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A B S T R A C T 

Aphasia Affected Persons (AAPs) often get annoyed due to the dearth of a link between 

their internal monologue, which is also known as inner speech, and external words or 

overt speech. The main objective of this research is to classify the manners in which 

people with aphasia caused by stroke relate to themselves and others. This paper 

proposes a model employing a Graph Convolutional Network (GCN) aimed at achieving 

specific research objectives. Utilizing functional Magnetic Resonance Imaging (fMRI) 

data from 20 subjects, including individuals diagnosed with Aphasia Affected Persons 

(AAP) and Healthy Persons (HP), the study encompasses a balanced dataset of 11 

females and 9 males. The methodology is designed to investigate elusive properties or 

relationships, thereby providing an enhanced understanding of the mechanisms 

underlying language processing in the brain. Data is pre-processed thoroughly using 

methods like Retrospective Image Correction (RETROICOR) and spatial smoothing is 

applied to eliminate physiological noise as well as enhance data quality. The GCN is 

trained on how patients judge words (JoW) and synonyms (JoS) so that it makes 

predictions about them after partitioning its data among different models. Evaluation of 

the proposed model’s performance included metrics such as patient accuracy and 

response time. As compared to age-matched controls, AAP shows greater inter-subject 

variations in brain activity between concrete and abstract words possibly due to an 

increased concreteness effect. In contrast, HPs reach their maximum accuracy in an 

abstract condition where it amounts to 99.65% at reaction time equaling 1981.33 

milliseconds whereas AAPs whose control condition records 100% with reaction time 

around 1642.56 milliseconds. 

 

1. INTRODUCTION 

The intricate fundamental cognitive function of language 

has been of great interest in neuroscience [1]. 

Understanding how language is generated by the brain has 

huge therapeutic implications because it is a basic scientific 

question [2]. Aphasia has been one area that this endeavor 

has focused on; this is a condition where a person loses the 

ability to understand or produce speech after sustaining 

brain injury [3]. Caused by either a stroke or an injury to 

the brain, it affects communication language 

comprehension, and production abilities of a person 

leading to poor quality of life as well [4].  

Investigating the neural basis of language processing in 

aphasic persons is critical for effective rehabilitation and 

treatment approaches apart from its scientific significance 

[5]. A general decoding model of the text modality for 

AAPs is shown in Figure 1. 

The neuroimaging techniques over time particularly 

fMRI have revolutionized the understanding of how the 

human brain works [7]. Using fMRI researchers can 

capture dynamic neural processes accompanying various 

cognitive functions such as language processing [8],[9]. 

 

 

Fig. 1. A general decoding model of the text modality [6]. 

 

In addition, advances in machine learning and deep 

learning techniques have provided novel strategies to 

analyze complex brain data and figure out intricate patterns 
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of neural connectivity across areas that are difficult to 

connect [10]. 

This current research attempts to merge neuroscience 

with machine learning using GCNs to investigate neural 

connectivity patterns related to language processing among 

people who experience aphasia. GCNs which are a form of 

neural network designed specifically for graph-structured 

data have proven impressive performance modeling 

relationships between elements within complex systems 

[11]. Therefore, they provide promising approaches to 

study connections facilitating linguistic activity within the 

context of brain research. 

1.1 Language Processing in the Brain 

Language processing is a complex cognitive function that 

involves a distributed network of brain regions [12-13]. 

This networking encompasses areas in the left and right 

hemispheres with specific regions dedicated to different 

linguistic functions [14]. Language processing, in general, 

can be classified as receptive language (comprehension) 

and expressive language (production) [15]. 

In terms of receptive language, the Superior Temporal 

Gyrus (STG) and middle temporal gyrus (MTG) are 

important regions for auditory word recognition and 

comprehension [16]. The back part of the Superior 

Temporal Sulcus (STS) deals with prosody, rhythm, and 

melody of speech. On the other hand, semantic processing 

which links words to their meanings takes place at the 

angular gyrus (AG) [17]. 

On the other hand, expressive language includes regions 

such as Broca’s area located at the posterior frontal gyrus 

that is responsible for speech production and syntactic 

processing [18]. Phonological processing and word 

retrieval take place within the left inferior frontal gyrus 

(IFG). As well as motor function through articulation 

occurs at the precentral gyrus. 

However, this connectivity does not mean that these 

regions exist in isolation but rather they are interconnected 

within them. A considerable number of inter-regional 

connections form a highly complex neural network that 

enables seamless merging of differing types of linguistic 

processes. To explain this better it is important to put fMRI 

data under consideration where it is determined how 

connected most regional parts are to one another during the 

execution of certain cognitive tasks - experiments [19]. 

1.1.1 Aphasia: Disruption of Language Processing 

Aphasia refers to any kind of impairment in normal 

communication brought about by disturbances in cortical 

circuits involved in language [20]. Aphasia can manifest 

differently depending on lesion location and extent [21]. 

Consequently, if Broca's area has been damaged then it can 

result in Broca’s aphasia characterized by the inability to 

produce grammatically correct sentences while Wernicke's 

area sounds fluent but meaningless when it gets damaged 

[22]. 

Knowledge of aphasia presents a unique opportunity to 

understand how the brain is organized for language 

processing [23]. Researchers have made significant 

progress in mapping the brain regions critical for various 

aspects of language by correlating specific brain lesions 

with language deficits [24]. However, this understanding 

would need to go beyond individual regions and look at 

how they are connected [25]. 

1.1.2 Advances in Neuroimaging and Connectivity 

Analysis 

Recent advancements in neuroimaging, particularly 

functional magnetic resonance imaging (fMRI), have 

allowed us to examine the connectivity of the human brain 

during cognitive tasks [26]. It can be used to track changes 

in blood flow and oxygenation resulting from neural 

activity therefore helping researchers infer patterns of 

connectivity within the mind. 

One way fMRI data can be analyzed is through 

functional connectivity analysis that assesses temporal 

correlations between different areas of the brain [27]. This 

resulted in the definition of functional networks involved in 

diverse cognitive functions including Language. On the 

other hand, this method often treats every part as a separate 

node with no consideration for their interdependence in 

terms of connection complexity. 

Network analysis based on graph theory provides a 

broader view of connectivity within the cerebral cortex 

[28]. Conceptually, the brains can be viewed as networks 

where each node represents a region and edges represent 

connections between them. By this structural organization, 

researchers could study the way it connects both locally 

and widely. 

1.1.3 Graph Convolutional Networks: Bridging 

Neuroscience and Machine Learning 

In the area of graph-structured data, there have been 

several advancements in machine learning such as GCNs 

[29]. For instance, these were initially developed for social 

network analysis and recommendation systems; however, 

they are now applied in various fields such as natural 

language processing and biology [30]. 

Wiring the brain (GCNs) is a branch of science in 

neuroscience that provides a robust model for simulating 

the brain’s connectivity [31]. With this, complex 

interactions among regions and how they relate to 

cognitive processes are captured by considering nodes as 

brain regions and edges as their connections in graphs 

known as GCNs [32]. This has provided an alternate 

approach to reveal language processing within the neural 

sphere in healthy individuals and those with aphasia. 
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1.2 Problem Statement 

Language functions have various parts of the brain 

responsible for them. One such hypothesis suggests that 

grammar is contained within Broca's area which forms a 

network connected by nerves. However, this version of the 

hypothesis has been challenged. Simple grammatical 

patterns, such as word order and case inflections, can be 

learned even in languages with complex morphology, 

supporting the idea that language centers in the brain 

function as a switchboard connecting various areas that 

store linguistic information. 

Aphasia, a language disorder resulting from damage to 

the brain region responsible for speech production and 

comprehension, primarily affects the Broca area. 

Individuals with aphasia lose the ability to engage in 

meaningful conversations. Many stroke patients also 

experience aphasia, a language disorder caused by the loss 

of the brain's ability to coordinate and manage linguistic 

capabilities due to a disrupted connection between the 

Broca area and other regions. 

When a person has aphasia, their cerebellum is 

impaired, and they cannot produce speech because the 

Broca area fails to respond to the lingual gyrus, even 

though the speech comprehension and production 

mechanisms have been activated. This incorrect retrieval in 

the lingual gyrus can cause the cortex to lose its structure 

and become displaced. 

1.3 Research Objectives 

This section provides the objectives of the work as 

follows: 

a. The primary objective of this research is to 

investigate the neural connectivity patterns 

associated with language processing, with a specific 

focus on individuals with aphasia. 

b. This study aims to explore how different regions of 

the brain work together to generate language and 

sentences in both normal and aphasic individuals. 

c. To develop a computer model or graph network that 

replicates brain language processing and shows how 

different brain regions are involved. Experimental 

data would underpin the model. 

The remaining parts of this work are structured as 

described below. Previous research is analyzed and 

discussed in Section 2. In Section 3, the suggested 

framework is assessed, and its implications are examined. 

In the next part (section 4), the findings are reviewed, and a 

brief explanation is also provided for better 

comprehension. The study ends in Section 5, which also 

includes some thoughts on potential future work and the 

conclusion of the work. 

2. RELATED WORK 

This section discusses the previous study performed on 

investigating the differences in language processing with 

Aphasia disorder using GCN. 

Teghipco et al. (2023) [33] explored the possibility that 

encoding spatial dependencies in the data could improve 

predictions by identifying unique individualized spatial 

patterns and tested the efficacy of using deep learning 

techniques with Convolutional Neural Network (CNN) on 

entire brain morphometry and lesion the human body to 

determine which individuals with chronic stroke have 

serious aphasia. Even when the Support Vector Machine 

(SVM) is nonlinear or blends both linear and nonlinear 

reduction of dimensionality approaches, the authors found 

that CNN obtains much greater accuracy of 77% and F1 

scores of 0.7 than the SVM. 

Shams et al. (2023) [34] employed machine learning 

techniques, and the researcher projected that patients with 

gliomas that had infiltrated the language network would 

suffer from aphasia. The Aachen Aphasia Test (AAT) was 

used to determine the severity of aphasia before surgery. 

The model used a random forest to choose features and 

then an SVM to analyze the data. Utilizing patient 

demographics, tumor World Health Organization (WHO) 

grade, tumor location, and relative tract volumes, the best 

model performance obtained 81% accuracy (specificity = 

85%, sensitivity = 73%, and AUC = 85%). 

Billot et al. (2022) [35] employed disconnectome maps, 

and authors searched for patterns of architectural 

disconnection that are associated with long-term language 

challenges. Support-vector regression disconnectome-

symptom projection research was carried out to study the 

associations that exist between disconnectome maps 

(which indicate the likelihood of disconnection at each 

white matter voxel) and different language scores. In 

addition, research on lesion-symptom mapping was carried 

out, making use of support-vector regression, and the 

findings were analyzed qualitatively. Although there was a 

great deal of agreement between the results of the SVR 

with disconnectome-symptom mapping (SVR-DSM) and 

the SVR with lesion-symptom mapping (SVR-LSM) for 

scores such as aphasia severity and naming, it seemed that 

focal impairment at the level of the insular and central 

opercular cortices was the primary factor in explaining 

overall language abilities. 

Smaïli et al. (A2022) [36] developed a strategy for 

improving a person with aphasia's ability to communicate 

with people around them. A machine translation system is 

presented that can assist a patient with aphasia to 

communicate more effectively by identifying and fixing 

any mistakes they make in their speech. In this paper, 

researchers have demonstrated the viability of the research 

for converting from aphasia data to normal language by 

demonstrating how authors construct a pseudo-aphasia 
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database from genuine data. Based on these first findings, 

the authors can conclude that the deep learning algorithms 

that are used provide accurate translations with a BLEU of 

38.6. 

Moral et al. (2021) [37] analyzed the differences 

between non-fluent, semantic, and logopenic Primary 

progressive aphasia (PPA) patients and 20 healthy controls 

by using a cross-sectional design. Multinomial Naive 

Bayes, Decision Tree, Elastic Net, Support Vector 

Machines, Random Forest, K-Nearest Neighbours (KNN), 

and Gaussian Naive Bayes were among the seven machine 

learning algorithms tested. KNN algorithm's diagnostic 

ability to differentiate PPA from controls was strong 

(accuracy 75%, F1-score 83%). When comparing PPA 

variations, however, discrimination was less (58% 

accuracy and 60% F1-score for KNN). 

Kristinsson et al. (2021) [38] employed machine 

learning techniques to analyze a multimodal neuroimaging 

dataset and make predictions about aphasia severity and 

language scores. Included in the neuroimaging data set 

were measurements of cerebral blood flow (CBF), lesion 

burden, and fractional anisotropy (FA) values derived from 

diffusion-based fMRI. The findings suggest that several 

neuroimaging modalities can be used to portray how brain 

injury and surviving brain function transfer better properly 

into language function in aphasia. 

Chen et al. (2021) [39] explored the use of resting-

state fMRI to characterize global and nodal facets of 

functional networks in individuals with aphasic stroke. A 

3-T fMRI scan was performed on 24 right-handed stroke 

patients with aphasia and 19 healthy controls (HC). 

Patients with aphasia were shown to have lower-than-

average levels of local efficiency (Eloc), normalized 

clustering coefficient (gamma), and small-worldness 

(sigma). Patients with aphasia also showed an 

improvement in their language skills, recollection, naming, 

and understanding after using Eloc. The findings show that 

aphasic stroke patients had changes to both global and 

local topological features as a consequence of their 

injuries. 

Nissim et al. (2020) [40] intended to rigorously analyze 

the effectiveness of transcranial direct current stimulation 

(tDCS) and transcranial magnetic stimulation (TMS) in 

enhancing linguistic outcomes in PPA; explored the size of 

effects across stimulation modalities and investigated 

possible modifiers that can impact treatment results. 

Changes in performance on language-related activities 

were measured as standard mean differences before and 

after stimulation. Research has shown that tDCS is mostly 

responsible for the observed improvement in naming skills 

after brain stimulation. 

Shain et al. (2020) [41] used fMRI in a realistic 

comprehension paradigm; it was shown both (1) that 

predictive coding in the brain's response to language is 

domain-specific and (2) that these predictions are 

susceptible to both local word co-occurrence sequences 

and to a hierarchical framework. Large prediction effects in 

the linguistic network were shown by the fact that the 

model caught over 37% of the explainable variance on 

held-out data. These findings show that brain processes 

sensitive to hierarchical structure and specialized for the 

processing of language are responsible for creating 

predictions about future words in human sentence 

processing mechanisms rather than input from high-level 

executive control mechanisms. 

Johnson et al. (2020) [42] analyzed to distinguish 

patients who responded most favorably from those who did 

not (i.e., responders and nonresponders) and to ascertain 

whether network measures anticipated naming 

enhancements, researchers are used worldwide (i.e., 

network-wide) and local (i.e., regional) graph theoretical 

measures of functional connectivity before treatment. 

Several areas involved with various cognitive processes 

showed group differences in local measurements. Based on 

these findings, it seems that the features of a patient's 

functional network are related to how well they respond to 

naming treatment, which can have predictive implications. 

Chien et al. (2019) [43] used a data-driven approach to 

categorization by proposing a new Feature Sequence 

format and using a recurrent neural network. It is also 

shown that the system is automated, which bodes well for 

its ease of widespread deployment. The findings of the 

research have been verified by a battery of studies using a 

total of 120 speech samples, with the best possible score 

being a 0.838 area under the receiver's operating 

characteristic curve. 

Angelopoulou et al. (2018) [44] examined the 

relationship between aphasia and pause characteristics and 

their relationships with language components. Eighteen 

individuals were recruited with left hemisphere stroke-

related persistent aphasia. Transcriptions of speech samples 

were analyzed for silence using ELAN, an animation tool. 

Based on The data, researchers can say that the distribution 

of pause durations in both groups follows a log-normal 

bimodal model, with thresholds that are different enough to 

classify pauses into two groups in each population. Brief 

and extensive.  

Friederici, Angela D (2011) [45] highlighted the fact 

that many analogies can be drawn between the human 

brain and a machine. Like how a digital computer 

processes data to generate conclusions and ideas, so does 

the human brain. Human memory, on the other hand, does 

not have the same spatial arrangement as digital storage. It 

seems that some regions of the brain provide crucial 

contributions to the operation of neural networks. The use 

of both deterministic and emergent models has been 

shown. Syntactic activities have been shown to rely on left 
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temporal-frontal networks, whereas semantic processes 

rely on right-lateralized networks.  

 

3. PROPOSED IMPLEMENTATION MODEL AND 

DESCRIPTION  

Researchers outline the process for classifying brain 

images of individuals with aphasia and healthy individuals, 

encompassing data collection, preprocessing, modeling, 

and evaluation. The journey begins with the collection of 

two distinct sets of brain images, one featuring individuals 

affected by aphasia and another composed of images from 

healthy individuals. Subsequently, data preprocessing 

through the application of RETROICOR, a method used to 

remove physiological noise from the brain images, and 

Spatial Smoothing, which enhances image quality through 

convolution. The preprocessed data is then thoughtfully 

split into training and testing sets to facilitate model 

development and validation. A Graph Convolutional 

Neural Network (GCN) is implemented to construct a 

robust classifier. Classification is achieved by deploying 

the trained GCN model on the testing dataset, thereby 

distinguishing between Aphasia-affected and healthy 

individuals based on brain images. Finally, the 

performance of the model is assessed by calculating 

accuracy and, if relevant, measuring reaction time, while 

the study concludes with a summary of key findings and 

potential future research avenues. 

This study aims to examine the collaboration of various 

brain regions in the formation of language and sentences 

under normal conditions, as illustrated in Figure 2, and 

under abnormal circumstances, as depicted in Figure 2. 

 

 

Fig. 2. Block Diagram of language processing inside the brain 
(normal). 

Normal Circumstances 

o Initiate the processing mechanism. 

o First, the data obtained from external stimuli is 

processed by the visual cortex. This primary region of 

the brain's cortex is responsible for receiving, 

integrating, and processing visual information, 

primarily through feature analysis. 

o Next, the response is sent to the auditory cortex. 

Located in the temporal lobe, the auditory cortex in 

humans is responsible for decoding auditory data such 

as letter and speech analysis. The response is then 

sent to an appropriate selection mechanism before 

reaching the motor cortex. 

o The motor cortex serves as the final arc, receiving the 

external agent's request and generating the 

mechanism to respond to the stimuli. The motor 

cortex, located in the frontal lobe's precentral gyrus of 

the posterior parietal lobe and anterior to the central 

sulcus, is thought to be responsible for initiating, 

regulating, and executing voluntary actions. It first 

sends a response to the planum temporal for analysis 

and then receives a signal from the superior temporal 

gyrus regarding auditory processing management. 

o Ultimately, the motor cortex sends a response to 

Broca's area for speech and Wernicke's area for 

memory formation and retrieval. The Broca's and 

Wernicke's areas are connected through sensory 

nerves, primarily responsible for communication 

analysis, which aids in grammar analysis and proper 

reading and metaphor classification. The response is 

then sent to the lingual gyrus. 

o The lingual gyrus, also known as the medial 

occipitotemporal gyrus, is a visual processing area of 

the brain that generates output responses about input 

stimuli, specifically in the context of letter and score 

reading. 

o Finally, the response is sent to the cerebellum to react 

to external stimuli. The cerebellum is responsible for 

coordinating movement and completing language 

analysis within the brain. It assesses expressive and 

receptive grammar processing, the ability to recognize 

and correct language errors, writing skills, and 

responsiveness to input. 

Abnormal (Aphasia) condition 

Aphasia is a language disorder caused by damage to the 

brain region responsible for both producing and 

comprehending speech. Individuals with aphasia struggle 

to communicate meaningfully with others. Aphasia is a 

common outcome of stroke, affecting numerous people.  

Primary issue in this disorder lies in language 

processing: 

o Aphasia primarily impacts Broca's area, rendering the 

brain incapable of managing language coordination 

and abilities. This disrupts the sensory nerve 
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mechanism between the Broca's and Wernicke's areas. 

o Due to aphasia, Broca's area cannot respond to the 

lingual gyrus, resulting in improper reading and a 

disrupted output response mechanism. This affects the 

responsive output to the cerebellum, which in turn is 

unable to generate an output. 

o The improper response retrieval in the lingual gyrus 

affects the cortex, causing it to deviate from its 

original form and position, as depicted in Figure 3. 

 
Fig. 3. Block diagram of language processing in an abnormal 

condition. 

3.1 Dataset Description 

In this work, the dataset taken into consideration is a 

primary dataset. It consists of details of some aphasia-

affected Patients (AAP) and some healthy persons (HP) 

means persons who are not affected by aphasia. The 

parameters that describe the information of these 

individuals are gender, age, education, and aphasia type. In 

this, researchers take data of 11 females and 9 males, in 

which 6 females are AAP and the rest are HP. Also, out of 

9 males, 4 are AAP, and the rest are HP. A short 

description of this dataset is described in Table 1, which is 

provided below. 

3.2 Technique Used  

This section describes the techniques below, which are 

taken into consideration in the methodology. 
Table 1. Dataset Description 

Parameters AAP HP 

No. of Samples 10 10 

Age Between 50-65 Between 50-65 

Education  Graduation and above Graduation and 

above 

Aphasia Type Anomic, Transcortical 

Motor 

--- 

3.2.1 RETROICOR 

RETROICOR is a preprocessing method for fMRI that 

addresses physiological noise, like cardiac and respiratory 

fluctuations. It involves Fourier analysis to identify the 

fundamental frequencies of these physiological signals. 

The mathematical representation typically involves 

creating noise regressors, denoted as R(t), to capture the 

timing and amplitude of these physiological fluctuations. 

These regressors are then included in the general linear 

model (GLM) analysis of fMRI data, where they are 

regressed out to improve data quality and enhance the 

sensitivity to neural activity [46]. The mathematical 

expression for RETROICOR might look like: 

Y(t) = Xβ + R(t) + ε (1) 

where, 𝑌(𝑡)  represents the fMRI signal at time t; 

𝑋 represents the design matrix for the experimental task; 𝛽 

is the parameter estimate for the task-related activity; 𝑅(𝑡) 

represents the physiological noise regressors; 𝜀 is the error 

term.  

3.2.2 Spatial Smoothing 

Spatial smoothing in fMRI involves applying a Gaussian 

smoothing filter to the data. The mathematical formula for 

Gaussian smoothing is: 

S(x,y,z) = ΣΣΣ I(i,j,k) * G(x - i,y - j,z - k) (2) 

where, S(x,y,z) is the smoothed value at voxel (x,y,z); 

I(i,j,k) is the original intensity value at voxel (i,j,k); G(x - 

i,y - j,z - k) is the Gaussian function that determines the 

weights for the nearby voxels. 

The operation involves a weighted average of the 

intensities of neighboring voxels based on their spatial 

distance. This process reduces noise and enhances the 

signal-to-noise ratio in fMRI data. The degree of 

smoothing is controlled by the parameters of the Gaussian 

function, such as the standard deviation. 

3.2.3 Graph Convolutional Network 

A GCN is a type of neural network architecture designed 

specifically to operate on graph-structured data [47,48]. 

Graphs are mathematical structures composed of nodes 

(also known as vertices) connected by edges (also known 

as links). GCNs extend the traditional convolutional neural 

networks (CNNs) to handle graph data by incorporating a 

notion of node connectivity. The graph convolutional layer 

typically follows these steps: 
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Initialization: Each node is assigned an initial feature 

vector. 

Aggregation: The feature vectors of a node's neighbors 

are aggregated to obtain a combined representation. This 

aggregation step is like the neighborhood pooling operation 

in CNNs. 

Transformation: The aggregated representation is 

transformed using a trainable weight matrix. 

Update: The transformed representation is combined 

with the node's current representation, often through 

element-wise addition or concatenation. 

Activation: An activation function is applied to the 

updated representation to introduce non-linearity. 

 

 
Fig. 4. Proposed Architecture. 

The process of aggregation, transformation, update, and 

activation is repeated for each layer in the network. The 

final output of the GCN is typically used for various 

downstream tasks, such as node classification, link 

prediction, or graph-level tasks. The graph convolutional 

operation in a GCN can be defined as: 

H = σ(A * X * W) (3) 

where, H is the output matrix of size NxF, where N is the 

number of nodes, and F is the number of output features 

per node; σ is the activation function, such as the ReLU 

function. 

* Denotes matrix multiplication. 

W is the learnable weight matrix of size DxF, where D 

is the number of input features, and F is the number of 

output features. 

An approach that combines an Artificial Neural 

Network (ANN) with a Back Propagation (BP) algorithm, 

further enhanced by a Genetic Algorithm (GA), to develop 

load shedding strategies for power systems. The GA helps 

train the BP Neural Networks (BPNN), aiming to enhance 

regression abilities, minimize errors, and reduce training 

duration [49]. 

3.3 Proposed Architecture  

The proposed architecture of the work is shown in Figure 

4. 

3.4 Proposed Algorithm  

Data Collection: 

 Let 𝑿𝒂𝒑𝒉𝒂𝒔𝒊𝒂  → the set of brain images from 

Aphasia-affected individuals. 

 Let 𝑿𝒉𝒆𝒂𝒍𝒕𝒉𝒚  → the set of brain images from 

healthy individuals. 

Data Preprocessing: 

4 RETROICOR: 

 Apply RETROICOR to remove physiological 

noise: 

 For each voxel 𝑖 in 𝑿𝒂𝒑𝒉𝒂𝒔𝒊𝒂 and 𝑿𝒉𝒆𝒂𝒍𝒕𝒉𝒚: 

 Perform regression to remove physiological 

signals: 

 𝑿𝒂𝒑𝒉𝒂𝒔𝒊𝒂_𝑟𝑒𝑡𝑟𝑜𝑖𝑐𝑜𝑟[𝑖]  = 𝑿𝒂𝒑𝒉𝒂𝒔𝒊𝒂[𝑖] −

∑𝑗𝛽𝑎𝑝ℎ𝑎𝑠𝑖𝑎[𝑗] ⋅ 𝑃𝑗 

 𝑿𝒉𝒆𝒂𝒍𝒕𝒉𝒚_𝑟𝑒𝑡𝑟𝑜𝑖𝑐𝑜𝑟[𝑖]  = 𝑿𝒉𝒆𝒂𝒍𝒕𝒉𝒚[𝑖] −

∑𝑗𝛽ℎ𝑒𝑎𝑙𝑡ℎ𝑦[𝑗] ⋅ 𝑃𝑗 

5 Spatial Smoothing: 

 Apply spatial smoothing with a Gaussian kernel: 

 𝑿𝒂𝒑𝒉𝒂𝒔𝒊𝒂_smooth  = 

Convolve(𝑿𝒂𝒑𝒉𝒂𝒔𝒊𝒂−𝑟𝑒𝑡𝑟𝑜𝑖𝑐𝑜𝑟,Gaussian kernel) 

 𝑿healthy_smooth  = 

Convolve(𝑿𝒉𝒆𝒂𝒍𝒕𝒉𝒚−𝑟𝑒𝑡𝑟𝑜𝑖𝑐𝑜𝑟,Gaussian kernel) 

Data Splitting: 

 Split the data into a training set 𝑿𝒕𝒓𝒂𝒊𝒏 and a testing 

set 𝑿𝐭𝐞𝐬𝐭  For both Aphasia-affected and healthy 

individuals. 

Model Training: 
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 Implement a Graph Convolutional Neural Network 

(GCN) model represented as a function 

GCN_Model. 

 The simplified mathematical representation of the 

GCN can be expressed as follows: 

 𝐻′ = 𝜎(𝐴 ⋅ 𝐻 ⋅ 𝑊) 

 Here, H represents the node features, which in this 

case are the image data. A is the adjacency matrix 

of the graph, where each brain image serves as a 

node, and W stands for the weight matrix. The 

activation function (σ), typically ReLU or Sigmoid, 

is applied to the result. This model is trained to 

capture features and relationships within the brain 

image data. 

Classification: 

 Apply the trained GCN model for classification:  

 𝒀𝒑𝒓𝒆𝒅 =  𝒇𝑮𝑪𝑵(𝑿𝐭𝐞𝐬𝐭 ). 

 Where  𝒀𝒑𝒓𝒆𝒅  → the predicted labels for the test 

data. 

Performance Evaluation: 

 Calculate accuracy:  

   𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
(𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑪𝒐𝒓𝒓𝒆𝒄𝒕 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔)

 (𝑻𝒐𝒕𝒂𝒍 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔)
. 

 Measure reaction time. 

Abbreviation used: 

 𝑿𝒂𝒑𝒉𝒂𝒔𝒊𝒂 : Set of brain images from Aphasia-

affected individuals. 

 𝑿𝒉𝒆𝒂𝒍𝒕𝒉𝒚 : Set of brain images from healthy 

individuals. 

 RETROICOR: A method for removing 

physiological noise from brain images. 

 𝑃𝑗: Physiological signals. 

 Convolve: The process of applying convolution, 

often used in image processing. 

 𝑿𝒂𝒑𝒉𝒂𝒔𝒊𝒂_𝑟𝑒𝑡𝑟𝑜𝑖𝑐𝑜𝑟[𝑖] : Brain images from Aphasia-

affected individuals after RETROICOR processing 

for voxel i. 

 𝑿𝒉𝒆𝒂𝒍𝒕𝒉𝒚_𝑟𝑒𝑡𝑟𝑜𝑖𝑐𝑜𝑟[𝑖] : Brain images from healthy 

individuals after RETROICOR processing for 

voxel i. 

 𝑿𝒂𝒑𝒉𝒂𝒔𝒊𝒂_smooth : Brain images from Aphasia-

affected individuals after spatial smoothing. 

 𝑿healthy_smooth : Brain images from healthy 

individuals after spatial smoothing. 

 𝑿𝒕𝒓𝒂𝒊𝒏: Training set of data. 

 𝑿𝐭𝐞𝐬𝐭 : Testing set of data. 

 𝐻′: Updated node features after applying the GCN 

model. 

 𝜎 : Activation function (commonly ReLU or 

Sigmoid). 

 𝒇𝑮𝑪𝑵: Function representing the GCN model. 

 𝒀𝒑𝒓𝒆𝒅 : Predicted labels for the test data. 

END 

4. RESULTS AND DISCUSSION  

This section gives a summary of the results. 

Data from each participant were analyzed using the 

proposed algorithm at the individual level, corrected with p 

< .05. Two tasks were used to elicit specific semantic 

processing for abstract and concrete words: JoW and JoS. 

Accuracy and reaction time were the primary objectives of 

the research's statistical analysis, which aimed to uncover 

and evaluate relevant data. Nonparametric statistical tests, 

including the Mann-Whitney U and Kruskal-Wallis tests, 

were used because of the research's small sample size. The 

paper included a control, concrete, and abstract condition. 

No statistically significant variations were found between 

AAPs and HPs concerning reaction time (p-values of 0.51 

for both tasks) or accuracy (p = 0.82 for the JoW task). 

However, when looking at the JoS task, a clear difference 

showed up: HPs showed more accuracy than AAPs (U = 

3.86, p = 0.05). This result indicates that compared to HPs, 

AAPs had a more difficult time with the JoS assignment. 

Separate analyses were run on AAP data and HP data to 

investigate the unique impacts of each circumstance. 

4.1 AAP 

Most significantly, all AAP had consistent activation 

patterns (Figure 5 (a) and (b)). First, the left inferior frontal 

gyrus was consistently the most active region in all AAP, 

irrespective of task or word type. The second finding was 

that all AAP showed bilateral activation, and this was true 

independent of task or word category. When compared to 

concrete nouns, abstract nouns elicited more neural activity 

in all AAP. 

 

 
(a) 

 
(b) 

Fig. 5. Activations for AAPs. Activation is shown at p < .05 for 

contrasts abstract > control (red) and concrete > control 

(green). Yellow = overlap between contrasts. 

4.2 HP 

Similar activation patterns could be seen in HPs, as well as 

in AAPs (Figure 6 (a) and (b)). To begin, left IFG 
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activation was found in every HP. This activation appears 

to be task- and word-mediated, in contrast to AAPs. 

Second, as compared to AAPs, HPs exhibited less overall 

brain activity, with language areas mostly located in the 

left hemisphere. However, there are noticeable outliers, 

such as bilateral activations that seem to be driven by task 

and word type. Third, task mediation seemed to be at work, 

as all HPs exhibited greater stimulation for abstract than 

tangible terms. 

 

 
(a) 

 
(b) 

Fig. 6. Activations for HPs. Activation is shown at p < .05 for 

contrasts abstract > control (red) and concrete > control 

(green). Yellow = overlap between contrasts. 

 

In summary, no statistically significant variations were 

found between AAPs and HPs concerning reaction time (p-

values of 0.51 for both tasks) or accuracy (p = 0.82 for the 

JoW task). However, when looking at the JoS task, a clear 

difference showed up: HPs showed more accuracy than 

AAPs (U = 3.86, p = 0.05). This result indicates that 

compared to HPs, AAPs had a more difficult time with the 

JoS task. 

 
Table 2. Values of performance evaluation parameters 

 Synonym Judgment Word Judgment 

 HP 

(N=10) 

AAP 

(N=10) 

HP 

(N=10) 

AAP 

(N=10) 

Abstract  

      Accuracy 

     Reaction 

time (in 

milliseconds) 

 

90.95% 

(6.84%) 

 1854.38 

(421.84)  

 

86.52% 

(6.50%) 

2120.27 

(137.50)  

 

98.99% 

(3.33%) 

1517.23 

(210.33) 

 

82.67% 

(16.15%) 

1507.07 

(358.85) 

Concrete  

      Accuracy 

     Reaction 

time (in 

milliseconds) 

 

99.65% 

(1.98%) 

1981.33 

(66.78) 

 

96.04% 

(3.54%) 

1878.23 

(43.54) 

 

95.89% 

(2.98%) 

1654.87 

(543.34) 

 

98.99% 

(1.02%) 

1432.98 

(66.22) 

Control 

      Accuracy 

     Reaction 

time (in 

milliseconds) 

 

98.90% 

(1.08%) 

1345.54 

(654.21) 

 

99.92% 

(0.23%) 

2114.43 

(34.87) 

 

96.45% 

(1.09%) 

1987.21 

(321.43) 

 

100% 

(0.00%) 

1642.56 

(352.36) 

Table 2 shows the obtained values of both parameters, 

which are accuracy and reaction time for all three 

conditions, i.e., abstract, concrete, and control for both 

types of individuals (AAP and HP). 

The graphs for accuracy and response time, which are 

shown below in Figures 7 and 8, respectively, correspond 

to the information presented in Table 2. 

 

 

Fig. 4. Accuracy. 

 

 

Fig. 5. Reaction Time. 

 

Table 2. Comparison of the proposed model with the previous 

state-of-the-art methods 

Author [Reference] Model used Accuracy 

Sharma et al., [34] RF+SVM 81% 

Rubio et al., [37] KNN 75% 

Proposed model GCN 100% 

4.3 Comparative analysis 

In this section the evaluation of the proposed model is 

performed based on the comparison with previously 
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developed state-of-the-art methods to prove the robustness 

of the proposed model. As seen in Table 3, the KNN model 

attains the lowest accuracy of 75% whereas the proposed 

GCN model achieves the highest accuracy of 100% which 

shows the superiority of the proposed model over other 

models. 

5. CONCLUSION AND  FUTURE WORK 

AAPs often express frustration at the discord between their 

thoughts and the words that come out of their mouths (what 

is called "inner speech" and "overt speech," respectively). 

The fundamental goal of the work is to classify the self- 

and social-interaction patterns of people with stroke-related 

aphasia by using a GCN-based model.  The GCN model 

uses fMRI scans from 20 people (both AAP and HP), with 

11 female and 9 male nodes, to look for enigmatic qualities 

and relationships to better understand how the brain 

processes language. The data is preprocessed 

comprehensively to remove physiological noise and 

enhance its quality, using techniques such as RETROICOR 

and spatial smoothing. By segmenting data and training 

models, researchers teach the GCN to make predictions 

based on patients' past performance on JoW and JoS. 

Metrics like accuracy and patient reaction time are used to 

evaluate the proposed model's performance. There can be 

an increased concreteness effect in AAPs since they show 

greater differences in brain activity between concrete and 

abstract terms compared to age-matched controls. 

Maximum accuracy for HPs is 99.65%, with a response 

time of 1981.33 milliseconds in the abstract condition, 

whereas maximum accuracy for AAPs is 100% in the 

control condition, with a reaction time of 1642.56 

milliseconds. Future research should focus on increasing 

the variety of participants, investigating the neurological 

bases of concreteness effects, and using the GCN model to 

create useful tools for assisting people with aphasia in their 

communication. 
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