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A B S T R A C T 

In this study, a method was proposed for an accurate prediction of the rooftop PV power 

output at a specific power unit located in Tây Ninh province, Vietnam, employing six 

machine learning models: Artificial Neural Network (ANN), Convolutional Neural 

Network (CNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), 

Bidirectional LSTM (Bi-LSTM), and Linear Regression (LR). Data preprocessing was 

conducted before partitioning the dataset into training and testing sets. The results 

indicated that the Bi-LSTM model exhibited superior performance compared to other 

models, achieving the lowest Mean Absolute Error (MAE) of 32.29, Root Mean Squared 

Error (RMSE) of 56.20, and normalized RMSE (n-RMSE) of 12.19%. GRU and LSTM 

also yielded favorable results, while ANN, CNN, and LR displayed slightly higher 

prediction errors. In conclusion, the Bi-LSTM model emerged as the most effective 

approach for precise rooftop solar power output forecasting, surpassing other models, 

including the conventional LR model. This method was realized and promising. 

 

1. INTRODUCTION 

The prediction of solar energy generation is critically 

important within the field of renewable energy, contributing 

significantly to efficient grid management, optimal energy 

utilization, and well-informed decision-making. A particular 

trend can be seen around the world, involving the heightened 

connection of concentrated solar power within the 

distribution network, which renders theaccurate prediction 

of this energy source's output increasingly imperative. In 

recent times, Tây Ninh province, Vietnam, has witnessed a 

surge in rooftop solar installations, adding substantial 

pressure to the distribution grid. Consequently, a reliable 

forecasting system is now essential for guaranteeing the 

operational effectiveness of the grid. A major challenge 

when forecasting rooftop solar energy lies in the availability 

and quality of historical weather data. To achieve precise 

predictions, a reliable historical weather model, 

encompassing solar radiation, temperature, and cloud cover, 

is of utmost importance. Collecting such data can be 

challenging, particularly in remote areas or regions with 

limited weather monitoring infrastructure. 

Another significant challenge arises from the variability 

in the characteristics of solar panels. Different types of solar 

panels exhibit varying efficiencies and output capacities, 

directly influencing energy production. Accurate 

information about installed solar panels, including their age, 

condition, and operational characteristics, is crucial for 

precise forecasting. However, this data is not always readily 

available or consistently updated. Geographical factors also 

play a decisive role in photovoltaicproduction. The location 

of solar panels, their tilt angle, the impact of shading from 

surrounding structures or vegetation, and the overall 

landscape can significantly affect energy generation. 

Integrating these specific location-based factors into 

forecasting models requires accurate geographical data, 

necessitating additional efforts for collection and 

integration. With these distinctive challenges, accurately 

forecasting the power output of rooftop solar installations is 

far from straightforward. Therefore, there is a need for 

research into various forecasting methods to identify 

effective solutions tailored to different types of data and 

regions. 

There have been various research studies focused on 

forecasting PV power capacity, which can be broadly 

classified into two categories: indirect prediction based on 

physical models and direct prediction based on historical 

data. The direct prediction method involves the development 

of a nonlinear forecasting model that utilizes historical 

meteorological information and PV generation figures to 

directly output the PV power capacity. On the other hand, 

indirect models follow a two-stage approach involving an 

initial prediction of solar irradiance, after which a physical 

model is utilized to connect irradiance levels to the PV 

system’s power capacity. However, this two-step prediction 
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and calculation process in indirect models introduces 

uncertainties and errors, making the forecasting of PV 

power capacity more complex and computationally 

expensive, while reducing its accuracy. 

Direct forecasting models for PV power capacity can be 

broadly categorized into two main groups: conventional 

statistical methods and contemporary intelligent techniques. 

Traditional methods, such as linear regression [1], AR-MA 

[2], and ARIMA models [3], have demonstrated their 

effectiveness in predicting PV power capacity by analyzing 

statistical relationships based on historical data. Yet, their 

strong reliance on linearity and need for stationary data 

restricts their utility for complex, nonlinear time series 

predictions. To overcome the challenges presented by the 

inhenrent nonlinearity of PV power output data, modern 

intelligent methods have emerged and garnered significant 

attention. These advanced techniques include artificial 

neural networks (ANN) [5], [6], conventional neural 

networks, support vector regression (SVR) [7], support 

vector machines (SVM) [8], and extreme learning machines 

(ELM) [9]. 

In recent times, the field of PV power capacity 

forecasting has witnessed a surge in popularity and progress 

due to deep learning technology. Deep learning methods, 

such as convolutional neural networks (CNN) [10], [11], 

[12], recurrent neural networks (RNN) [13], long short-term 

memory networks (LSTM) [14], [15], [16], bidirectional 

long short-term memory network (Bi-LSTM) [17], [18], 

[19], and gated recurrent units (GRU) [20], have been 

proposed and rigorously evaluated. The application of these 

deep learning approaches has shown considerable potential 

in substantially improving the precision of PV power 

capacity prediction. By adeptly capturing complex patterns 

and temporal dependencies in the data, these models stand 

as formidable tools to enhance the forecasting accuracy of 

PV power capacity. 

The use of deep learning in PV power capacity 

forecasting has demonstrated strong potential in enhancing 

predictive performance. These approaches are particularly 

effective due to their ability to model intricate data behaviors 

and temporal trends within historical PV datasets. By 

capturing such dynamics, they offer a robust solution for 

improving prediction reliability. As researchers continue to 

explore and refine these AI-based model approaches, we 

expect further breakthroughs in the domain of solar energy 

forecasting, ultimately contributing to the sustainable and 

efficient utilization of solar power resources. Hence, in this 

study, our aim is to evaluate the effectiveness of 

representative forecasting models, built on well-established 

techniques,for application in data-constrained 

environments, such as in Vietnam. 

The next parts of this study cover are organized as 

follows: Section 2 explains the techniques employed in the 

proposed approach. Section 3 presents and discusses the 

results. Lastly, Section 4 concludes the findings and 

suggests potential future work. 

2. METHODOLOGY 

2.1 Linear regression (LR) 

Linear Regression (LR) is a widely acclaimed and effective 

statistical technique utilized in the fields of forecasting and 

estimation. Its primary objective is to establish a straight-

line relationship between a dependent outcome and one or 

more independent predictors. This approach has gained 

traction due to its simple structure and ease of use. By 

uncovering patterns in data, LR offers useful insights across 

multiple domains such as economics, healthcare, social 

sciences, finance, and information systems. 

Fundamentally, LR fits a straight-line model to observed 

data by minimizing the gap between the predicted values and 

the actual observations. This linear replationshipis 

represented as: 

y = β0 + β1x1 + β2x2 +⋯+ βnxn (1) 

In this equation, y represents the dependent variable, the 

x terms (x1, x2, ..., xn) are the independent variables, and the 

β terms (β0, β1, β2, ..., βn) denote model coefficients. LR 

determines optimal coefficient values to produce the line 

best reflecting the fundamental connection between 

variables. 

Various methods are employed to estimate the 

coefficients in LR, with Ordinary Least Squares (OLS) and 

Maximum Likelihood Estimation (MLE) being the most 

common. The OLS method works by reducing the total 

squared error between actual outcomes and model 

predictions, essentially minimizing the residuals. MLE, 

conversely, selects coefficients maximizing the probability 

of observing the actual data under the LR model. The 

versatility of LR extends beyond simple linear relationships. 

It can handle more complex scenarios, such as Multiple 

Linear Regression, where multiple independent variables 

contribute to the prediction of the dependent variable. 

Additionally, Nonlinear Regression techniques allow LR to 

capture nonlinear relationships between the variables, 

further enhancing its applicability in diverse datasets. 

Moreover, LR is widely employed in Time Series 

Regression, enabling the forecasting of future values based 

on past observations. However, LR has multiple limitations, 

including sensitivity to influential data points and 

susceptibility to outliers, which may impact the model's 

forecasting abilities. 

2.2 Artificial Neural Network (ANNs) 

The Artificial Neural Network (ANN) is a widely 

recognized and powerful computational models inspired by 

how the human brain functions. They are extensively 

applied in machine learning tasks to address a wide range of 

complex and large-scale problems.. Within ANNs, data is 
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processed as it moves through a hierarchy of interconnected 

layers – initially from inputs, then through intermediate 

layers where computations occur, and finally to output 

nodes that produce predictions. Each node processes signals 

using weighted sums, followed by activation functions that 

introduce non-linearity. During learning, the system 

modifies internal parameters – commonly referred to as 

weights and offsets/biases – so that its predicted results 

increasingly align with actual observations. 

 

 

Fig. 1. Structure of ANN model. 

 

Thanks to their ability to manage large and varied 

datasets, ANNs are used in many domains including pattern 

recognition, language understanding, and financial 

analytics. Their flexibility and strong generalization ability 

make them effective for tackling difficult real-world 

problems. However, to achieve good performance, careful 

attention must be given to the model's architecture and 

training process, including hyperparameter tuning to avoid 

issues like overfitting. 

2.3 Convolutional Neural Network (CNN) 

Convolutional Neural Networks (CNNs) represent a tailored 

type of neural architecture designed primarily for handling 

visual information. These networks are particularly well-

suited for extracting meaningful patterns from images due to 

their ability to compress data while retaining essential 

features. CNNs are a standard in image recognition tasks 

across industries such as medicine, healthcare, automotive, 

and security. 

A Convolutional Neural Network (CNN) employs a 

structured sequence of operations to process visual data. 

Initially, it identifies essential patterns such as edges or 

textures using filters and activation functions—this stage is 

handled by what is known as the convolutional layer. The 

resulting feature maps are then simplified to reduce 

dimensionality and computational complexity by selecting 

the most informative parts; this function is performed by the 

pooling layer. Finally, the extracted and compressed 

information is passed through a densely connected system 

that combines features to make predictions—this is 

managed by the fully connected layer. 

CNN's architecture has proven highly effective in image 

recognition and classification tasks, particularly in 

applications related to healthcare, automotive technology, 

and energy due to its ability to condense data while retaining 

crucial information.. The CNN architecture is illustrated in 

Fig.2. 

2.4 Long short term memory network (LSTM) 

Long Short-Term Memory network (LSTM) is a specialized 

form of recurrent neural network (RNN) created to 

effectively retain and process information over extended 

sequences. Unlike the original RNN model that often face 

limitations like gradient vanishing when handling long-

range dependencies, LSTM utilize specialized memory cells 

to store and control information flow. 

Each memory unit in an LSTM network contains internal 

mechanisms that regulate information flow. One mechanism 

filters incoming data to determine how much should be 

written to memory – this is known as the input gate. Another 

identifies outdated or irrelevant content for removal, 

referred to as the forget gate. The final mechanism evaluates 

what stored data should be passed on to the next time step, 

which is handled by the output gate. The architecture of  a 

typical LSTM cell is illustrated in Fig. 3. 

 
Fig. 2. The architecture of LSTM. 

 

 

Fig. 3. The architecture of Bi-LSTM model. 

 

Mathematically, the operations within an LSTM unit can 

be described using the following equations: 

 𝑖𝑡 = 𝑡𝑎𝑛ℎ. (𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2) 

 𝑓𝑡 = 𝜎. (𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (3) 

 𝑜𝑡= 𝜎. (𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (4) 

 �̃�𝑡 = 𝑡𝑎𝑛ℎ. (𝑊𝐶 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (5) 

 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 +𝑖𝑡 ∗ �̃�𝑡 (6) 

 ℎ𝑡 = 𝑜𝑡. tanh(𝐶𝑡) (7) 
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2.5 Bidirectional long short term memory network 

(BiLSTM) 

The Bidirectional Long Short-Term Memory (Bi-LSTM) is  

another variation of the LSTM architecture, where one 

unidirectional LSTM layer is split into two bidirectional 

layers: Backward and Forward. Each layer shares the same 

structure. The input sequence is sent into the input layer, and 

the forward path processes the input from the beginning to 

the end of the sequence to retain outputs at each time step. 

The reverse sequence is calculated backward and forward 

along time t to capturethe output at each time step. Both the 

forward and reverse sequences are computed in parallel. 

Each sequence then undergoes its respective activation 

function. In the final step, outputs from the two directions 

are merged to generate the complete output. Fig. 4 provides 

a visual representation of the Bi-LSTM network. 

 

 

Fig. 4. The block diagram of CNN model. 

2.6 Gated recurrent unit (GRU) 

The Gated Recurrent Unit (GRU) is a streamlined variant of 

the recurrent neural network (RNN), recognized for its 

computational efficiency and ability to model dependencies 

over extended time steps. Similar to LSTM, GRU is 

engineered to mitigate the vanishing gradient issue, thereby 

enhancing the network's capacity to retain and learn 

information over long sequences. 

At the core of a GRU are two internal control 

mechanisms that manage information flow through the 

network. One mechanism is responsible for adjusting how 

much of the previous hidden state should be reset, allowing 

the unit to discard irrelevant past information – this is 

referred to as the reset gate. The other mechanism 

determines how much of the incoming input should be 

merged with the existing state to form the new hidden state, 

a process governed by the update gate. The operation of 

GRU was shown in Fig.5. 

Mathematically, the operations within a GRU unit can be 

described as follows: 

 𝑟𝑡 = 𝜎(𝑊𝑟 . 𝑥𝑡 + 𝑈𝑟ℎℎ−1 + 𝑏𝑟) (8) 

 𝑧𝑡 = 𝜎(𝑊𝑧. 𝑥𝑡 + 𝑈𝑧ℎℎ−1 + 𝑏𝑧) (9) 

 ℎ̃𝑡 = tanh[(𝑊ℎ. 𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ∗ ℎℎ−1)]   (10) 

 ℎ𝑡 = (1 − 𝑧𝑡)ℎℎ−1 + ℎ̃𝑡 ∗ 𝑧𝑡 (11) 

 
Fig. 5. The operation of GRU model. 

   

  The simplicity of the GRU architecture, with its reduced 

number of gates compared to LSTM, results in fewer 

parameters to optimize during training. This advantage 

makes the GRU well-suited for hyperparameter 

optimization in various applications.. 

2.7 Forecasting accuracy measures 

The assessment of forecast errors is fairly important in  

selecting the appropriate forecasting method. Three metrics 

was applied for this study, described as follows:  

- Mean Absolute Error (MAE): 

 𝑀𝐴𝐸 =
1

𝑛
∗ ∑|𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑| (12) 

- Root Mean Square Error (RMSE)  

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∗ ∑(𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑)

2
 (13) 

- Normalized Root Mean Square Error (n-RMSE)  

 n-𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

max(𝑦𝑡𝑟𝑢𝑒)−min(𝑦𝑡𝑟𝑢𝑒)
∗ 100% (14) 

where, 𝑦𝑡𝑟𝑢𝑒 denotes the measured data, and 𝑦𝑝𝑟𝑒𝑑 denotes 

the forecasting values. 

 

 
Fig. 6. The original dataset obtained from Inverter 157. 
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3. RESULTS AND DISCUSSION 

3.1 Data collection 

The data on rooftop solar energy production has been 

collected from the rooftop PV system which installed at Tây 

Ninh, Vietnam, utilizing the output signal from Inverter ID 

157 to gather power generation data. This dataset 

encompasses values recorded from July 2022 to December 

2022, with a time resolution of 30 minutes, expressed in 

kilowatts (kW). The raw, unprocessed dataset is illustrated 

in Fig. 6. 

 

  

a. Dataset before being processed. 

 

b. Dataset after being processed 

Fig. 7. Data preprocessing using IQR. 

3.2. Data pre-processing 

Data preprocessing has become extremely crucial as it 

ensures the accuracy of the forecasting model. Proper 

handling of missing values is of utmost importance to avoid 

potential biases in the forecasted results. Additionally, the 

identification and elimination of outliers, which may arise 

from measurement errors, extreme weather conditions, or 

system malfunctions, is fairly significant in effective data 

preprocessing. By carefully execute these preprocessing 

steps, the consistency and reliability of the dataset are 

guaranteed, ultimately enhancing forecasting performance 

and practical applications in solar energy management and 

utilization. During the data analysis, it was evident that there 

were numerous instances of missing values and significant 

fluctuations, leading to irregular variations in the data. To 

address this, the data was subjected to an algorithm that 

removed missing values and merged reliable data into 

continuous sequences. Subsequently, the cyclical nature of 

solar radiation was utilized to remove inaccurately merged 

segments. After the data sequences were merged, outlier 

data was processed using the IQR method. The 

preprocessing process using IQR was presented using Fig. 

7a and Fig. 7b. Fig. 7a depicts the initial dataset with red 

dotted lines indicating the upper and lower limits, while Fig. 

7b shows the dataset after the outliers have been removed. 

After the dataset was preprocessed, it was separated  into 

training set and the testing setwith a proportion of 80/20. 

These sets then became the inputs for the forecasting 

models. 

3.3 Models parameters and hyperparameters 

In the linear regression model, the parameters utilized here 

are the coefficients β0, β1,…, β8 metioned in Eq. 1. These 

coefficients are automatically calculated based on the input 

data. Notably, there are no hyperparameters associated with 

the linear regression model. 

Table 1 presents the hyperparameters for four models: 

ANN, Bi-LSTM, LSTM, and GRU. The ANN model includes 

a dense layer with 32 units. In the LSTM architecture, a 

dense layer with 16 units is followed by two stacked LSTM 

layers containing 100 and 50 units respectively. The Bi-

LSTM and GRU models were configured using the same 

hyperparameters: a 16-unit dense layer and two LSTM layers, 

each having 50 units. All models were trained for 30 epochs 

with a lookback period of 5. 

 

Table 1. Hyperparameters for four forecasting models 

Model 
Dense 

layer 

LSTM 

layer 1 

LSTM 

layer2 
Epoch 

Lookbac

k 

ANN 32 X X 30 5 

Bi-

LSTM 
16 50 50 30 5 

LSTM 32 100 50 30 5 

GRU 16 50 50 30 5 

3.4 Forecasting results 

In this research, the predictive performance of various 

models was systematically compared by employing them to 

forecast the succeeding 30-minute intervals within the Tây 
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Ninh dataset. The forecasting methodology utilized in the 

experiment pertains to the one-step ahead prediction 

process. The outcomes, delineated in Fig. 8 and Fig. 9, 

respectively portraying a specific day within the test set and 

the entire test dataset, accentuated the superior accuracy 

exhibited by deep learning models in closely approximating 

actual data. Table 2 illustrates the error calculated in MAE, 

RMSE and n-RMSE for further analysis. 
 

 

 

Fig. 8. The forecasted results for a random day in the test set 

 

 

 

Fig. 9. The forecasted results for the entire test set. 
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Among the models examined, the LR model exhibited 

relatively high errors, with MAE, RMSE, and n-RMSE 

values of 34.04, 63.88, and 13.86%, respectively. In 

contrast, the ANN and CNN models demonstrated improved 

performance with MAE values of 32.04 and 32.7, RMSE 

values of 63.42 and 63.44, and n-RMSE values of 13.76% 

for both.The GRU model, while slightly less effective than 

ANN and CNN, still displayed respectable performance 

with MAE, RMSE, and n-RMSE values of 33.75, 63.36, and 

13.75%, respectively. The LSTM model showcased good 

accuracy, outperforming LR, GRU, ANN, and CNN, with 

MAE, RMSE, and n-RMSE values of 30.09, 60.61, and 

13.15%. However, the Bi-LSTM model emerged as the 

standout performer, achieving the lowest error metrics. It 

demonstrated superior accuracy with an MAE of 32.29, 

RMSE of 56.20, and n-RMSE of 12.19%. In conclusion, for 

precise forecasting of rooftop solar power, the Bi-LSTM 

model is deemed the most favorable choice among all the 

experimented models. 

 

Table 2. Accuracy results for comparative models across 

inverter 157 

Forecasting 

Model 

MAE  

(kW) 

RMSE  

(kW) 

n-RMSE 

(%) 

LR 34.04 63.88 13.86 

ANN 32.04 63.42 13.76 

CNN 32.7 63.44 13.76 

GRU 33.75 63.36 13.75 

LSTM 30.09 60.61 13.15 

Bi-LSTM 32.29 56.20 12.19 

4. CONCLUSIONS 

In our research, both deep learning and statistical models 

were used to forecast rooftop solar power generation on 

residential buildings in Tây Ninh province. A rigorous data 

preprocessing procedure, employing the IQR method, was 

employed, followed by splitting the dataset into training and 

testing sets for input into the LR, ANN, CNN, GRU, LSTM, 

and Bi-LSTM models. The analysis results demonstrated the 

remarkable superiority of the Bi-LSTM model compared to 

others, with the lowest MAE, RMSE, and n-RMSE values 

of 32.29, 56.2, and 12.19%, respectively. On the contrary, 

the statistical LR model exhibited the poorest performance, 

yielding MAE, RMSE, and n-RMSE values of 34.04, 63.88, 

and 13.86%, respectively. The remaining models showed 

relatively similar error rates, highlighting the application of 

foracting methods using deep learning models in 

comparision with traditional statistical ways.. Among the 

compared models, Bi-LSTM showcased the best forecasting 

ability. These findings emphasize the significance of 

accurate solar power generation predictions and underscore 

the effectiveness of deep learning models over traditional 

statistical approaches. 

REFERENCES 

[1] G. Dudek, “Pattern-based local linear regression models for 

short-term load forecasting,” Electr. Power Syst. Res., vol. 

130, pp. 139–147, Jan. 2016, doi: 10.1016/j.epsr. 

2015.09.001. 

[2] K. Benmouiza and A. Cheknane, “Small-scale solar radiation 

forecasting using ARMA and nonlinear autoregressive 

neural network models,” Theor. Appl. Climatol., vol. 124, no. 

3–4, pp. 945–958, May 2016, doi: 10.1007/s00704-015-

1469-z. 

[3] A. Shadab, S. Ahmad, and S. Said, “Spatial forecasting of 

solar radiation using ARIMA model,” Remote Sens. Appl. 

Soc. Environ., vol. 20, p. 100427, Nov. 2020, doi: 

10.1016/j.rsase.2020.100427. 

[4] A. R. Pazikadin, D. Rifai, K. Ali, M. Z. Malik, A. N. Abdalla, 

and M. A. Faraj, “Solar irradiance measurement 

instrumentation and power solar generation forecasting 

based on Artificial Neural Networks (ANN): A review of five 

years research trend,” Sci. Total Environ., vol. 715, p. 

136848, May 2020, doi: 10.1016/j.scitotenv.2020.136848. 

[5] B. Sivaneasan, C. Y. Yu, and K. P. Goh, “Solar Forecasting 

using ANN with Fuzzy Logic Pre-processing,” Energy 

Procedia, vol. 143, pp. 727–732, Dec. 2017, doi: 

10.1016/j.egypro.2017.12.753. 

[6] Y. Chen et al., “Short-term electrical load forecasting using 

the Support Vector Regression (SVR) model to calculate the 

demand response baseline for office buildings,” Appl. 

Energy, vol. 195, pp. 659–670, Jun. 2017, doi: 

10.1016/j.apenergy.2017.03.034. 

[7] W. VanDeventer et al., “Short-term PV power forecasting 

using hybrid GASVM technique,” Renew. Energy, vol. 140, 

pp. 367–379, Sep. 2019, doi: 10.1016/j.renene.2019.02.087. 

[8] N. Krishnan, K. R. Kumar, and C. S. Inda, “How solar 

radiation forecasting impacts the utilization of solar energy: 

A critical review,” J. Clean. Prod., vol. 388, p. 135860, Feb. 

2023, doi: 10.1016/j.jclepro.2023.135860. 

[9] Mustaqeem, M. Ishaq, and S. Kwon, “A CNN-Assisted deep 

echo state network using multiple Time-Scale dynamic 

learning reservoirs for generating Short-Term solar energy 

forecasting,” Sustain. Energy Technol. Assess., vol. 52, p. 

102275, Aug. 2022, doi: 10.1016/j.seta.2022.102275. 

[10] T. H. T. Nguyen, N. V. Pham, V. N. N. Nguyen, H. M. Pham, 

and Q. B. Phan, “Forecasting Wind Speed Using A Hybrid 

Model Of Convolutional Neural Network And Long-Short 

Term Memory With Boruta Algorithm-Based Feature 

Selection,” J. Appl. Sci. Eng., vol. 26, no. 8, pp. 1053–1060, 

2022, doi: 10.6180/jase.202308_26(8).0001. 

[11] N. T. Hoai Thu, P. N. Van, P. Q. Bao, N. V. Nhat Nam, P. H. 

Minh, and T. N. Quang, “Short-term Forecasting of Solar 

Radiation Using a Hybrid Model of CNN-LSTM Integrated 

with EEMD,” in 2022 6th International Conference on 

Green Technology and Sustainable Development (GTSD), 

Jul. 2022, pp. 854–859. doi: 10.1109/GTSD54989. 

2022.9988761. 

[12] F. Wang, Z. Xuan, Z. Zhen, K. Li, T. Wang, and M. Shi, “A 

day-ahead PV power forecasting method based on LSTM-

RNN model and time correlation modification under partial 



T. Nguyen Thi Hoai, N. Nguyen Vu Nhat, and D. Nguyen Huu / GMSARN International Journal 20 (2026) 136-143 143 

 

 

daily pattern prediction framework,” Energy Convers. 

Manag., vol. 212, p. 112766, May 2020, doi: 10.1016/ 

j.enconman.2020.112766. 

[13] L. D. Bui, N. Q. Nguyen, B. V. Doan, and E. R. Sanseverino, 

“Forecasting energy output of a solar power plant in 

curtailment condition based on LSTM using P/GHI 

coefficient and validation in training process, a case study in 

Vietnam,” Electr. Power Syst. Res., vol. 213, p. 108706, Dec. 

2022, doi: 10.1016/j.epsr.2022.108706. 

[14] N. T. H. Thu, P. Q. Bao, and P. N. Van, “A Hybrid Model of 

Decomposition, Extended Kalman Filter and Autoregressive 

- Long Short - Term Memory Network for Hourly Day 

Ahead Wind Speed Forecasting,” J. Appl. Sci. Eng., vol. 27, 

no. 9, pp. 3133–3141, 2023, doi: 10.6180/jase.202409_ 

27(9).0004. 

[15] N. N. V. Nhat, D. N. Huu, and T. N. T. Hoai, “Evaluating the 

EEMD-LSTM model for short-term forecasting of industrial 

power load: A case study in Vietnam,” Int. J. Renew. Energy 

Dev., vol. 12, no. 5, pp. 881–890, Sep. 2023, doi: 

10.14710/ijred.2023.55078. 

[16] W. Lin, B. Zhang, H. Li, and R. Lu, “Multi-step prediction 

of photovoltaic power based on two-stage decomposition and 

BILSTM,” Neurocomputing, vol. 504, pp. 56–67, Sep. 2022, 

doi: 10.1016/j.neucom.2022.06.117. 

[17] N. T. Hoai Thu, P. Quoc Bao, and N. V. Nhat Nam, “Multiple 

Step Ahead Forecasting of Rooftop Solar Power Based on a 

Novel Hybrid Model of CEEMDAN - Bidirectional LSTM 

Network with Structure Optimized by PSO Method,” in 2022 

11th International Conference on Control, Automation and 

Information Sciences (ICCAIS), Nov. 2022, pp. 522–528. 

doi: 10.1109/ICCAIS56082.2022.9990323. 

[18] T. H. T. Nguyen and Q. B. Phan, “Hourly day ahead wind 

speed forecasting based on a hybrid model of EEMD, CNN-

Bi-LSTM embedded with GA optimization,” Energy Rep., 

vol. 8, pp. 53–60, Nov. 2022, doi: 10.1016/j.egyr. 

2022.05.110. 

[19] Y. Dai, Y. Wang, M. Leng, X. Yang, and Q. Zhou, 

“LOWESS smoothing and Random Forest based GRU 

model: A short-term photovoltaic power generation 

forecasting method,” Energy, vol. 256, p. 124661, Oct. 2022, 

doi: 10.1016/j.energy.2022.124661. 

 


