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A B S T R A C T 

This article presents a method for identifying conditions of load shedding in Microgrid 

power systems based on the use of an Artificial Neural Network (ANN). The sample set 

to train the ANN is built using simulation software with different failure scenarios. The 

sample set is a matrix containing information about variables and samples. Input variables 

selection for the ANN is accomplished using the Binary Particle Swarm Optimization 

(BPSO) algorithm. The BPSO algorithm is applied to reduce the input space by evaluating 

the results by the K-nearest neighbor identifier (K-NN, K=1). The sample set after being 

processed to reduce variables is the sample set to train ANN to identify load shedding 

conditions. The rapid identification of load shedding conditions in the electrical grid 

facilitates swift decision-making for implementing load shedding and enhances the 

stability of the power system. In this work, a load shedding method based on the Analytic 

Hierarchy Process (AHP) prioritization of loads is also applied. The effectiveness of the 

proposed method is applied for a IEEE 25-bus Microgrid system. Research results indicate 

high accuracy in identification, making the proposed load shedding control method more 

efficient than other approaches.  

 

1. INTRODUCTION 

Evaluating stability status of an electrical power system (ES) 

is a complex problem that requires multiple practical 

solutions. Rapid assessment of the stability status of a power 

system enables quick decision-making for control actions to 

maintain system stability. Particularly in Microgrid, the 

presence of non-dispatchable sources exacerbates the 

system's susceptibility to instability under disturbances. 

These grids often integrate numerous renewable energy 

sources, making them a promising solution for more 

efficient, reliable, and environmentally friendly energy 

infrastructure. The article [1]  introduced research results on 

policies and challenges in Microgrid development. In [2] 

presented the method for building photovoltaic (PV) 

parameter estimation models. However, ensuring 

continuous and reliable power supply in Microgrid, 

especially under islanded operation conditions, remains a 

significant challenge.  

The study [3] discusses the utilization of the Fast Van 

turbine to expedite the restoration of power system stability 

and prevent grid desynchronization. Rapid state 

identification is achieved through on-site measuring devices 

and the application of a method predicting power angle 

characteristics to anticipate instability and calculate the 

amplitude of stable states. 

One of the crucial issues in Microgrid management is the 

identification of events with or without load shedding. Load 

shedding is the intentional reduction of electricity demand 

to prevent power supply interruptions, and it is a necessary 

strategy when a Microgrid faces energy imbalance or 

equipment failures. Early detection of these events is 

essential for maintaining uninterrupted power supply, 

improving system efficiency, and minimizing disruptions 

for end-users [4]. 

For traditional methods, the identification of load 

shedding relies on algorithms and complex models that 

consider a range of variables, including the states of network 

components and operational parameters. In a standard 

Microgrid network, there can be numerous different 

variables to monitor, making real-time identification of load 

shedding a highly complex and resource-intensive task. 

Previous studies on load shedding are presented in [5]-

[11]. These studies primarily focus on addressing load 

shedding issues when it is already certain that a load 

shedding event will occur. However, in Microgrids, there 

are various incidents and disturbances, and not every 

incident necessarily requires load shedding. 

There are several studies about fault identification in 

power systems. For instance, in [12], the STGCN-DDQN 

technique (Spatio-Temporal Graph Convolutional Network 
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- Double Deep Q-Network) is presented. In [13], a 

combination of simple traditional algorithms like Singular 

Value Decomposition and K-means is discussed, along with 

a novel concept built on the gradient of clustered data. In 

[14], a method for determining the temporary stable 

boundaries in a multidimensional uncertain power system is 

introduced. This approach uses parameter space rather than 

state space to determine operational states. These methods 

have many new points in terms of recognition methods, 

however streamlining data through reducing the size of input 

variables to speed up processing needs to be considered. 

This is a crucial issue in the field of system identification. 

Many studies focus on data preprocessing for 

identification, aiming to eliminate redundant variables and 

improve processing time. In [15], the GP-IDENT algorithm 

is proposed, utilizing a B-spline basis to represent 

coefficients varying in both unknown space and time, 

pursuing the expected subspace of the group (GPSP) to find 

candidate PDE sequences with differing levels of 

complication, introducing a new measure for model 

selection apllying Residual Reduction (RR) to select an 

optimize criterion with candidate groups. In [16], an 

automated variable selection procedure is presented for 

classification tasks and regression, providing the finest 

stability index without needing any previous information 

about the samples. In [17], an improved method is proposed 

for Arabic text classification using Chi-square feature 

selection to enhance classification performance. 

In this study, we offer an innovative approach for 

identifying whether or not there is load shedding events in a 

Microgrid network, utilizing an ANN and the BPSO 

algorithm [18] to reduce the input variable space for this 

problem. The approach is planned to curtail the number of 

input for the identificationer, aiming to calculate and 

identify load shedding quickly without affecting accuracy. 

The combination of BPSO algorithm to reduce variables 

and apply ANN network helps identify load shedding more 

effectively and improve real-time decision-making ability 

for operational management, thereby maintaining the 

stability of the Microgrid. 

2. MATERIALS AND METHODS 

2.1. Frequency stability in power systems 

Frequency stability [19] is the capability of a ES to regulate 

and keep a stable, especially after harsh turbulences [20] that 

may piplot to instability  frequency [21]. The stability 

depends on the ES's ability to recover to a well-adjusted 

state. This issue is associated with various factors such as 

the control of power generator units, protective devices, and 

the response of control equipment. 

Load control also plays a significant role in frequency 

control by utilizing the self-adjusting effect of frequency-

sensitive loads. However, this object is not always 

considered in the overall frequency control response 

calculations. Load control can help reduce CO2 emissions 

and operational costs in the power system. 

Finally, when system adjustment measures are no longer 

effective, load shedding becomes a necessary consideration. 

According to the IEEE standard "IEEE Guide for the 

Application of Protective Relays Used for Abnormal 

Frequency Load Shedding and Restoration", “C37.106 TM, 

IEEE Guide for Abnormal Frequency Protection for Power 

Generating Plants”, the allowable frequency attenuation is 

0.3Hz. This is a crucial reference value when deciding 

whether or not to implement load shedding during the 

process of constructing training datasets for neural 

networks. 

 

 

Fig. 1. The process of frequency control in power system. 

In the Fig. 1 [22], we observe that frequency control 

depends on various factors such as the change in tie line 

power ∆Ptie, the power change of generators after control 

processes based on frequency deviation ∆PG, and the load 

fluctuation ∆Pd. Additionally, factors related to voltage and 

frequency variations over time during the dynamics also 

need to be considered. These are parameters that represent 

the system state when a problem occurs. These parameters 

are suitable to be selected as identification data related to 

frequency and conditions for making control decisions. 

2.2. Neural network model 

The mathematical model of a neural network was introduced 

by McCulloch and Pitts in 1943 [23]. In the ANN model, the 

processing element at the j-th node calculates the weighted 

sum of its inputs, and the output Yj is either 1 or 0 depending 

on whether this weighted sum is below or above the 

threshold value (θj). Fig. 2 is a model of feedforward neural 

network. 
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Fig. 2. Model of feedforward neural network. 

The weight, Wij, illustrates the intensity of the synaptic 

bond from neural ith to neural target jth. A positive Wij 

corresponds to an excitatory synapse, while a negative Wij 

corresponds to an inhibitory synapse. If Wij equal zero then 

there is not tie between them. 

 

 

 

 

 

 

 

 

Fig. 3. The flowchart of data collection process. 
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Fig. 4. IEEE 25 bus Microgrid diagram. 

 

2.3. Build the data set 

The data is constructed in an offline simulation mode to 

assess the state of the ES with or without load shedding 

during frequency disturbances at various load levels. Fig.3 

depicts the data collection process. Specifically, starting 

from a electrical power system diagram, power distribution 

is conducted, and the system is tested for generator tripping 

incidents where the generators disconnect from the power 

system. Subsequently, an iterative process is initiated, 

transitioning the system into islanded mode at each iteration 

is achieved by disconnecting the source grid simultaneously 

altering the generator positions to create generator tripping 

incidents. Throughout the incident creation process, 

observing and recording the fluctuating values of parameters 

in the power system, each iteration yields a sample for the 

training dataset. The data collection process is carried out at 

various load levels. 

For incidents created, a thorough examination and 

classification of the data are performed. In cases where the 

frequency value decreases below the permissible threshold, 

the output variable is set to {1}, indicating load shedding. 

The shedding strategy is then executed, and the 

effectiveness of the shedding strategy is evaluated. On the 

other hand, if the frequency value is within the allowed 

range, the output variable is set to {0}, and the process 

proceeds to the next step until the loop termination condition 

is met. The ANN training data includes input variables 

x{∆Ubus, ∆Pd, ∆Ptie, ∆PG, ∆fbus} and output variables y{1,0}.  

2.4. The proposed load shedding prediction model 

The IEEE 25 Bus model is commonly used in research 

related to power system stability, load imbalance, and other 

issues associated with the performance and safety of 

electrical systems. It serves as a foundation for testing and 

evaluating algorithms and simulation methods in the 

literature [24, 25]. In the simulation, parameters related to 

transmission lines, loads, and generators, such as excitations 

and governors, were referenced from [26, 27]. 

Fig. 5 depicts the process of constructing the load 

shedding condition recognition model. Starting from the 

standard power grid, after simulating assumed generator 

outages, data is collected, including critical system 

parameters such as Bus Voltage, Bus Frequency, 

Transmission Power, Generator Power, and Load Power. 

The dataset comprises m initial variables, with s samples 

corresponding to each fault scenario with load levels ranging 

from 50-100%. The process of collecting system parameters 

to build the data set is described in "Section 2.3". The BPSO 

algorithm is applied to select representative variables from 

the dataset, with m variables (m<M). The dataset for training 

the ANN-based recognition model is constructed with a size 

of (m×s). 
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Fig. 5. Constructing Load Shedding Condition Recognition 

Model. 

3. RESULTS 

The BPSO algorithm is executed with various values of N. 

In this study, N takes on the following values respectively: 

N = [10, 20, 30, 40, 50, and 100], w = 0.9, T = 100, c1 = 2, 

c2 = 2. The selected evaluation feature-set is K-NN (K-

nearest neighbor). The classification error 1-NN is assessed 

using the cross-validation method with k-folds = 10. The 

objective function for the 1-NN recognizer to evaluate and 

select variables is presented according to formula (2), the 

recognition error applies formula (3). 

𝑭𝒊𝒕𝒏𝒆𝒔𝒔 =
𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏 𝒆𝒓𝒓𝒐𝒓

𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 𝒏𝒖𝒎𝒃𝒆𝒓−𝑺𝒆𝒍𝒆𝒄𝒕𝒆𝒅 𝒗𝒂𝒓𝒊𝒃𝒂𝒍𝒆𝒔 𝒏𝒖𝒎𝒃𝒆𝒓
  

 (2) 

𝑪𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏 𝑬𝒓𝒓𝒐𝒓 =
𝒔𝒂𝒎𝒑𝒍𝒆𝒔 𝒆𝒓𝒓𝒐𝒓 𝒏𝒖𝒎𝒃𝒆𝒓

𝒕𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒂𝒎𝒑𝒍𝒆𝒔
 (3) 

The computational functions are supported by MATLAB 

2021a software. The calculated results are shown in Table 1. 

Fig. 6 shows the convergence curves of the algorithm. 

 

Table 1. Variable selection algorithm execution results 

N SV Best (Fitness) CE (%) 

10 29 2.3e-05 0.65 

20 27 2.26e-05 0.22 

30 25 2.22 e-05 0.44 

40 22 2.15 e-05 0.87 

50 22 2.15 e-05 0.87 

100 18 2.07 e-05 0.87 

 

 

Fig. 6. Convergence characteristic of the BPSO variable 

selection algorithm execution. 

From the results in Table 1, 18 input variables were 

selected. This is the input for constructing the ANN model 

that recognizes the output for load shedding conditions. 

Therefore, the constructed neural network model has 18 

input variables and 1 output, indicating the status of the 

power grid whether load shedding is implemented or not. A 

'0' output implies no load shedding control, while a '1' output 

commands load shedding. In this paper, it is recommended 

to apply feedforward neural networks to build a supervised 

neural network model for load shedding conditions. The 

ANN tools are supported by MATLAB software. The neural 

network function applied is feedforwardnet. The network is 

constructed with the training functions `trainscg`, `trainrp`, 

`trainbfg`, and `trainlm` respectively. The number of hidden 
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neurons chosen for all training runs is 10. The number of 

initial input is 123 (36 for ∆Ubus, 18 for ∆Pd, 25 for ∆Ptie, 8 

for ∆PG, 36 for ∆fbus), and one output variable. The dataset 

comprises 459 samples. It is randomly partitioned into a 

training and a testing subset. The training subset contains 

367 samples, with 127 samples labeled '1' and 240 samples 

labeled '0'. The testing subset consists of 92 samples, 

including 40 samples of class '1' and 52 samples of class '0'. 

The results for 5 training functions are depicted in Figure 7, 

and the average results for the 5 iterations are summarized 

in Table 2. 

 

  

  

Fig. 7.  Results of 5 training iterations. 

Table 2. The average result of 5 training functions 

Training Algorithm Training (%) Testing (%) 

trainscg 98.91 97.82 

trainrp 99.07 97.17 

trainbfg 99.07 97.39 

trainlm 99.56 98.9 

 

The load shedding prediction model utilizes a neural 

network with processed data to reduce variables and make 

decisions between Shedding/Non-shedding. In the case of 

load shedding prediction, the model will make decisions to 

execute load shedding strategy by applying the load 

shedding based on the AHP method. In this method, 

important weights are used to rank loads during the shedding 

process. The AHP [28] is applied to determine the 

importance weights of loads and consult experts. The 

process of implementing the AHP algorithm is described in 

[29]. Load regions and clusters are depicted in Fig. 4. The 

judgment matrix (JM) of load clusters (LC) and loads within 

the load (Ld) clusters is presented in Table 3 and Table 4. 

The ranking of loads are shown in Table 5.  
 

 

Table 3. The JM of LC  

LC LC1 LC2 LC3 LC4 

LC1 1 1 1/3 1/5 

LC2 1 1 1/2 1/3 

LC3 3 2 1 1/3 

LC4 5 3 3 1 

 
Table 4. The JM of loads within the LC 

Ld Ld1 Ld2 L4 L5 

Ld1 1 1 1/3 1/2 

Ld2 1 1 1/3 1/2 

Ld4 3 3 1 2 

Ld5 2 2 1/2 1 

Ld Ld6 Ld7 Ld8  

Ld6 1 1/3 1/3  

Ld7 3 1 1/2  

Ld8 3 2 1  

Ld Ld9 Ld10 Ld11 Ld12 

Ld9 1 2 2 1/2 

Ld10 1/2 1 2 1/3 

Ld11 1/2 1/2 1 1/2 

Ld12 2 3 2 1 

Ld Ld14 Ld15 Ld16 Ld17 

Ld14 1 2 2 3 

Ld15 1/2 1 2 3 

Ld16 1/2 1/2 1 2 

Ld17 1/3 1/3 1/2 1 

  

 

Fig 8. The recovery frequency values of 2 load shedding 

methods. 
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Load shedding is implemented in order of decreasing 

importance, where loads with smaller coefficients are shed 

first. This strategy continues until the system frequency 

reaches 49.5Hz. The loads that need to be shed in this case 

include the order of loads: Ld1, Ld2, Ld6, Ld5, Ld11, Ld10, 

Ld7. The total shedding power is 141.25 kW. The shedding 

action is executed with a duration of 500ms, starting from 

the moment when the load shedding identification result is 

confirmed [30]. 

The results of comparing the recovery frequency in the 

case of load shedding according to the suggested method and 

the Under frequency load shedding (UFLS) method are 

presented in Fig. 8. The study case is when the ES operates 

at 90% of the base load, in the islanded mode. 

The results indicate that with the same volume of load 

shedding, the proposed method shows a better frequency 

recovery quality at 50Hz compared to the UFLS method at 

49.73Hz. 

 
Table 5. Load shedding order according to the AHP 

Ld LC 𝐖𝐋𝐨𝐚𝐝𝐣 𝐖𝐋𝐂𝐢 

Wcoeij 

(The aggregate 

importance 

coefficient) 

Ld 1 LC1 0.1411 0.1031 0.0146 

Ld 2 LC1 0.1411 0.1031 0.01456 

Ld 6 LC2 0.1396 0.1297 0.0181 

Ld 5 LC1 0.2627 0.1031 0.0271 

Ld 11 LC3 0.1350 0.2414 0.0326 

Ld 10 LC3 0.1725 0.2414 0.0416 

Ld 7 LC2 0.3325 0.1297 0.0431 

Ld 4 LC1 0.4550 0.1031 0.0469 

Ld 17 LC4 0.1078 0.5258 0.0567 

Ld 9 LC3 0.2610 0.2414 0.0652 

Ld 8 LC2 0.5278 0.1297 0.0685 

Ld 16 LC4 0.1867 0.5258 0.0982 

Ld 12 LC3 0.4225 0.2414 0.1020 

Ld15 LC4 0.2922 0.5258 0.1536 

Ld14 LC4 0.4133 0.5258 0.2173 

4. DISCUSSION 

In terms of dimensionality reduction, applying the BPSO 

algorithm with a 1-NN evaluation set, the initial set of 123 

variables is reduced to 18 variables, achieving a reduction to 

85.36% of the original input size. Meanwhile, the training 

and testing recognition accuracy with the trainlm algorithm 

achieved high results of 99.56% and 98.9%, respectively, 

the remaining training algorithms all achieved testing 

accuracy of over 97%. 

The proposed method, due to the Shedding/No Shedding 

identifier, has a much earlier shedding time of 500ms 

compared to the traditional method (14.5s). It has to delay 

for the frequency to drop below the limit of 49.5Hz. This 

time period is relatively long compared to quickly 

identifying Shedding/No Shedding right from the time of the 

incident. That helps the proposed shedding method to have 

earlier impacts on the system, such as load shedding actions 

that help the system quickly recover with a faster time (10s) 

compared to the UFLS method (35s), the recovered 

frequency quality is better (50Hz) than the UFLS method 

(49.73Hz). 

The problem of evaluating power system frequency 

stability deals with emergency situations. Therefore, it 

requires very quick handling of technical aspects to maintain 

system frequency stability electrical system. The technical 

priority is greater than the economic one. Therefore, we have 

not considered optimal load shedding. Normally, the 

problem is considered under condition of operating the ES 

at steady state. There, economic problems are given more 

priority. Furthermore, we have ranked loads in order of 

priority for load shedding. it can still help reduce the damage 

caused by load shedding. 

5. CONCLUSION 

The test results demonstrate that reducing the input 

dimensionality for the load shedding condition recognition 

system maintains a high level of accuracy. This is of great 

significance in reducing the cost of purchasing measurement 

sensor devices, reducing the input variables for the 

recognition system. As a result, it helps minimize memory 

storage requirements and accelerates computational speed in 

constructing the model. 

The rapid identification of Shedding/No Shedding 

significantly enhances the frequency recovery quality by 

approximately 0.27Hz and the recovery time is 25 seconds 

faster than the UFLS method. This demonstrates the 

superiority and value of the proposed method. It could 

potentially apply self-learning and self-training tools to 

enhance its "intelligence and adaptability" in constructing 

training samples, thereby improving the accuracy of the 

proposed method. 
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