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A B S T R A C T 

Clustering is a prominent technique that demonstrates its usability in diverse fields such 

as data analytics, information retrieval, social mining, image analysis, etc. This 

technique extracts constructive information from a pre-defined collection of data and 

groups the similar data into the same cluster. Many methods based on various clustering 

methodologies have been reported in the literature but partitional clustering methods are 

widely utilized due to their unfussiness and ease of accomplishment. It is seen that 

traditional algorithms like k-means exhibit several drawbacks like being caught in local 

optima, dependent on the initial solution, convergence rate and population diversity. 

These shortcomings of clustering algorithms are also handled through heuristic 

techniques. This work presents a new clustering algorithm called water flow optimizer. 

Further, it is noticed that water flow optimizer (WFO) entraps in local optima sometimes 

and in turn it converges on local solution instead of global one. This issue is resolved 

through integration of the simplex method into WFO algorithm, called SM-WFO and its 

performance is appraised using several well-known datasets and results are contrasted 

with popular measures. The results revealed that SM-WFO gets superior results than 

other algorithms. SM-WFO algorithm also accomplishes higher average rank (1.58) 

using all datasets. 

 

1. INTRODUCTION 

Data mining is a process that can be used to analyze the 

massive amounts of data and it comprises of complex 

algorithms with conventional data analysis techniques. It 

can also be expressed as a process to extract the knowledge 

from large volumes of data [1]. It is also considered as one 

of the important task in knowledge discovery process. The 

main reason behind the success of data mining techniques 

is to handle the heterogeneous and complex data, data 

scalability, data sets with high dimensionality, data 

ownership and distribution. Data mining tasks can be 

categorized as either predictive or descriptive tasks. The 

goal of a descriptive task is to identify patterns such as 

clusters, correlations, anomalies that explain the underlying 

relationships among data, while the goal of a predictive 

task is to calculate the value of a specific attribute based on 

the value of other attributes. Classification and regression 

are two popular predictive modeling tasks whereas cluster 

analysis, association analysis and anomaly detection 

describes as descriptive task [1, 2]. Further, clustering is a 

primary approach in the field of unsupervised machine 

learning that can determine the group of clusters. These 

groups consist of similar data points based on various 

features or characteristics they share. The major objective 

of data clustering is to find patterns and structures within a 

dataset, enabling insights and understanding of the inherent 

relationships among data points [3]. Clustering is utilized 

in diverse applications areas such as marketing, social 

network analysis, customer segmentation, anomaly 

detection, image analysis, etc. Broadly, the clustering is 

having two popular categories known as partitional and 

hierarchical [3]-[5]. Hierarchical clustering creates a 

hierarchical representation of the data by repeatedly 

merging or dividing clusters. It creates a dendrogram, 

which depicts the order of cluster formations in a tree-like 

structure. It divides into agglomerative and divisive 

clustering. The data points are split into a predetermined 

number of clusters using partitional clustering. Although, 

the K-Means [5] is the oldest and most prominent 

partitional clustering algorithm, in literature, several 

techniques have been presented for partitional clustering. 

The decision between hierarchical and partitional 

clustering depends on the type of data, the level of 

interpretability needed, computational resources that are 

available, number of clusters. The partitional clustering is 

effective for larger datasets and clearly defined clusters, 

while hierarchical clustering is excellent for understanding 

data structure. It is seen that clustering is an important 
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aspect in the analysis of data that are collected from a 

variety of realm. The numerous mathematical and classical 

algorithms have been developed by researchers to address 

real-world clustering issues, but due to an intrinsic 

characteristic of these algorithms, these algorithms can 

exhibit premature converge and local optima issues 

whereas the traditional clustering techniques have 

problems like overdependence on the introductory solution 

quality and trap in local optima. Recently, meta-heuristic 

algorithms gain wide popularity among research 

community to get the optimal solution for large number of 

optimization problems. It is also observed that meta-

heuristic algorithms [6] can have specific local search and 

randomization trade-offs. Numerous meta-heuristic 

algorithms under various broad categories have been 

developed in the past decade for cluster analysis. Few are 

summarized as PSO [7, 8], Magnetic Optimization 

Algorithm (MOA)[9], Artificial Bee Colony (ABC)[10], 

BB-BC [11], CSS [12], etc. These algorithms also consist 

of several additional flaws, including population diversity, 

trade-off, convergence rate, and occasionally getting stuck 

in local optima. With the use of additional meta-heuristic 

algorithms, the aforementioned flaws in meta-heuristic 

algorithms can be eliminated. It is also observed that 

weakness of a meta-heuristic algorithm can be replaced 

with the strength of another meta-heuristic algorithm to 

produce improved clustering results. In turn there is always 

a purview to develop a novel clustering algorithm that can 

produce the optimal clustering results with a variety of 

datasets. This works also presents an algorithm, called 

water flow optimizer (WFO) [13] for clustering. This 

algorithm is energized by the characteristic of water flow 

in nature. However, it is noticed that that the WFO have 

good optimization ability, but several shortcomings are 

related to it like initialization of initial population, lack of 

balance between search mechanisms and trap in local 

optima sometimes due to one way search mechanism [14]-

[16].It is observed that local optima is one of the prominent 

issue that can alter the conduct of the WFO algorithm 

among all issues. Hence this work addresses the local 

optima issue of WFO algorithm through simplex method 

and introduces a novel algorithm comprises of simplex 

method (SM) and WFO for clustering. The main points of 

this work are listed below: 

 To propose a novel meta-heuristic called SM-WFO  

algorithm of data clustering. 

 The local optima affair of the WFO algorithm is 

handled through simplex method. 

 Twelve benchmark datasets are taken for evaluating 

the performance of SM-WFO. The clustering results 

are compared to nine well-known algorithms. 

 The results are assessed using accuracy rate (AR), 

detection rate (DR), intra and SD.  

 The results showed that SM-WFO gets superior 

results with most of datasets. 

The organization of the paper is expressed as recent 

works in the field of data clustering are highlighted in 

section 2. The proposed SM-WFO is presented in section 

3. The experimental results of the SM-WFO algorithm are 

illustrated in section 4. Section 5 concludes the whole 

work.  

2. RELATED WORK 

The recent work related to clustering problems using 

different meta-heuristic algorithms are discussed in this 

section. In ref. [17], a new algorithm called local neighbor 

spider monkey optimization (LNSMO) is developed that 

improves the search process of SMO algorithm. The local 

leader phase of SMO integrates the neighbor search to 

narrow the search space. The LNSMO global leader phase 

is further enhanced using a chaotic element. The LNSMO 

performance is evaluated using eleven data sets and 

compared to five conventional methods, including several 

meta-heuristic algorithms. The findings stated that 

LNSMO offers a better outcome using popular clustering 

measures. 

Singh et al. [18] introduced the EWO algorithm to 

handle clustering problems. Two more operational 

procedures are added in the WOA to improve its 

performance. To expand the search space and quicken 

convergence, EWO algorithm is integrated with WWO 

algorithm position update equations. To deal with the local 

optima scenario, the Tabu and neighborhood search 

technologies were implemented. A simulation-based 

experiment employing eight standard datasets is used to 

gauge the effectiveness of the proposed EWOA, and the 

findings are then contrasted with those of seven other 

clustering algorithms/techniques. Several popular metrics 

are used to evaluate the performance of each algorithm. 

For competent data clustering, the variable 

neighborhood strategy-based firefly algorithm (VNS-FA) 

is described [19]. The firefly algorithm (FA) is seen to 

converge on premature solutions as a result of a deficiency 

in exploitation ability. Additionally, FA incorporates 

variable neighborhood strategy (VNS) to address the 

aforementioned problems. Utilizing eight well-known 

clustering datasets, the effectiveness of the proposed VNS-

FA is computed. Using the intra-cluster distance, internal 

CH metric, entropy, and F-measure parameters, the results 

are evaluated. The findings showed that for the majority of 

the datasets, the proposed VNS-FA approach yields 

superior outcomes.   

For clustering and dynamic social networks, the IGWO 

(improved Grey Wolves Optimization) method [20] is 

described. The objective of this effort is to increase 

clustering problem accuracy rates. A label propagation 

technique is incorporated into the grey wolf optimization 

(GWO) algorithm to accomplish the same goal. Six well-

known datasets based on normalized mutual information 

(NMI), intra-cluster distance, and error rate metrics are 
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used to assess the performance of the IGWO. The findings 

demonstrated that the IGWO method, when compared to 

other clustering algorithms, achieves a higher NMI rate. 

Additionally, it can be noted that the suggested IGWO 

algorithm outperforms existing algorithms in terms of 

intra-cluster distance and minimum error rate. 

For the purpose of dealing with partitional clustering, a 

cat-based meta-heuristic approach is reported [21]. Before 

using this approach, various changes are made to the cat 

algorithm to address diversity issues, premature 

convergence, and tradeoff mechanisms between local and 

global searches. To address the aforementioned problems, 

enhanced search mechanisms, an accelerated velocity 

equation, and neighborhood mechanisms are then 

proposed. On the basis of intra cluster distance and f-

measure parameters, the effectiveness of the cat algorithm 

is evaluated over eight clustering datasets. It is determined 

that the proposed cat algorithm produces superior f-

measure rates than other algorithms while having the 

smallest intra cluster distance for the majority of datasets.    

An enhanced water wave optimization (WWO) 

technique was presented by Kaur and Kumar [22] in order 

to produce more effective and encouraging clustering 

outcomes. These enhancements are explained in terms of a 

revised decay operator and global search mechanism. The 

purpose of the decay operator is to solve the WWO 

algorithm's premature convergence problem. Thirteen 

standard clustering datasets are used to assess the 

effectiveness of the WWO method in terms of parameters 

such as accuracy and F-score. The simulation results are 

compared to a number of available clustering algorithms, 

and it is found that the suggested WWO clustering method 

outperforms the current clustering algorithms in terms of 

accuracy and F-score rates for the majority of clustering 

datasets. 

In order to address the problems with the k-mean 

methodology, Kushwaha et al. [23] introduced an 

electromagnetic field optimization (EFO) method. Poor 

initial centroid selection causes the k-mean method to 

become trapped in local optimums. To overcome this 

challenge, the optimal initial centroid for the K-mean 

technique is identified using the EFO algorithm. 

Additionally, it is claimed that due to mechanisms of 

attraction and repulsion, the EFO algorithm may not 

remain in local optima. The strength of the suggested 

clustering approach based on NMI, rand index (RI), and 

purity is evaluated using a number of well-known datasets. 

The findings indicated that the suggested algorithm attains 

significantly better clustering results than techniques in the 

same class.    

Hashemi et al. [24] created an upgraded PSO algorithm 

to carry out the clustering in large data. The proposed 

method uses the multi-start pattern reduction strategy to 

reduce the calculation time. A reduction operator is used to 

shorten the clustering process, and the multi-start operator 

is used to guarantee population diversity and local minima. 

In order to assess the performance of the suggested method 

in terms of precision and execution time, six clustering 

datasets are taken into account. The outcomes 

demonstrated that the proposed PSO approach yields 

superior clustering results. 

Kuo et al. [25] proposed the FPCOM fuzzy c-means and 

fuzzy c-ordered means technique to mitigate the impact of 

outliers in clustering. Additionally, the SCA's SCA-

FPCOM is used to set the parameters and initial centroids. 

Ten clustering datasets chosen from the UC Irvine 

(UCI)repository are used to assess the efficacy of the 

suggested SCA-FPCOM based on the measurements of the 

rand index and the Silhouette coefficient.  The outcomes 

showed that SCA-FPCOM outperforms other algorithms. It 

is clear that the bulk of clustering algorithms validate the 

clusters using single-featured datasets, distance, density, 

and features. The concept of created clusters may be 

violated by the inclusion of semantic data, though. 

However, substantial clusters can be produced by 

evolutionary and statistical operators using integrative 

approaches. 

A multi-objective clustering algorithm knows as 

MOVPS, which is based on a vibrating particle system, 

was presented by Kaur and Kumar [26] for effective data 

clustering. The current scenario considers two different 

objective functions named as intra-cluster variance and 

connectedness. To achieve favorable clustering outcomes, 

the VPS algorithm is employed to optimize the preceding 

objectives. By contrasting the clustering results with those 

of several multi-objective and single-objective clustering 

algorithms from the literature, the effectiveness of the 

MOVPS algorithm is examined using a number of 

benchmark datasets. The outcomes of the simulation shown 

that, when compared to current multi-objective and single-

objective clustering algorithms, the suggested MOVPS 

algorithm greatly lifts the clustering results. 

A clustering method named GWO-TS, which is 

presented in [27], relies on the Tabu search (TS) and the 

grey wolf optimizer (GWO) for efficient cluster analysis. 

The suggested method addresses GWO issues including 

premature convergence and local optima using the tabu 

search strategy. Thirteen datasets are used to evaluate the 

effectiveness of the proposed GWO-TS. Utilizing the 

settings for purity, SSE, and entropy, the simulation results 

are assessed. It is asserted that the proposed clustering 

method generates results of superior quality when 

compared to existing techniques. 

For the purpose of handling partitional clustering issues, 

an enhanced gradient-based clustering algorithm (IGE) is 

proposed in [28]. Instead of concentrating on a single 

objective function, the suggested algorithm has two 

objective functions. Based on Pareto optimality, the 

dominant and non-dominant set of solutions is produced. 

SSE, SSB and accuracy parameters are used to evaluate the 
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simulation results. They are compared to PSO, GA, ABC, 

and DE algorithms. IGE allegedly yields more encouraging 

clustering outcomes than other clustering algorithms. 

For effective cluster analysis, Duan et al. [29] integrated 

the gradient-based strategy with the elephant herding 

optimization technique, known as GBEHO. The initial 

centroids are chosen using a variety of algorithms. 

Additionally, the Gaussian chaos map is used to handle the 

elephant herding optimization (EHO) trade-off problem. 

The population is updated using the wandering and 

variation operators. The effectiveness of the suggested 

GDEHO algorithm is assessed based on accuracy, 

detection rate, specificity, and f-measure parameters. 

According to reports, GBEHO delivers more reliable 

findings than other algorithms. 

Kuo and Wang [30] created a hybrid k-prototype 

clustering approach based on improved SCA. The SCA 

algorithm is used to determine the best attribute weighting 

and initial attribute selection. To further improve clustering 

results, the k-prototype method integrates many mutation 

strategies, including Gaussian, Cauchy, and single-point. 

Ten datasets are selected from the UCI repository to test 

the accuracy and Cohen kappa of the k-prototype 

algorithm. The results demonstrated that the suggested k-

prototype algorithm offers superior clustering outcomes to 

other algorithms.      

Singh et.al introduced a meta-heuristic algorithm called 

as artificial chemical reaction optimization [31] (ACRO) 

algorithm inspired from the chemical reaction process. This 

method uses reactants, which are uniformly determined 

from the search space to find the best solution.  Reactants 

can also be used to symbolize the best possible solution to 

the difficulties. The ACRO algorithm's primary task is to 

calculate the ideal cluster centroid for partitional clustering 

issues. The suggested algorithm's performance is evaluated 

on a number of real-world clustering applications and 

contrasted with cutting-edge clustering techniques.  It can 

be shown from the simulation results that, when compared 

to existing clustering methods, the suggested technique 

produces superior clustering results. Table 1 summarizes 

details of clustering algorithm using meta-heuristic 

algorithms. 

3. PROPOSED SM-WFO ALGORITHM 

This section presents the simplex method based WFO 

algorithm for cluster analysis. Recently, a new meta-

heuristic algorithm, called water flow optimizer (WFO) is 

developed for solving different kind of optimization 

problems [13, 14]. The working of the algorithm is 

described by two operators i.e. laminar and turbulent flows. 

The aim of these operators is either to minimize or 

maximize the objective function. It is noticed that WFO 

achieves good optimization capability, but several 

shortcomings are associated with it [15, 16]. Some of these 

are listed as selection of initial population for WFO 

algorithm, lack of balance between the search mechanisms, 

sometimes get stuck in local optima due to one side search 

mechanism and convergence issue etc. Further, it is 

identified that local optima and convergence are more 

promising ones among aforementioned issues. This work 

considers the local optima issue of WFO and this issue is 

addressed through simplex method. This method is 

extensively adopted for improving the performance of the 

meta-heuristic algorithms [34] – [36]. In this work, the 

simplex method is utilized to generate the new position of 

water particles for avoiding the local optima.  

3.1. Simplex Method 

This subsection discusses the simplex method to overcome 

the local optima issue. In WFO algorithm, the laminar 

phase consists of one-way search strategy to generate the 

new position of water particles. The working of this phase 

is described through the laminar flow and as per this flow, 

the water particles move in straight parallel lines. It is also 

revealed that the particles far away from walls and 

obstacles can move faster compared to close to walls and 

obstacles. In turn, an optimal position of water particles is 

not generated sometimes and algorithm can converge on 

local solution instead of global one, called local optima. 

This issue of the WFO algorithm is handled through the 

simplex method. This method was developed by Spendley 

et al. [35] and can be described as number of points equal 

to one more than the number of dimensions in the search 

space. This method [36]-[38] is widely adopted in the field 

of meta-heuristic for generating the optimal position and 

also to get rid of local optima issue of algorithms. This 

study also examines the worth of the simplex method in 

resolving the local optima issue of WFO algorithm. The 

schematic process of the simplex method is depicted into 

Fig. 1.  
 

 

 
Fig. 1. Schematic process of the simplex method. 
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Table 1: Related work reported on clustering using meta-heuristic algorithms 

Ref. Meta-heuristic Techniques Objective Function Datasets 

[17] Spider Monkey Optimization (2023) 
Sum of within cluster 

distance (SWCD) 

Iris, Glass, Cancer, CMC, Wine, Seed, 

Heart, Bupa, Magic, HTRU2, Haberman 

[18] 
Enhanced Whale Optimization 

algorithm, Tabu Search (2023) 
Sum of Squared Error 

Iris, Wine, Cancer, CMC, LR, Glass, 

ISOLET, Thyroid 

[19] Firefly Algorithm (2022) Euclidean Distance 
Obesity, , Vehicle, Ecoli, Glass, CMC, 

Segment, Hepatitis and Mammographic 

[20] 
Grey Wolf Optimizer algorithm, Label 

Propagation algorithm (2022) 
Homogeneity Criterion 

Heart, Ecoli, Horse, Cancer, Balance, 

Dermatology, Credit, Cancer-Int, Diabetes 

[21] 
Enhanced Cat Swarm Optimization 

(2022) 
Sum of Squared Error 

Iris, Wine, Glass, CMC, LD, Cancer, Vowel, 

Thyroid 

[22] 
Water wave optimization (WWO) 

Algorithm (2022) 
Euclidean Distance 

Iris, Wine, Glass, CMC, LD, Vowel, 

Thyroid, BC, Balance, Heart, WDBC, 

Diabetes, Dermatology 

[23] 
 Electromagnetic Clustering Algorithm 

(2022) 
Intra Cluster Distance 

Gas, Human Activity Recognition, Vowel, 

Thyroid, Iris, IONO, Crude Oil, CMC 

[24] 
Improved Particle Swarm Optimization 

(2022) 
Sum of Squared Error 

Iris, Wine, Brest Cancer, Car Evaluation, 

Statlog, Yeast 

[25] 

Sine Cosine Algorithm-Based Fuzzy 

Possibilistic C-ordered Means 

Algorithm (2021) 

HUB Loss Function 

Vertebral, Wine, Iris, Aggregation, Breast 

Tissue, Compound,  R15, E.coli, Glass, 

Stamps  

[26] Vibrating Particle System (2022) 
Intra Cluster Variance and 

connectedness 

Iris, Wine, Glass, Vowel, WBC, 

Dermatology, Ionosphere, Zoo 

[27] 
Grey wolf optimizer, Tabu Search 

(2020) 
Sum of Squared Error 

Iris, Blood, Breast Cancer, Glass, Seeds, 

Wine, Australian, Diabetes, Haberman, 

Heart, Liver, Planning Relax, Tic-tac-toe 

[28] Gradient evolution Algorithm (2020) 
Sum of Squared Error, Sum 

of Distance within Cluster 

Iris, Wine, Glass,  R15, D311, Libras 

Movement, Bank Note Authorization, User 

Knowledge Modeling, Yeast, Aggregation 

[29] 
Elephant Optimization Algorithm, 

Gradient-based Algorithm (2021) 
Sum of Squared Error 

Iris, Wine, Heart, CMC, Vowel, Two-moon, 

Aggregation, Seeds, Breast 

[30] 
sine-cosine algorithm, k-prototypes 

algorithm (2022) 

Euclidean Distance, 

Hamming Distance 

CMC, Statlog, Thyroid Disease, Teaching 

Assistant Evaluation, Credit Approval 

[31] 
Artificial chemical reaction 

optimization (ACRO) algorithm (2019) 
 Intra Cluster Distance  Artificial dataset 1, Artificial dataset 2 

 

It is observed that the simplex method considers the two 

global best positions to compute the optimal position of 

water particles. It is also stated that a limit operator is also 

used to ensure local optima issue in laminar phase. The 

best position of the water particles is determined using the 

simplex method, which is applied if the fitness of the 

particles does not improve within a predefined limit. The 

steps of the simplex method are mentioned in Algorithm 1 

for computing the optimal position of water particles. 

3.2. Proposed SM-WFO Algorithm for Clustering 

The proposed SM-WFO algorithm for effective data 

clustering is described in this section. This algorithm aims 

to identify the optimal centroids for effective data 

clustering. Further, the issue of local optima is handled 

through simplex method which is described in subsection 

3.1. The working procedure of the proposed SM-WFO is 

mainly segregated into following steps (i) Upload the 

dataset and initialize user defined parameters, (ii) Compute 

the objective Function, (iii) Allocation of the data objects, 

(iv) Laminar Flow, (v) Turbulent Flow, (vi) Update the 

position of water particles (cluster centroids) (vii) 

Performance evaluation. The steps of the proposed SM-

WFO algorithm are mentioned below.   
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Algorithm 1: Steps of the Simplex Method 

1. Compute all of solutions (water particles position), and select first 

global best position (𝑋𝑓𝑔𝑏𝑒𝑠𝑡)   and the second global best 

position (𝑋𝑠𝑔𝑏𝑒𝑠𝑡) . It is assumed that 𝑋𝑤  denotes the position of 

current water particles and 𝑓(𝑋𝑓𝑔𝑏𝑒𝑠𝑡), 𝑓(𝑋𝑠𝑔𝑏𝑒𝑠𝑡), and 𝑓(𝑋𝑤)  represent the 

fitness of𝑋𝑓𝑔𝑏𝑒𝑠𝑡, 𝑋𝑠𝑔𝑏𝑒𝑠𝑡 and 𝑋𝑤 particles.        

2. Compute the mid position (𝑋𝑚𝑖𝑑) based on the  𝑋𝑓𝑔𝑏𝑒𝑠𝑡, and 𝑋𝑠𝑔𝑏𝑒𝑠𝑡 which 

is expressed as  

𝑋𝑚𝑖𝑑 =
𝑋𝑓𝑔𝑏𝑒𝑠𝑡 + 𝑋𝑠𝑔𝑏𝑒𝑠𝑡

2
                                                        (1) 

3. Compute the reflection point (𝑋𝑟𝑒𝑓)  using the equation 2.  

𝑋𝑟𝑒𝑓 = 𝑋𝑚𝑖𝑑 + 𝛼(𝑋𝑚𝑖𝑑 − 𝑋𝑤)                                                              (2) 

𝛼is a reflection coefficient whose value set equal 1. 

4. Compute the fitness value of 𝑋𝑟𝑒𝑓 and 𝑋𝑓𝑔𝑏𝑒𝑠𝑡.  

𝐼𝑓 (𝑓(𝑋𝑟𝑒𝑓) < 𝑓(𝑋𝑓𝑔𝑏𝑒𝑠𝑡))execute the extension operation using the  

equation 3.   

𝑋𝑒𝑥𝑒 = 𝑋𝑚𝑖𝑑 + 𝛾(𝑋𝑟𝑒𝑓 − 𝑋𝑚𝑖𝑑)                                                              (3) 

In equation 3, can be defined as extension coefficient, and its value 

is set to 2. Now, the fitness value of the extension operation (𝑋𝑒𝑥𝑒) 

and first global best (𝑋𝑓𝑔𝑏𝑒𝑠𝑡) is compared. 𝐼𝑓 (𝑓(𝑋𝑒𝑥𝑒) < 𝑓(𝑋𝑓𝑔𝑏𝑒𝑠𝑡)),then,𝑋𝑤 

replace by𝑋𝑒𝑥𝑒, otherwise,  𝑋𝑟𝑒𝑓 replace the 𝑋𝑤.   

5. Comparing the fitness value of 𝑋𝑟𝑒𝑓  and 𝑋𝑤 . 𝐼𝑓 (𝑓(𝑋𝑟𝑒𝑓) > 𝑓(𝑋𝑤)) , then 

compression operation can utilized using equation 4.     

𝑋𝑐𝑜𝑚𝑝 = 𝑋𝑚𝑖𝑑 + 𝛽(𝑋𝑤 − 𝑋𝑚𝑖𝑑)                                                              (4) 

In equation 4, 𝛽 can be defined as compression coefficient, and its 

value is set to 0.5. Now, the fitness values of compression operation 

(𝑋𝑐𝑜𝑚𝑝)   and water particle (𝑋𝑤) . 𝐼𝑓 (𝑓(𝑋𝑐𝑜𝑚𝑝) < 𝑓(𝑋𝑤)) , then 𝑋𝑤  replace 

by𝑋𝑐𝑜𝑚𝑝, otherwise 𝑋𝑟𝑒𝑓 replace the 𝑋𝑤.   

6. 𝐼𝑓 (𝑓(𝑋𝑓𝑔𝑏𝑒𝑠𝑡) < 𝑓(𝑋𝑟𝑒𝑓) < 𝑓(𝑋𝑤)), utilizethe shrinking operation using the 

equation 5.  

𝑋𝑠ℎ𝑘 = 𝑋𝑚𝑖𝑑 + 𝜑(𝑋𝑤 − 𝑋𝑚𝑖𝑑)                                                              (5) 

In equation 5, 𝜑  can be defined as shrinking coefficient, and its 

value is set to 0.5. Now, the fitness values of compression operation 

(𝑋𝑠ℎ𝑘)   and water particle (𝑋𝑤) . 𝐼𝑓(𝑓(𝑋𝑠ℎ𝑘) < 𝑓(𝑋𝑤)) , then 𝑋𝑤  replace by 

𝑋𝑠ℎ𝑘, otherwise 𝑋𝑟𝑒𝑓 replace the 𝑋𝑤.    

 

 (i) Upload the dataset and initialize the user-defined 

parameters: This step corresponds for uploading the 

dataset and initializing the user defined parameters of 

proposed SM-WFO algorithm. After uploading the dataset, 

the dimension (d), lower bound (lb) and upper bound (ub) 

of the dataset should be defined. Further, the user defined 

parameters like population of water particles, laminar 

probability (𝑝𝑙 ), eddying probability  (𝑝𝑒) , clusters (K), 

limit operator ( 𝑙𝑡 ), and maximum iteration 

(max_iter)should be defined. This step is responsible for 

computing the initial centroids from the dataset. The 

number of water particles used to define the centroids is 

equal to the number of clusters included in the given 

dataset. So, the initial position of water particles (initial 

centroids) is computed using the equation 6. 

𝐶𝑘 = 𝑙𝑏 + 𝑟𝑎𝑛𝑑(𝑝𝑜𝑝, 𝑑). [𝑢𝑏 − 𝑙𝑏] (6) 

In equation 6, Ck  defines the initial position of water 

particles (initial centroids), lb stands for the lower bound, 

ub  indicates upper bound of the given dataset, pop 

indicates the population of water particles, and d indicates 

the dimension of the dataset.    

(ii) Compute the objective function: This step 

corresponds to compute the problem dependent objective 

function. For clustering problems, a distance measure is 

used for evaluating the compactness between data objects 

and cluster centroids, and acted as objective function. 

Euclidean distance is considered here as an objective 
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function and task of this function is to compute the distance 

between all data objects to each cluster centroid. This 

function is expressed in the equation 7. 

D(Xi, Ck)  = √∑ (Xis, Cks)
2d

s=1   (7) 

In equation 7, D(Xi , Ck)defines the Euclidean distance 

between data object (Xi) and cluster centroid (Ck) , d 

describes the dimension such that s = 1,2,3, … . d .The 

aforementioned distance measure is used to compute the 

similarity between data objects. 

(iii) Allocation of the data objects and compute 

fitness function: In this step, data objects are allocated to 

the respective cluster centroid based on the similarity. The 

similarity can be defined as similar data objects allocate to 

same cluster. The similarity among data objects are 

identified by using the Euclidean distance which is 

computed in previous step. The previous step computes the 

distance among all data objects and cluster centroids. It is 

noticed that a data object consists of different Euclidean 

distances with different cluster centroids (water particles). 

So, it is quite tough task to identify the appropriate cluster 

centroid for allocation of data objects. Finally, a data object 

can be allocated to a cluster centroid for which it have 

minimum Euclidean distance. Further, fitness function 

(potential energy) is also computed to evaluate the 

goodness of the cluster centroids (water particles). This 

fitness function (potential energy) is expressed using 

equation 8.   

𝑓(𝐶𝑘) = ∑
𝑆𝑆𝐸(𝐶𝑘)

∑ 𝑆𝑆𝐸(𝐶𝑘)𝑛
𝑖=1

𝐾
𝑘=1  (8) 

In equation 8, f(Ck) denotes the fitness function 

(potential energy) of the water particle (Ck), and SSE(Ck) 

indicates the sum of squared error of the kth water particle 

(cluster centroid). 

(iv) Laminar Flow: This step is related to update the 

position of water particles (initial centroids). The water 

particles are updated by evaluating the laminar 

probability(𝑝𝑙) with respect to the 𝑟𝑎𝑛𝑑( )function such as 

𝑖𝑓(rand () < Plam) . Hence, it is stated that if laminar 

probability is higher than the random function value, then 

flow is considered as laminar flow and the position of 

water particles (initial centroids) are updated using 

equation 9 which is expressed as below. 

C𝑘,𝑛𝑒𝑤 = 𝐶𝑘 + rand( ) ×V⃗⃗    ∀k = {1,2,3,4, … . K} (9) 

In equation 9, C𝑘,𝑛𝑒𝑤  denotes the new position of water 

particles, 𝐶𝑘 denotes the current position of water particles,  

rand() denotes water coefficient in the range of [0, 1],  V⃗⃗   
is described as a vector value associated with motional 

direction and K denotes total number of water particles. 

The common motional direction is expressed by equation 

10.  

V⃗⃗ = 𝐶e − C𝑓 such that (e ≠ f, (f(Ce) ≤ f(Cf))) (10) 

In equation 10, f(Ce) and f(Cf)  indicate the potential 

energy of eth and fth water particles such that e ≠ f. Further, 

the potential emery is utilized for chosen the best water 

particle in each successive iteration.𝑖𝑓(f(Ce) ≤ f(Cf)), eth 

particle energy is less than fth particle energy, then the best 

particle is 𝐶e, otherwise C𝑓. If the fitness function (potential 

energy) of the water particles remains same in predefined 

limit operator, then call the Algorithm 1 for generating the 

optimal position of water particles.  

(v) Turbulent Flow: If laminar probability is less than 

the random function value, then, as turbulent flow phase is 

invoking and current position of water particle can be 

mutated. The mutation process can be accomplished 

through eddying parameter (𝑝𝑒) and random function i.e. 

rand()  such as 𝑖𝑓( rand() < 𝑝𝑒) . If value of eddying 

parameter is higher than rand() function, the new position 

of water particle (cluster centroid) can be generated by 

mutating the randomly chosen dimension of the current 

water particle. This behavior is expressed using 

equations11-15. 

C𝑘,𝑛𝑒𝑤 = (𝐶𝑘
s,   p,   C𝑘

s+1, p,   𝐶𝑘
s+2, p, ……C𝑘

s+n, 𝑝) 

where s = {1,2,3, … . d}    (11) 

In equation 11, the variable p can be defined as jostling 

operator (mutation operator), 𝐶𝑘
s  denotes the value of the 

current water particle using sth dimension, C𝑘,𝑛𝑒𝑤denotes 

the new mutated position of kth water particle. The 

mutation process (p) can be expressed using equation 12. 

p = {
γ(𝐶𝑘

s,   𝐶𝑙
s),       if rand() < 𝑝𝑒

ϑ(𝐶𝑘
s   , 𝐶𝑙

s+1),         otherwsie
                        (12) 

In equation 12, l indicates the randomly chosen water 

particle such that l ∈ {1, 2, 3, … . . K}and𝑘 ≠ l, ‘s+1’ denotes 

the randomly chosen dimension. 𝑝𝑒 denotes the eddying 

parameter and rand( )  denotes a random number in the 

between [0, 1].  The eddying parameter is computed using 

the equation 13 which is expressed as below. 

γ(𝐶𝑘
s,   𝐶𝑙

s) = C𝑘
s + φ × θ × cos(θ)                        (13) 

In equation 13, θ denotes a random value in the range of 

[−π, π] and φ indicates the shearing force between kth and 

lthwater particles. The shearing force (φ)can be expressed 

using the equation 14. 

φ = |C𝑘
s ,   𝐶𝑙,

s| (14) 

Moreover, a transformation function is employed to 

describe the behavior of water particles. This behavior is 

expressed using equation 15.  

ϑ((𝐶𝑘
s   , 𝐶𝑙

s+1)) = (ubs − lbs)
C𝑘

𝑠−lb𝑠

ub𝑠−lb𝑠 (15) 
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In equation 15, ub𝑠  indicates the upper bound in sth 

dimension, lbs indicates the lower bound in sth dimension. 

Ck
𝑠 indicates the sth dimension of kth water particle.    

(vi) Update the position of water particles (cluster 

centroids): In this step, the position of water particles is 

updated. For updating process, the fitness function 

(potential energy) of the new position of water particles 

and old position of water particles is compared i.e. 

𝑖𝑓 (𝑓(𝐶𝑘,𝑛𝑒𝑤) > 𝑓(𝐶𝑘,𝑜𝑙𝑑)).  If, the fitness of the new 

position of water particles is higher than old ones, then the 

current position is replaced by the new position of water 

particles such as 𝐶𝑘 ← 𝐶𝑘,𝑛𝑒𝑤 . Otherwise, the old position 

can be acted as current position of water particles such as 

𝐶𝑘 ← 𝐶𝑘,𝑜𝑙𝑑 . The steps (ii-vi) are rerun until the maximum 

number of iteration is not reached. Finally, the optimal 

cluster centroids in terms of position of water particles are 

obtained. 

(vii) Performance Evaluation: The performance of the 

proposed SM-WFO algorithm is evaluated in this step. 

After obtaining the optimal position of water particles 

(cluster centroids), the performance of the algorithm is 

evaluated using intra cluster distance (Intra), accuracy rate 

(AR), and detection rate (DR) measures. 

The steps of the proposed SM-WFO algorithm are 

specified in Algorithm 2, whereas the flowchart of the 

same is mentioned in the Fig. 2. 

 

 

Fig. 2. Flowchart of the proposed SM-WFO algorithm. 

4. EXPERIMENTAL RESULTS 

The experimental results of the proposed SM-WFO are 

discussed in this section. Several well-known clustering 

datasets such as Iris, Glass, Wine, Balance, Vowel, LD, 

WBC, etc. are considered for evaluating the efficiency of 

the proposed algorithm. The experimental results of the 

proposed algorithm are evaluated using intra, AR and DR 

parameters. The intra parameter computes compactness 

between the data objects and cluster centroids. It is defined 

as total distance between data objects and cluster centers. 

The intra parameter results are also validated using 

standard deviation (SD). Further, the accuracy rate (AR) 

can be defined as correctly allocated data objects to 

clusters divided by total numbers of data objects. The 

results are also compared with existing renowned 

clustering algorithms such as ABC, DE, GA, CS, GSA, and 

LION, etc. 
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Algorithm 2: Steps of SM-WFO Algorithm for cluster analysis 

Input: Dataset and Number of Cluster(K) 

Output: Optimal Cluster Centroids 

1: Upload the dataset and other user-defined parameters like population 

of water particles (pop), total number of clusters(K), dimension of 

dataset (d), laminar probability (pl), eddying parameter (pe), lb, ub, 

limit operator (lo) and maximum number of iteration (imax). 

2: Compute the initial position of the water particles (Ck)   using 

equation 6.   

3: While (icurr ≤ imax), do following 

4: Evaluate the objective function using the equation 7.  

5: Allocate the data objects (Xl)to different clusters (Ck) using minimum 

value of objective function and compute the fitness function 

(potential energy) of water particles using equation 8. 

6: Determine the laminar probability (pl) and eddying parameter(𝑝𝑒)  using 

equations 16-17. 

 

pl = (c1 − c2) × (
1

1 + e−tcurr tmax⁄
)                                                            (16) 

 

pe = c2 × (
2

1 + e−2tcurr tmax⁄
− 1) + c1                                                     (17) 

 

In equations 16-17,c1 and c2 are cognitive parameter whose values are 

0.5 and 0.3 respectively. 

7: If (rand () < pl), do following /*call laminar Flow Phase */ 

8: Compute the direction of flow using the equation 10. 

9: Determine the new position of water particles using equation 9. If 

boundary constraints are violated, generate new position using the 

equation 15.   

10: Compute fitness function (potential energy) of water particles 

(Ck)using the equation 8. 

11: If fitness (potential energy) i.e. f(Ck)  of water particles is not 

improved in predefined limit operator (lo). Call the Algorithm 1 for 

generating the new position of water particles.   

12: Else /*call turbulent Flow Phase */ 

 𝑖𝑓( rand() < pe) 

13: Compute the position of water particles (Ck) in random order such that 

thatk ≠ j 

14: Determine the value of eddying parameter(pe) using the equation 13. 

15: Determine the new position of water particles using the equation 11. 

If boundary constraints are violated, generate new position using 

the equation 15. 

16: Compute fitness function (potential energy) of water particles 

(Ck) using the equation 8. 

17: End if  

18: End if 

19: For, each water particle (Ck), do following  
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20: If (f(Ck,new) > 𝑓(Ck,old)) 

21: f(Ck) ← f(Ck,new) and Ck ← Ck,new 

22: Else 

23: f(Ck) ← f(Ck,old) and Ck ← Ck,old 

24: End If 

25: End For 

26: Update the position of water particles and determine the global best 

position(𝐶𝑏𝑒𝑠𝑡).. 

27: icurr = icurr + 1 

28: End While 

29: Obtain the optimal centroids (Ck). 

The user-defined parameters of the proposed SM-WFO 

are listed as total number of clusters(K), dimension of 

dataset (d), population of water particles (pop), laminar 

probability (pl ∈ (0.2, 0.5)) ,), eddying parameter (pe ∈

(0.5, 0.9)), lb indicates minimum value of each dimension, 

up indicates maximum value of each dimension, limit 

operator (lo) = 8 , and maximum number of iteration 

(i_max=100).The maximum iteration (stopping criteria) is 

set to 100. The population of water particles is similar to 

cluster numbers (K). The parameter settings of other 

algorithms are taken same as reported in concerned 

literature. Additionally, the proposed SM-WFO algorithm 

is implemented using the MATLAB environment on a 

corei5 processor with 32 GB of RAM. 

4.1. Simulation Results 

This subsection discusses the experimental results of the 

SM-WFO. The results of the SM-WFO are also compared 

with popular clustering algorithms. Table 2 illustrates the 

experimental results of the proposed SM-WFO algorithm 

and other algorithms using intra, SD and rank parameters. 

It is analyzed that SM-WFO algorithm obtains least intra 

distance with glass (2.18E+02), control (2.38E+04), vowel 

(1.57E+05), crude oil (2.42E+02), CMC (5.57E+03), and 

cancer (2.69E+03) among all algorithms, whereas, the 

proposed SM-WFO algorithm obtains second minimum 

distance with iris (9.43E+01), ionosphere (1.06E+03), 

balance (5.80E+04), LD (1.37E+03), and thyroid 

(1.37E+03) among all algorithms. It is analyzed that K-

means achieves minimum distance (9.20E+01) with iris 

dataset, ACO algorithm achieves minimum intra distance 

(9.38E+02) with ionosphere dataset, CS algorithm achieves 

minimum intra distance (5.79E+04) with balance dataset, 

and DE algorithm achieves minimum intra distance 

(1.30E+03) with thyroid dataset. Moreover, SM-WFO 

algorithm achieves third minimum intra distance 

(1.63E+04) with wine dataset, while DE algorithm obtains 

minimum intra distance (1.58E+04) with wine dataset 

among all algorithms and ACO algorithm achieves second 

minimum intra distance (1.62E+04) with wine dataset 

among all algorithms. By analyzing the SD parameter, it is 

revealed that proposed SM-WFO algorithm achieves 

minimum SD rate with majority of the datasets. This 

parameter specifies dispersion of the intra parameter in 

each run. Further, the rank parameter is also computed to 

validate the efficacy of SM-WFO algorithm. Rank 

parameter is computed of each algorithm with respect to 

each dataset based on intra parameter. It’s revealed that 

SM-WFO gets highest average rank (i.e. 1.58) compared to 

other algorithms. The second highest rank (3.75) is 

obtained by the LION algorithm while K-means gets lower 

rank (8) among all algorithms. Hence, it is said that 

proposed SM-WFO algorithm gets superior results in 

context of intra, SD and rank parameters.  

The effectiveness of the proposed SM-WFO algorithm 

is also assessed using AR (acc. rate) and DR (det. rate) 

parameters. Table 3 illustrates the findings of the SM-WFO 

based on AR (acc. rate) and DR (det. rate) parameters. It is 

marked that SM-WFO algorithm gets higher AR rate for 

iris (92.8%), glass (70.7%), ionosphere (77.4%), control 

(89.1%), vowel (87.8%), CMC (60.4%), LD (67.1%), 

cancer (81.7%), and thyroid (72.9%) datasets. It is also 

noticed that SM-WFO gets second higher AR (acc. rate) 

rates with wine (87.3%), crude oil (79.8%), and balance 

(91.3%) datasets among all algorithms. It is acknowledged 

that LION algorithm gets higher AR (acc. rate) (87.8 and 

80.5%) with wine and crude oil datasets, CS algorithm gets 

higher acc. rate (91.7%) with balance dataset. By analyzing 

the DR (det. rate), it is revealed that SM-WFO algorithm 

gets higher det. rate for iris (93.2%), glass (71.6%), 

ionosphere (78.1%), control (89.4%), vowel (86.6%), CMC 

(61.9%), LD (68.4%), cancer (83.1%), and thyroid (74.1%) 

datasets. It is also noticed that SM-WFO gets second 

higher det. Rate (DR) with wine (87.9%), balance (90.4%) 

and crude oil (81.4%) datasets among all algorithms.  
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Table 2: Simulation results of SM-WFO and other existing algorithms based on distance parameters 

Datasets Measure 
 Clustering Algorithms 

K-means PSO ACO ABC DE GA CS GSA LION SM-WFO 

Iris 

Intra 9.20E+01 9.86E+01 1.01E+02 1.08E+02 1.21E+02 1.25E+02 9.64E+01 9.79E+01 9.76E+01 9.43E+01 

SD 2.67E+01 4.67E-01 1.31E+00 6.63E+00 5.23E+00 1.46E+01 3.25E+00 3.19E+00 4.03E+00 2.56E+00 

Rank 1 6 7 8 9 10 3 5 4 2 

Glass 

Intra 3.79E+02 2.76E+02 2.19E+02 3.29E+02 3.62E+02 2.82E+02 2.41E+02 2.39E+02 2.38E+02 2.18E+02 

SD 7.05E+01 1.86E+01 3.36E+00 1.14E+01 1.21E+01 4.14E+00 1.12E+01 9.87E+00 1.07E+01 1.39E+01 

Rank 10 6 2 8 9 7 5 4 3 1 

Wine 

Intra 1.81E+04 1.64E+04 1.62E+04 1.69E+04 1.58E+04 1.65E+04 1.65E+04 1.70E+04 1.65E+04 1.63E+04 

SD 9.06E+02 8.55E+01 3.69E+01 4.74E+02 5.60E+01 7.84E+01 2.64E+01 2.74E+01 2.66E+01 5.61E+01 

Rank 10 4 2 8 1 7 6 9 5 3 

Ionosphe

re 

Intra 2.42E+03 1.08E+03 9.38E+02 1.11E+03 1.13E+03 1.07E+03 1.23E+03 2.83E+03 1.42E+03 1.06E+03 

SD 4.55E+02 3.34E+02 4.48E+02 2.61E+02 3.17E+02 4.13E+02 3.46E+01 4.04E+01 3.38E+01 2.79E+02 

Rank 9 4 1 5 6 3 7 10 8 2 

Control 

Intra 1.01E+06 4.18E+04 2.39E+04 5.12E+04 5.23E+04 4.62E+04 3.03E+04 3.13E+04 2.75E+04 2.38E+04 

SD 5.05E+03 1.02E+03 1.71E+02 1.32E+03 9.16E+02 1.58E+03 6.18E+01 5.37E+01 4.47E+01 7.87E+01 

Rank 10 6 2 8 9 7 4 5 3 1 

Vowel 

Intra 1.60E+05 1.58E+05 1.89E+05 1.70E+05 1.81E+05 1.59E+05 1.59E+05 1.60E+05 1.59E+05 1.57E+05 

SD 4.52E+03 2.88E+03 2.58E+03 4.64E+03 2.86E+03 3.11E+03 3.42E+01 3.87E+01 1.74E+01 4.23E+01 

Rank 7 2 10 8 9 5 4 6 3 1 

Balance 

Intra 1.20E+05 6.20E+04 5.94E+04 6.61E+04 6.78E+04 6.91E+04 5.79E+04 5.81E+04 5.86E+04 5.80E+04 

SD 9.28E+03 4.01E+03 7.56E+02 6.79E+02 5.25E+03 5.62E+03 2.19E+02 3.02E+02 2.98E+02 2.22E+02 

Rank 10 6 5 7 8 9 1 3 4 2 

Crude oil 

Intra 2.91E+02 2.86E+02 2.47E+02 2.81E+02 3.69E+02 2.83E+02 2.74E+02 2.71E+02 2.69E+02 2.42E+02 

SD 2.63E+01 1.14E+01 4.71E+01 1.09E+01 2.33E+01 8.14E+00 1.24E+01 1.75E+01 1.39E+01 1.95E+01 

Rank 9 8 2 6 10 7 5 4 3 1 

CMC 

Intra 5.59E+03 5.85E+03 5.83E+03 5.94E+03 5.95E+03 5.76E+03 5.85E+03 5.67E+03 5.70E+03 5.57E+03 

SD 4.68E+01 4.89E+01 1.23E+02 1.31E+02 8.69E+01 5.04E+01 2.35E+02 6.32E+01 9.47E+01 2.96E+01 

Rank 2 8 6 9 10 5 7 3 4 1 

LD 

Intra 1.17E+04 3.24E+03 3.24E+03 9.85E+03 1.15E+04 2.54E+03 1.39E+03 1.73E+03 1.33E+03 1.37E+03 

SD 6.68E+02 2.88E+01 1.64E+01 8.20E+02 2.07E+03 4.18E+01 5.62E+01 4.79E+01 2.68E+01 1.88E+01 

Rank 10 6 7 8 9 5 3 4 1 2 

WBC 

Intra 1.93E+04 4.26E+03 3.37E+03 3.50E+03 3.73E+03 3.00E+03 3.72E+03 2.92E+03 2.89E+03 2.69E+03 

SD 5.14E-12 2.08E+02 4.17E+01 2.12E+02 1.84E+02 2.25E+02 1.73E+01 8.36E+00 7.67E+00 1.88E+02 

Rank 10 9 5 6 8 4 7 2 3 1 

Thyroid 

Intra 2.39E+03 1.11E+04 1.99E+03 1.98E+03 1.30E+03 1.22E+04 1.43E+03 1.86E+03 1.54E+03 1.37E+03 

SD 2.46E+02 2.71E+01 3.09E+01 2.23E+02 2.06E+01 3.26E+01 2.39E+01 1.90E+01 2.46E+01 1.48E+01 

Rank 8 9 7 6 1 10 3 5 4 2 
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Table 3: Simulation results of SM-WFO and other existing algorithms based on accuracy rate and detection rate parameters 

Dataset Parameter KM PSO ACO ABC DE GA CS GSA LION 
SM-

WFO 

Iris 
Acc. Rate 67.30% 83.30% 78.90% 88.70% 84.20% 74.10% 88.50% 78.30% 85.10% 92.80% 

Det. Rate 69.60% 85.70% 79.40% 89.20% 86.80% 77.30% 89.30% 77.40% 81.10% 93.20% 

Glass 
Acc. Rate 51.90% 53.70% 37.40% 48.90% 48.10% 49.00% 68.90% 66.40% 68.10% 70.70% 

Det. Rate 53.80% 57.20% 38.40% 50.90% 49.20% 51.10% 72.60% 68.40% 71.30% 71.60% 

Wine 
Acc. Rate 73.90% 71.10% 74.60% 77.30% 74.10% 72.90% 80.30% 79.00% 87.80% 86.90% 

Det. Rate 75.20% 73.70% 78.10% 79.30% 76.20% 74.90% 82.40% 81.80% 90.80% 87.90% 

Ionosphere 
Acc. Rate 71.20% 64.80% 60.70% 64.40% 63.00% 60.10% 73.50% 75.20% 76.90% 77.40% 

Det. Rate 72.80% 64.70% 61.20% 66.40% 65.30% 61.80% 74.60% 76.20% 77.90% 78.10% 

Control 
Acc. Rate 59.70% 41.20% 39.50% 35.60% 39.30% 46.70% 69.80% 67.40% 73.80% 89.10% 

Det. Rate 61.40% 45.20% 43.70% 39.60% 41.70% 49.20% 72.20% 69.40% 76.20% 89.40% 

Vowel 
Acc. Rate 76.30% 75.30% 77.50% 79.60% 69.80% 74.50% 83.50% 84.70% 85.10% 86.40% 

Det. Rate 84.60% 79.50% 80.60% 83.20% 74.70% 79.00% 86.60% 85.80% 89.70% 86.60% 

Balance 
Acc. Rate 85.00% 89.80% 74.30% 76.70% 75.00% 78.00% 91.70% 84.90% 85.50% 89.60% 

Det. Rate 86.30% 90.40% 77.20% 78.30% 77.60% 82.40% 93.80% 88.70% 89.60% 90.40% 

Crude oil 
Acc. Rate 65.50% 76.50% 59.10% 56.80% 66.50% 63.20% 70.40% 76.10% 80.50% 79.80% 

Det. Rate 68.40% 77.30% 64.50% 58.70% 68.10% 65.40% 71.30% 79.20% 83.40% 81.40% 

CMC 
Acc. Rate 35.70% 51.40% 36.90% 41.60% 43.70% 40.30% 57.10% 54.70% 53.40% 60.40% 

Det. Rate 45.50% 59.80% 46.50% 48.90% 46.60% 43.50% 61.40% 58.20% 55.80% 61.90% 

LD 
Acc. Rate 52.20% 54.10% 52.90% 49.90% 52.00% 49.30% 65.90% 63.10% 66.20% 67.10% 

Det. Rate 63.50% 58.70% 56.40% 54.90% 64.80% 59.00% 68.90% 65.40% 71.30% 68.40% 

Cancer 
Acc. Rate 69.80% 72.10% 74.90% 78.60% 65.40% 69.10% 82.00% 72.80% 78.70% 81.70% 

Det. Rate 75.10% 74.80% 77.30% 82.40% 67.80% 71.50% 84.10% 78.60% 84.20% 83.10% 

Thyroid 
Acc. Rate 63.80% 68.90% 64.90% 64.40% 65.80% 63.20% 69.10% 67.80% 72.40% 72.90% 

Det. Rate 66.10% 69.20% 65.40% 66.10% 69.70% 64.30% 74.80% 72.90% 75.90% 74.10% 

 

It is revealed that LION algorithm gets higher DR rate 

(0.908 and 0.834) with wine and crude oil datasets, CS 

algorithm gets higher DR rate (0.938) with balance dataset. 

Hence, it is said that SM-WFO acquires better clustering 

results using AR and DR parameters with most of 

datasets.Fig.3 (a-l) presents the clusters in different dataset 

using the proposed SM-WFO algorithm. Fig.3 (a) shows 

the iris dataset clusters based on the petal length, petal 

width and sepal width attributes. The proposed SM-WFO 

separates the data into three clusters such as cluster-1, 

cluster-2 and cluster-3. I.Setosa, I.Versicolour, and 

I.Virginica clusters. It is observed that the data belonging 

to cluster1 linearly separable than clusrer-2 and cluster-3. 

While, the data belongs to cluster-2 and cluster-3 are non-

linear in nature. The clusters of glass dataset are presented 

into Fig. 3(b). It is revealed that proposed SM-WFO 

algorithm divides the glass dataset into six clusters, but 

data are non-linear in nature. Fig. 3(c) depicts the distinct 

clusters of wine dataset. The wine dataset comprises of 

three clusters: cluster1, cluster2, and cluster3 based on ash, 

malic acid and alcohol. It is also noticed that data is non-

linear and cannot be easily separable. Fig. 3(d) displays the 

clusters of ionosphere dataset using attribute3, attribute4 

and attribute5. The findings demonstrated that this dataset 

is non-linear separable, but proposed SM-WFO algorithm 

satisfactory allocate data to corresponding clusters. Fig. 

3(e) shows the clusters in control dataset using feature2, 

feature59 and feature60. The control dataset consists of 

sixty attributes, but data is not linear in nature. Fig. 3(f) 

demonstrates the clusters of vowel dataset and this dataset 

comprises of six clusters. It is analyzed that clusters are not 

linearly separable. The clustering in balance dataset is 

presented in Fig. 3(g). This dataset comprises of three 

clusters. The findings stated that data are linear in nature. 

Fig. 3(h) depicts the crude oil dataset clusters using the 
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price open, price high and volume attributes. The data is 

separated into three clusters, and SM-WFO algorithm 

effectively allocates the data to appropriate clusters. The 

clusters in liver disease (LD) dataset are shown in Fig. 2(i). 

The ALP, age and aspartate attributes are used to compute 

the clusters. The finding stated that SM-WFO correctly 

divides the data into cluster1 and cluster2.  The clusters of 

cancer dataset based on cell size, clam thickness and 

adhesion are reported into in Fig. 3(j). The proposed SM-

WFO categorizes the data into clusters effectively. The 

thyroid dataset clusters are shown in Fig. 2(k) using TT4, 

FT1 and age attributes. This dataset consists of three 

clusters. It is discovered that the cluster-1 and cluster-2 are 

non-linear, but the cluster-3 is linear in nature. The CMC 

dataset clusters are shown in Fig. 3(l) using living index, 

wife education and number of children. SM-WFO 

separates the data into three clusters effectively. Finally, it 

is claimed that SM-WFO precisely assigns the data to 

relevant clusters. 

5. CONCLUSION 

This work presents a simplex method based water flow 

optimizer (SM-WFO) algorithm for clustering problems. 

WFO algorithm is inspired by flow of water i.e. highland to 

lowland and comprises of laminar flow and turbulent flow. 

It is revealed that WFO algorithm obtains superior 

outcomes for most of the optimization problems, but 

sometimes it can stick in local optima and converges on 

immature results. This issue of the WFO algorithm is 

addressed through well-known simplex method. The 

simplex method utilizes the two global best positions of 

particles for generating the new optimal location of water 

particles. Further, local optima are handled through a limit 

operator. Both modifications are integrated into laminar 

flow phase of the WFO. The effectiveness of the SM-WFO 

is validated by a set of twelve datasets. Moreover, the 

results are assessed by distance measures (intra, SD), AR, 

DR and rank parameters. The results demonstrated that 

SM-WFO algorithm obtains superior in terms of intra 

parameter with most of datasets.   Further, SM-WFO also 

achieves better AR (acc. rate) and DR (det. rate) results 

with most of datasets. The rank parameter also supports the 

existence of the SM-WFO algorithm in the field of 

clustering. SM-WFO obtains the minimum average rank 

(1.58) among all datasets.  Hence, it is claimed that the 

SM-WFO outperforms than other algorithms. Finally, it is 

concluded that SM-WFO is an efficient to solve clustering 

problems. The efficiency of the SM-WFO will be explored 

in some other fields like feature extraction and reduction, 

image processing, classification, constrained optimization 

problems and outlier detection. 
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