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A B S T R A C T 

Aims to minimize the energy consumption of the light rail transit using an onboard battery 

as the primary power source by finding the speed profile optimization, using a dynamic 

programming approach. By generating the speed candidate from the reference speed 

profile and comparing the result of each optimum speed profile, the different resolutions 

of the speed candidate in each position can be the better result. The result shows the 

maximum saving energy of up track direction and down track direction as 16.10% and 

18.99% respectively. For the 22 km round-trip route of the Korat Light Rail Transit Green 

Line project in Nakhon Ratchasima, Thailand, this study recommends the adoption of an 

optimal speed profile as a driver's guide. The route has a shared traffic section and the 

light rail vehicle specific path. In addition, the running time is limited to be most effective 

in accordance with energy-saving. 

 

1. INTRODUCTION 

Currently one of the important public transportations is the 

electric railway. The people can choose by their needs to use 

any of transportation such as high-speed train, metro, and 

tram. In addition, another choice for using public 

transportation is the light rail transit (LRT) even in the big 

city but in any small city has a service of LRT such as 

scenery town.  The LRT is closer to railroads and more 

environmentally and gaining attention in an aging society. 

Nowadays the technological advancements in energy 

storage devices and fast charging at each station are well 

known [1]. An example such as the LRT in Nanjing, China 

which is 90% of the route uses onboard energy storage in the 

catenary free operation that the cost-effective both for 

construction and easy to accept by the local citizen [2].  

During the catenary free operation, an onboard energy 

storage has a significant role to provide the energy. The 

limitation of using only onboard energy storage as the main 

power source such as battery is challenge. The required 

sizing to provide enough energy for travel must take into 

consideration [3]. For enough energy to arrive at the final 

terminal, the way to reduce the energy consumed from the 

onboard energy storage, the battery charging at the 

passenger station is proposed. Besides catenary along with a 

platform that can reduce the peak demand power in 

accelerating range [4].  

Moreover, the solution to reduce the energy consumption 

is to optimize the transportation system by taking into 

account the relative factors such as the timetable and the 

specific passenger needs [5]. Other factors to reduce the 

energy consumption can be the train motive power by 

finding the optimal speed profile or torque profile that the 

vehicle should follow to minimize its energy consumption 

[6]. Besides, there can also be a time schedule for managing 

the energy of the train using a grid system with energy 

storage devices that can solve both tight power supply and 

temporary capacity constraints [7, 8].  

Furthermore, the state of charge (SOC) is one of the 

factors that can consider while using the catenary free 

operation [9].  The factor that can consider for the city train 

because of frequent stops.  The regenerative braking energy 

recharges the onboard energy storage as a result that the total 

energy consumption is also reduced [10].  

For the reduction of the traction of motor, the strategy is 

allowing trains to coast within the available amount of time 

to conserve energy, by using the algorithm with Genetic 

Algorithm (GA), Ant Colony Optimization (ACO), and 

Dynamic Programming (DP), the authors from [11] 

compared the result of the 3 algorithms that the dynamic 

programming was given the minimum energy consumption 

and the speed profile with no disturbance for a problem of 

too many discrete points [12]. Neither the ant colony 

optimization algorithm nor the genetic algorithm yielded a 

sufficiently smooth optimal speed profile with a distinct 

cruising phase. Besides, the authors from [13] compared the 

gradient method and dynamic programming that slow 

computation, and the Sequential Quadratic Equation 

Program (SQP) is faster computing, but in the speed 
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application, the dynamic programming is easy to limit the 

state of variables such as speed and acceleration. 

Furthermore, Particle Swarm Optimization (PSO) is a 

widely recognized optimization algorithm inspired by the 

collective movement of birds in a flock. [14], which has also 

proven its efficacy in identifying optimal solutions within 

the context of speed profile optimization. [15, 16]. In light 

of these findings, the present investigation explores the 

application of dynamic programming as a viable approach 

for identifying the optimal speed profile that minimizes 

energy consumption.  

The simulation presented in this article is exemplified 

through the application to the specific case of the green line 

Korat LRT route in Nakhon Ratchasima, Thailand. That is 

the project to solve the traffic congestion and other policies, 

and the design of catenary free operation by using only 

onboard energy storage with recharging energy at the 

passenger station [17]. Following the lead of [18], this study 

proposes utilizing the onboard li-ion battery as the energy 

source for the LRV. Furthermore, it leverages dynamic 

programming to identify the optimal speed profile by 

discretizing a reference speed profile and iteratively 

evaluating various candidate speeds with the aim of 

maximizing energy savings. The simulation separates of the 

up-track direction route and down track direction route. 

This article concludes with the problem formulation in 2 

which are the LRV movement model, the battery model, and 

the dynamic programming approach. The reader can find a 

comprehensive description of the investigated route and 

LRV configuration in 3. Sections 4 and 5, respectively, 

present the in-depth simulation results and the overarching 

conclusions derived from the analysis.    

2. PROBLEM FORMULATION 

2.1. LRV movement model 

The Newton's second law is employed to explain the motion 

of the LRV movement. The friction forces have considered 

as in Fig. 1. 

 

 
Fig. 1. Light rail vehicle movement model. 

 

F vTP PauxLrv
g m i  

= +  (1) 

F M a FT Reff
= +  (2) 

F F F FR RR grad drag
= + +  (3) 

From Eq. (1) and Eq. (2), PLrv  denotes the electrical 

power consumed during vehicle propulsion, FT  represents 

the tractive effort exerted by the locomotive, v is the LRV 

current velocity, g is the efficiency of the gearbox, m is the 

efficiency of the motor, i is the efficiency of the inverter, 

Paux  is power consumed by auxiliary systems, Meff is the 

LRV equivalent mass and a is the train acceleration. FR is 

the total resistance force calculated by Eq. (3). Where, FRR 

is friction force, Fgrad is gradient force and Fdrag is 

aerodynamic resistance force. The calculation of all 

aforementioned parameters is presented as follows: 

F f WRR RR=  (4) 

gsinF M
grad ff

=   (5) 

2
0.5F c A vair airFdrag d

=  (6) 

From Eq. (4) and Eq. (5), fRR represents the coefficient of 

rolling friction, W is the driven axis load, g is the gravity 

force and θ is the slope angle.  

From Eq. (6), ρair is the atmospheric density, cd is the 

coefficient of atmospheric drag, AF is the projected frontal 

area of the LRV oriented normal to the direction of the 

oncoming airflow. and vair is the velocity of the airflow.  

0

t
E P dtLrv=        (7) 

Eq. (7) provides the means to determine the LRV's energy 

consumption (E), expressed as a function of its running time 

(t). 

2.2. The Model of Battery 

An evaluation of both the generic and the simplest battery 

models reveals comparable levels of accuracy in their 

predictions. [19]. Thus, an onboard battery is used as the 

main power source of LRV by considered as a current source 

in parallel with the internal resistance as the simplest model 

shown in Fig. 2 [20]. 

 

  
Fig. 2. Simplest battery model. 
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VBattRBatt
IBatt

=  (9) 

(I I )V RBatt Batt Batt Lrv=  −  (10) 

The battery current, IBatt, the internal resistance, RBatt, and 

the battery voltage, VBatt, are obtained the calculation in Eq. 

(8)-(10). Where, CBatt is the battery capacity and ILrv is the 

LRV load current that consume from the battery calculated 

as in Eq. (11). 

PLrvILrv
VBatt

=   (11) 

% ( ) % ( ) 100
t ILrvSOC t t SOC t dt

t CBatt


+  = +   (12) 

Equation (12) provides the mathematical framework for 

calculating the battery's percent state of charge (%SOC). 

2.3. Dynamic programming 

This study employs dynamic programming to optimize the 

speed profile of an electric train during catenary-free 

operation, minimizing energy consumption while utilizing 

onboard energy storage as proposed in [21]. In additions, the 

potential of optimized speed profiles extends beyond 

minimizing energy consumption, finding further application 

in the design of driver advisory systems [22]. This article 

leverages dynamic programming to determine the optimal 

speed profile for train journeys between two passenger 

stations, with the objective function prioritizing minimal 

energy consumption throughout the travel distance.   

To facilitate the solution of the overall optimization 

problem, the train journey between the two passenger 

stations is decomposed into smaller sub-problems, each 

focused on determining the optimal speed profile for the 

travel segment between consecutive stations. Before the 

dynamic programming process must generate the state of the 

speed profile to receive the speed candidate for the decision 

in each stage of the optimization. The fixed speed profile 

reference of the LRV must be divided into a range within the 

limits of maximum and minimum speed shown in Fig. 3 

[23]. 

The train speed is represented as vk and K is the resolution 

of state generation that can be any value depending on the 

width of speed range and suitability. This simulation K is the 

number of 6, 10, 15, 20, 25 and 30. Where, s is the position 

during the passenger station, n is the station number whereas 

n = 1, 2, …, M. 

The divided factor ∆vd calculates from Eq. (13). vmax  is 

the maximum speed and vmin  is the minimum speed. 

( ) ( )max 1 1min

-1

v s v s
i iv

d K

−
+ + =   (13) 

To create the state generation by the speed range dividing, 

the speed in traction mode and cruising mode are calculated 

by Eq. (14). While the speed in coasting mode and braking 

mode are calculated by Eq. (15), where k = 1, 2, …, K. 

 

Fig. 3. State generation of speed profile. 
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 max ( ) ( 1), 0max 1
k

v v s v k
i d

= +   −
+

 (15) 

The acceleration, a(si+1) can be calculated by Eq. (16). 

The model incorporates crucial factors such as the LRV's 

power requirements, travel duration, and energy expenditure 

to arrive at the optimal outcome. 
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Eq. (17) defines the objective function for minimizing 

energy consumption that E represented the total energy 

consumption from Eq. (7) within the constrain in Eq. (18) 

which is the acceleration and deceleration range limited at 1 

m/s2. For Eq. (19)-(21), the total energy should calculate in 

each position si while si is the sub-position during the 

distance of passenger station as Sn and the limited running 

time as T. Besides, the running time is limited within 10% 

delay that allow to influence service schedule [24] 

and %SOC in must the range of 20% to 100%. 

min
1

M n
J E

totaln
= 

=
  (17) 

( ) ,maxa s a ii    (18) 

[ ], 1, ..., ,
n

s S n M ii  =    (19) 

,maxT T i     (20) 

20% % 100%SOC    (21) 

Fig. 4 shows the algorithm flow chart of the dynamic 

programming approach. From the start, choosing the 
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parameters from the state generation at the first position as 

s1. Secondly, checking the constrain feasibility. If the 

constrain is not satisfied, then back to the first step and 

choosing the new parameters. Leveraging the LRV and 

battery models, the next step calculates energy consumption 

for each speed profile, enabling efficiency evaluation. After 

that, collecting the best solution in each position and 

calculating the next position si+1 until the final position. At 

the final position at Sn, choosing the final minimum solution 

and stop. 

 

 
Fig. 4. Dynamic programming algorithm flow chart. 

3. ROUTE AND LRV PARAMETERS   

Fig. 5 illustrates the Green Line Korat LRT route in Nakhon 

Ratchasima, Thailand, chosen as the central case study for 

the simulation. The round-trip distance is 22 km with 20 

passenger platforms, and no gradient changes are present 

within the route. 

The normal speed profile of the LRV is shown in Fig. 6. 

The up-track direction, traveling from passenger station 1 to 

passenger station 17 and that the shared traffic section is 

from passenger station 7 to passenger 11. For the down track 

direction, traveling from passenger station 17 to passenger 

station 1 and the shared traffic section is passenger station 

18 to passenger station 20. The shared traffic section has low 

speed caused by the crowded traffic. 

The parameters of LRV used in the simulation presented 

in Table 1 [18]. The battery capacity of 70 kWh, 600 V and 

its model is considered an ideal source. The permissible 

range for the state of charge (SOC) is defined by lower and 

upper bounds of 0% and 100%, respectively. 

 

 
Fig. 5. Green line Route of Korat LRT. 

 

 

Fig. 6. Normal speed profile of round-trip. 

 
Table 1. Light rail vehicle parameters [18] 

Parameter Value 

Design speed limit (v) 40 km/h 

Peak acceleration rate (amax) 0.7 m/s2 

Equivalent mass (Meff) 44000 kg 

Coefficient of rolling friction (fRR) 0.006 

Coefficient of aerodynamic drag (cd) 0.6 

Atmospheric density (ρair) 1.225 kg/m3 

Cross-sectional area (AF) 8.4 m2 

Gearbox eff. (ƞg) 0.93 

Motors eff. (ƞm ) 0.9 

Inverter eff. (ƞi ) 0.9 

power consumed by auxiliary systems (Paux) 20 kW 

4. SIMULATION RESULT 

The simulation results consider separately in up track and 

down track journeys. The distance of each direction route is 

around 11 km. Table 2 shows the result in each traveling 

section between two passenger stations of up track direction. 

By using K = 6, The delay time is within the limit of 10%. In 

the same maximum speed limit of traveling from passenger 

station 1 to passenger station 4, the obvious maximum saving
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Table 2. Energy consumption comparison of normal speed and optimal speed of up track direction 

Station 
Distance  

between station 

Energy consumption (kWh) 
Energy  

saving (%) 

Time running (s) 

Delay time (%) 
From To 

Normal 

 speed 

Optimal  

speed 

Normal 

 speed 

Optimal 

 speed 

1 2 1055 3.3451 2.841 15.07 114 125 9.65 

2 3 762 2.8667 2.414 15.79 94 103 9.57 

3 4 1375 3.8678 3.223 16.67 132 143 8.33 

4 5 665 1.8917 1.599 15.47 111 120 8.11 

5 6 690 1.9348 1.673 13.53 114 124 8.77 

6 7 745 2.0354 1.764 13.33 118 129 9.32 

7 8 585 2.6464 2.6464 - 138 138 - 

8 9 475 1.7549 1.7549 - 89 89 - 

9 10 385 1.4703 1.4703 - 79 79 - 

10 11 340 1.6798 1.6798 - 107 107 - 

11 12 240 1.1742 1.1742 - 80 80 - 

12 13 500 1.7857 1.4532 18.62 85 93 9.41 

13 14 1195 2.9305 2.5241 13.87 154 169 9.74 

14 15 615 1.9631 1.6213 17.41 96 104 8.33 

15 16 650 2.0437 1.6634 18.61 101 110 8.91 

16 17 525 1.8341 1.4722 19.73 88 96 9.09 

energy is 16.67% which is traveling from passenger station 

3 to passenger station 4. Among all segments with constant 

speed restrictions, the connection between these two stations 

stands out as the longest, extending for 1375 meters. 

Considering the traveling from passenger station 4 to 

passenger station 6, the maximum energy saving is 15.47% 

which is traveling from passenger station 4 to passenger 

station 5 and a distance of 665 m. In the section of traveling 

from passenger station 12 to passenger station 17, Another 

maximum saving energy is 19.73%, traveling from 

passenger station 16 to passenger station 17 which is a 

distance of 525 m. 

The optimal speed profile of up track direction with each 

K value from 6, 10, 15, 20, 25, and 30 is shown in Fig. 7. If 

zoom in the specific point, that can be seen the difference in 

the acceleration of traction mode, and the difference is also 

in constant speed mode, coasting mode, and braking mode. 

This is the result of the decision of each K value which is an 

effect of the resolution of state generation. If K has increased 

the frequency of the speed division and the resolution in the 

optimization will also increase. 

Note that the section of shared traffic with the roadside 

did not consider the optimal speed profile as mentioned 

above. 

 

 

Fig. 7. Optimal speed profile of up track direction. 

 

Figure 8 illustrates an intriguing trend: within the up track 

direction, for all explored resolution parameter (K) values, 

the total energy consumption rises steadily along the optimal 

speed profile, reaching a interval around 30 kWh.  

The energy consumption is related to the reduction of 

state of charge of the onboard battery. The LRV consume 

energy from the battery almost 50% as shown in Fig. 9.  that 

all case of K is reduced from 100% to around 50% dropping 

almost 50% from the initial. The state of charge when the 

LRV arrived at the final terminal is 54.53%, 54.14%, 
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54.26%, 54.40%, 54.52%, and 55.04% respectively from K 

= 6 to K = 30. The maximum state of charge is the case when 

K = 30. 

 

 

Fig. 8. Energy consumption of up track direction. 

 

 

Fig. 9. State of charge of onboard battery of up track direction. 

 
Table 3. Optimization result of up track direction 

Case 

Energy 

consumption 

(kWh) 

Saving 

energy 

(%) 

Time 

(s) 

Delay 

time 

(%) 

Before 

optimization 
35.23 - 1700 - 

K = 6 30.97 12.07 1809 6.41 

K = 10 30.90 12.29 1805 6.18 

K = 15 30.86 12.40 1802 6.00 

K = 20 30.84 12.46 1796 5.65 

K = 25 30.83 12.48 1791 5.35 

K = 30 30.82 12.52 1804 6.12 

Table 3 shows the comparison of the optimization result 

of energy saving with finding the optimal speed profile 

traveling up track direction. The saving energy according to 

K = 6, 10, 15, 20, 25, and 30 in comparison with the based 

case before optimization are 12.07%, 12.29%, 12.40%, 

12.46%, 12.48%, and 12.52% respectively, that are all in the 

available time limitation. The maximum saving energy is 

12.52% obtained from the energy consumption before 

optimization of 35.23 kWh reduce to 30.82 kWh when K = 

30. For the result of running time, the delay time is 6.41%, 

6.18%, 6.00%, 5.65% 5.35%, and 6.12% following the K 

values respectively. The delay time of all cases are within 

the available time limitation. The result shows some signs of 

K value in this simulation, and the optimal K value for the 

up track direction in this simulation is K = 30. 

 

 

Fig. 10. Optimal speed profile of down track direction. 

 

 

Fig. 11. Energy consumption of down track direction. 

 

The same with up track direction, the optimal speed 

profile of down track direction in each K value as shown in 

Fig. 10. There is a difference of the length of the passenger 
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station interval which is close to the separated path of the 

shared traffic section, and the number of passenger stations 

is different. The variations in the optimization results are 

further evident in the distinct speed profiles for each 

operating mode: traction, constant speed, coasting, and 

braking.  

As shown in Fig. 11, the energy consumption of each K 

value increases following the optimal speed profile in Fig. 

10. Cause of the similar distance with up track direction, the 

energy consumption of down track direction is also around 

30 kW. However, the percentage of state of charge of 

onboard battery of each K value is reduced following the 

increase of energy consumption as shown in Fig. 12. The 

state of charge when the LRV arrived at the final terminal is 

39.99%, 40.13%, 40.04%, 40.01%, 40.07%, and 40.10% 

respectively from K = 6 to K = 30. The maximum state of 

charge is the case when K = 10.  

 

 

Fig. 12. State of charge onboard battery of down track direction. 

 

Table 4. Optimization result of down track direction 

Case 

Energy 

consumption 

(kWh) 

Saving 

energy 

(%) 

Time 

(s) 

Delay 

time 

(%) 

Before 

optimization 
36.03 - 1754 - 

K = 6 31.63 12.21 1870 6.82 

K = 10 31.60 12.30 1874 7.06 

K = 15 31.61 12.31 1865 6.53 

K = 20 31.58 12.35 1858 6.12 

K = 25 31.56 12.41 1852 5.76 

K = 30 31.55 12.43 1848 5.53 

 

Table 4 presents the optimization outcomes for 

minimizing energy consumption during down track travel, 

achieved for various resolution parameter K values: 6, 10, 

15, 20, 25, and 30. The saving energy in comparison with the 

energy consumption of the based case before optimization 

according to each K value are 12.21%, 12.30%, 12.31%, 

12.35%, 12.41%, and 12.43% respectively. In addition, the 

delay times of different time running are 6.82%, 7.06%, 

6.53%, 6.12% 5.76%, and 5.53% respectively, that are all in 

the available time limitation. The maximum saving energy is 

12.43% compared to the energy consumption before 

optimization of 36.03 kWh reduced to 31.55 kWh when K 

value is 30.   The optimal K value of 30 is also obtained from 

down track direction.  

From the simulation result of both up track and down 

track direction, the optimal value of K in this simulation is 

15 and 20 respectively. which can be seen clearly from Table 

2 and Table 3. By the different resolution of speed candidates 

from K = 6 to K = 30, their effect on the optimal speed profile 

and the saving energy that the difference of up track 

direction is 0.45%. The difference down track direction is 

0.22%. For both directions, the maximum saving energy is 

increased when K is more than 6 to K = 30. Notably, the 

optimization of speed profiles, as revealed by the simulation 

results, demonstrates that the minimum energy consumption 

associated with each optimal speed is dependent on the 

chosen resolution parameter K.  

5. CONCLUSION 

LRV energy consumption directly impacts both battery 

depletion and recharge duration, thereby influencing service 

scheduling, operational efficiency, and system reliability. 

Therefore, minimizing energy consumption is necessary. To 

minimize the energy consumption by using a dynamic 

programming approach, the minimum total energy 

consumption at each step position is used as an objective 

function. The optimization process yielded the optimal speed 

profile, minimizing energy consumption within the defined 

speed range. This led to a maximum energy saving of 

12.52% for the up track direction and 12.43% for the down 

track direction. There is a possibility to vary the resolution 

of state generation or known as speed candidate to find the 

optimum value that affects more saving energy. The other 

objective function might be considered to find the different 

results with the same system and comparison such as running 

time limit, regenerative braking energy, or state of charge of 

onboard battery for catenary free system. 
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