 

researchers now have a solid groundwork on which to 

further explore, suggest ground breaking enhancements, and 

extend the frontiers of this domain. This progress ultimately 

paves the way for the development of elderly fall detection 

systems that are both more efficient and effective. 
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