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A B S T R A C T 

The issue of the retailer's selling price based on three time-of-use (TOU) tariffs, fixed 

pricing (FP), and real-time pricing (RTP) in a microgrid with the presence of wind 

turbines, photovoltaics, distributed generation (DG), a hydrogen storage system (HSS), 

fuel cells, and plug-in electric vehicles (PEV), taking demand response program reviews 

into consideration, is discussed in this paper. The profit function is modeled based on the 

retailer's uncertainty using two models: deterministic (algebraic) optimization and multi-

objective periodic optimization. This paper presents a Mixed Integer Linear Programming 

(MILP) planning model for periodic multi-objective optimization that can be addressed 

using the Pareto approach or weighted summation. To choose a suitable outcome from 

Pareto solutions, the fuzzy method is used. The CPLEX solver from the GAMS 

optimization package was used for this. The game theory technique is used to compare 

the outcomes of two deterministic and interval portions of a Mixed Integer Non-Linear 

Programming (MINLP) model that combines CPLEX and DICOPT solvers in the GAMS 

package to solve the model. 

 

1. INTRODUCTION 

Referencing [1] from the retailer's viewpoint, the strategy 

encourages customers to shift their purchases from busy 

periods to less busy times. This model's main objective is to 

offer a framework for merchants that, by participating in the 

pool market and bilateral agreements, win the happiness of 

customers and cause them to alter their desires. The most 

crucial objective is to offer a template for merchants that 

concur with the buyer throughout the pool market and 

bilateral contracts and want to modify their wishes. 

Researchers [2] have examined three different basic 

infrastructures that can be used to charge electric vehicles. 

The remaining two infrastructures were more expensive and 

more powerful. In addition, three specific intelligent 

charging approaches as well as the impact of these 

approaches on the realization cost and load index of the 

power system are examined separately. A stochastic 

programming method has been proposed by another group 

of researchers [3] for optimal programming of connected 

MG and RES with connected electric vehicles (PEV). They 

have utilized a variety of sources, including battery storage 

systems, microturbines, wind turbines, fuel cells, and solar 

photovoltaic systems. The MG was regarded as being 

powered by an upstream system when it was linked to the 

grid. The suggested stochastic optimization issue was 

resolved using an appropriate optimization technique, such 

as the modified harmonic search algorithm (MHS). In Ref. 

[4], The economic advantages of various charging 

techniques have been assessed by academics in light of 

various subsidy programs. They examine the pattern of 

shifting subsidy policies in the first stage and provide an 

overview of these policies for EVCI (Electric Vehicle 

Charging Infrastructure). Then, two various EVCI 

fabrication business models are assessed. Lastly, a case 

study comparing the advantages of three distinct charging 

methods based on cost-benefit analysis and EVCI subsidy 

schemes was conducted. Researchers looked at hybrid-

electric cars connected to supply and demand schemes 

related to the grid in Ref. [5]. The charge was then scheduled 

and optimized using the ICA (Imperial Competitive 

Algorithm) and PSO (Particle Swarm Optimization) 

algorithms. In Ref. [6], it is said that this will both lower the 

cost of charging EVs and stop the distribution transformer 

from operating normally. Researchers have proposed an 

optimal charging strategy that is consistent with the 

Dynamic Spike Pricing (DSP) policy. In the first stage, they 

created electric car load models in four different types. 

Second, they created a new DSP strategy for transmitting 

high loads during rush hour based on the TOU approach. 

They have developed the best charging model to safeguard 

EV owners from different financial losses and avoid 

transformer overload in order to lower the cost of electric 

car charging. The model was solved using a genetic 

algorithm (GA) in the last stage. In summary, this study 
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proposes an ideal charging approach and shows how it 

affects the correction peak and lowers charging costs. In Ref. 

[7], an island microgrid powered by EVs is suggested as a 

means of facilitating energy storage and supporting voltage 

management. In addition, they have proposed a control 

method for power distribution between each EV, and this 

procedure is simulated on a microgrid. The proposed 

controller can improve the stability along with the reliability 

of the microgrid. In reference [8], a model for studying the 

behavior of power market players is presented in a 

multilayered manner. 

Reference [9] looks at how demand-side response 

systems are used and how consumer surveys affect 

consumers' ability to be flexible with their purchases. The 

majority of this study is conducted on the market and is done 

in real-time. 

The distribution of ideal energy procurement plans from 

dispersed microgrid production sources and customer 

involvement in demand-side response initiatives to cut 

operational costs are provided in reference [10]. According 

to reference [11], the logical connection connecting energy 

production and consumption in the microgrid and energy 

exchange via the real-time market and the day-ahead market 

is crucial for optimizing retailer profitability. 

 The proposed strategy is based on consumer 

participation in retailer-monitored demand response 

programs and the availability of connected electric vehicles 

[11-12]. In reference [13], interactions in the energy market 

are discussed, and a best practice for selling in the 

marketplace using a pool and bilateral agreements to meet 

requirements is provided. Uses a robust and optimal 

approach to retailers' decisions in order to take into account 

uncertainties [14]. Examines retailer risk management 

issues in [15]. In reference [16], customer compensation 

methods and in reference [17] value and reliability 

indicators are examined by defining tariffs and the 

relationship between customers and retailers.  A stochastic 

programming technique is employed in reference [18] to 

identify the best retail strategy, apply it in real-time, and 

maximize profit while lowering the risk to the retail 

organization. To ascertain the retailer's ideal approach using 

a stochastic reference planning framework in which the 

retailer minimizes risk by setting prices and offering power, 

see reference (19). Demand is influenced by a number of 

variables, including the time of day, the kind of consumers, 

and the weather, all of which may be forecasted utilizing 

actuarial methods or artificial intelligence algorithms like 

neural networks, fuzzy logic, and regression [21]. In 

accordance with the structure presented in the reference 

[22], the purchase cost of electricity for subscribers is 

determined using consumption-time charges. This 

framework is based on the medium-term random planning 

market. In the reference [22], retailers employ a variety of 

sources to satisfy their demand while being protected from 

the inherent hazards of the electrical marketplace. The 

reference [23] looks at how energy is obtained from various 

sources to increase retailer profitability. Reference [24] 

provides a structure for selecting how to obtain power using 

the subsequent agreements, with the aim of reducing the 

expense of supply to the local distribution company (LDC) 

by considering price limits: A fictitious LDC in the city of 

Florida is used in this reference. In the proposed model of 

this paper, which is solved as the MIP model in GAMS 

software, the electricity retailer's profit function, which is 

uncertain, is formulated based on a definite two-objective 

structure in addition to the average profit and its changes. 

According to this study, real-time pricing (RTP) provides 

higher average profits than constant prices and TOU (Time 

of Use Pricing). The decision for buying energy from POOL 

market, bilateral contract, renewable units, as well as the 

amount of customer demand met by the retailer and other 

related issues affecting the retailer’s profit based on three 

types of RTP, TOU, and fixed are discussed in this study. 

The Innovations of the paper are as follows: 

1) It is suggested to use the interval optimization 

approach to simulate price uncertainty in the power market. 

2) The function of profit based on the custom of 

uncertainty of sellers with the model of the target medium 

with the average profit and its changes They become a 

contradictory objective function. 

The following suggestions that can be used to improve 

the article and to have more research in this field are as 

follows. 

Use of other sources of new energy and other 

technologies of energy storage systems by retailers 

Sell electricity to increase retailer profits 

- Use of energy storage systems by electricity retailers to 

increase retailer profits 

- Use other time-based burden response programs or 

incentives to increase retail profit Sale 

- Use of other smart grid technologies to increase the 

profit of electricity retailers 

Multi-level problem modeling with other market players 

in mind 

Considering common interests as a constraint on the 

proposed optimization problem 

2. INPUT DATA OF THE PROBLEM 

The interval market price includes the highest price, the 

desired price, and the lowest price, which are shown in 

Figure (1). Figure (2) also shows the basic demand profile 

of the consumer. Lastly, the correlation between consumer 

demand and selling price is depicted in Figure (3). Retail 

price besides the demand supplied via retailer are 

determined according to this curve. In this curve, 100 stages 

are considered as step-price curve for all consumer. 
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Fig. 1. Upper limit, lower limit, and projected price. 

 

 

 

Fig. 2. Consumer predicted demand curve. 

 

 

Fig. 3. Price-power curve. 
 

Besides, Table 1 provides three levels of demand, 

including peak, medium besides low demand for demand of 

one day. Table 2 proposes data of bilateral contract. In Table 

3 data of DG units shown. the predicted of radiation for one 

day and temperature like the daily wind speed. the 

parameters of the wind turbine and photovoltaic (PV) 

system depicted in table (5). Lastly, HSS and parameters of 

PEV shown in table (6) and (7) respectively. 
 

Table 1. Grouping daily demand based on hours of day 

Load Level Hours 

 (L) low load  1،2 ،3،4 ،5،6 ،7 ،8 

 (M )medium load 9،10،11،12،13،14،15 ،16 

 (P) peak load  17 ،18 ،19 ،20 ،21 ،22 ،23،24 

 
Table 2. Parameters of bilateral contract 

Contract 

No. 
Level of load 

Maximum 

(kilowatt) 

Minimum 

(kilowatt) 

Price 

(dollar/kilow

att-hour) 

One 
low, medium 

and peak 
50 15 0.04 

Two 
low, medium 

and peak 
40 10 0.043 

Three 
low, medium 

and peak 
50 15 0.05 

Four 
low, medium 

and peak 
40 10 0.048 

Five 
low, medium 

and peak 
70 25 0.032 

Six 
low, medium 

and peak 
60 20 0.041 

Seven 
low, medium 

and peak 
70 25 0.051 

eighth 
low, medium 

and peak 
60 20 0.048 

9 
low, medium 

and peak 
70 25 0.043 

10 
low, medium 

and peak 
60 20 0.058 

11 
low, medium 

and peak 
70 25 0.052 

12 
low, medium 

and peak 
60 20 0.057 

 
Table 3. Data for distributed generation 

DG parameters 
First 

DG 

Second 

DG 

Third 

DG 
Units 

Max for output 

power 
150 180 200 kilowatt 

Min for output 

power 
0 0 0 kilowatt 

𝑆1
𝐷𝐺  0.03 0.037 0.044 $/ kilowatt 

𝑆2
𝐷𝐺  0.036 0.04 0.049 $/ kilowatt 

𝑆3
𝐷𝐺  0.039 0.045 0.054 $/ kilowatt 

𝑃1
𝑀𝐴𝑋 60 80 100 kilowatt 

𝑃2
𝑀𝐴𝑋 110 120 150 kilowatt 

𝑃3
𝑀𝐴𝑋 150 180 200 kilowatt 

𝑀𝑈𝑇𝑗 2 2 2 hour 

𝑀𝐷𝑇𝑗 2 2 2 hour 

𝑅𝑗
𝑢𝑝

 80 90 100 kilowatt /h 

𝑅𝑗
𝑑𝑜𝑤𝑛 80 90 100 kilowatt /h 
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Table 4. Predicted daily wind speed, temperature, and 

intensity of daily radiation for a day 

Time 

(h) 

Wind speed 

(m/s) 

Temperature 

(℃) 

Radiation 

intensity (W/m2) 

1 10.5 24.7 0 

2 13.5 24.5 0 

3 14.9 24.3 0 

4 15.6 24.4 0 

5 19.5 24.5 93.5 

6 20.6 26.5 219 

7 14.4 27.5 467.5 

8 14.1 28 637.5 

9 11.3 28.5 780 

10 9.7 28.8 916 

11 7 29 1100 

12 5.9 29.7 1033 

13 8.9 29.8 850 

14 9.5 30 680 

15 10.4 29.8 595 

16 8.8 29.5 255 

17 7.1 29 212.5 

18 8.3 27.7 153 

19 9.9 26.5 63 

20 7.5 24.8 0 

21 8.8 25 0 

22 9.8 24.8 0 

23 9.2 24.6 0 

24 8.4 24.8 0 

 

Table 5. Parameters of Wind turbine and PV system 

Parameters of Wind turbine Parameters of PV system 

Paramet

ers of 

each one 

Amou

nt 

Paramet

ers 

Units 

Paramet

ers of 

each 

one 

Amou

nt 

Paramet

ers 

Units 

𝑃𝑟 1200 kW 𝑃𝑀𝑎𝑥,0
𝑀  700 kW 

𝑉𝑐𝑖 2 m/s 𝐺𝑎0 1000 2W/m 

𝑉𝑟 14 m/s 𝑇𝑀,𝑂 25 ℃ 

𝑉𝑐𝑜 25 m/s NOCT 44 ℃ 

 

Table 6. Hydrogen storage system parameters 

Parameters Amount Units 

𝑃𝑚𝑎𝑥
𝐻2 ،𝑃𝑚𝑖𝑛

𝐻2  2 ،13.8 Bar 

𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝐻2 ،𝑃𝑡0

𝐻2 10  ،10 Bar 

𝑃𝑚𝑎𝑥
𝐸𝐿 ،𝑃𝑚𝑖𝑛

𝐸𝐿  1.5 ،6.2 kW 

𝑁𝐻2,𝑚𝑎𝑥
𝐸𝐿  1.05 /h3Nm 

𝜂𝐸𝐿 55  % 

𝑁𝐸𝐿 300 No. 

𝐿𝐻𝑉𝐻2 240 MJ/kmol 

𝑃𝑚𝑎𝑥
𝐹𝐶 ،𝑃𝑚𝑖𝑛

𝐹𝐶  0.5 ،6 kW 

𝑁𝐻2,𝑚𝑎𝑥
𝐹𝐶  3.9 /h3Nm 

𝜂𝐹𝐶  45  % 

𝑁𝐹𝐶 300 No. 

𝕽 8.314 J/kmol 

𝑇𝐻2 313 K 

𝑉𝐻2 4 3m 

 

Table 7. Parameters of plug-in electric vehicles 

Parameters Amount Units Parameters Amount Units 

𝑃𝑐𝑣
𝑀𝑖𝑛 0 kW 𝜂𝑣

𝑐  90  % 

𝑃𝑐𝑣
𝑀𝑎𝑥 25 kW 𝜂𝑣

𝑑 90  % 

𝑃𝑑𝑣
𝑀𝑖𝑛 0 kW 𝑆𝑜𝐶𝑣

𝑀𝑖𝑛 50 kWh 

𝑃𝑑𝑣
𝑀𝑎𝑥 25 kW 𝑆𝑜𝐶𝑣

𝑀𝑎𝑥 1 kWh 

Ω𝑣 0.1667 kW/km 𝑁𝑣 30 No. 

3. PROBLEM FORMULATION 

For the definite optimization issue, an example of an 

optimization model may be given. It is crucial to remember 

that the optimization model is stated using the following 

formulae with equal and unequal restrictions on the 

appearance of an ambiguous parameter in the standard form 

structure: 

𝑀𝑖𝑛 𝑓(𝑍, 𝑈, 𝜌) 

𝑠. 𝑡. 

(1) 

𝑔(𝑍, 𝑈, 𝜌) = 0 (2) 

ℎ(𝑍, 𝑈, 𝜌) ≤ 0 (3) 

The interval optimization of the upper and lower bounds 

using the formula 𝜌𝜖𝑈 = [𝑈𝑀𝑖𝑛 , 𝑈𝑀𝑎𝑥 . In other terms, the 

ambiguous parameter ρ is referred to as a distance. With this 

approach, the goal function's upper and lower limits are 

determined because ρ is taken into account as (𝑓(𝑧) ∈
[𝑓−(𝑍), 𝑓+(𝑍)]) rather than the uncertainty parameter. The 

primary goal function's upper and lower limits are computed 

using equations 4 and 5, respectively. 

𝑓+(𝑍) = max
𝜌⊆𝑈

𝑓(𝑍) (4) 

𝑓−(𝑍) = min
𝜌⊆𝑈

𝑓(𝑍) (5) 

The interval parameter, which shifts into the form of a 

deterministic multi-objective model with an average amount 

of profit, causes the final objective function to have 

uncertainty and distance. It takes the shape of the opposite 

objective function of the average profit, whose change in 

profit should be minimized and whose maximum value 

should be sought. The model being suggested Equations 6–
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8, which depend on the interval optimization strategy, state 

that the profit change is decreased till the store is resilient to 

the unpredictability of the market price. 

𝑀𝑖𝑛 𝑓(𝑧) = min (−𝑓𝑀(𝑍), 𝑓𝑊(𝑍)) (6) 

𝑓𝑀(𝑍) =
𝑓+(𝑍) + 𝑓−(𝑍)

2
 (7) 

𝑓𝑊(𝑍) =
𝑓+(𝑍) − 𝑓−(𝑍)

2
 (8) 

It should be noted that (𝑍)𝑓𝑊 and (𝑍)𝑓𝑀 are the average 

profit and changes in the profit of the electricity retailer, 

respectively. 

3.1 Fuzzy method and weighted sum 

The Pareto solution approach, the weighted method, the 

constraint method, or the multi-objective and distance-based 

objective function can all be used to solve it. The weighted 

sum approach is employed to resolve the suggested model. 

Finally, a suitable outcome is chosen from all Pareto 

solutions using the fuzzy technique. The calculated total 

technique employs a number of weighting coefficients 

depending on the significance of each objective function. As 

a consequence, the ultimate goal function for optimizing the 

multi-objective model using the calculated total method may 

be stated as follows: 

𝑀𝑖𝑛𝑂𝐹 = 𝑤1 × 𝑓
𝑀(𝑍)𝑝𝑢 + 𝑤2 × 𝑓

𝑊(𝑍)𝑝𝑢 

𝑠. 𝑡. 

  {
𝑤1 + 𝑤2 = 1

     𝐴𝑙𝑙 𝑒𝑞𝑢𝑎𝑙 &𝑖𝑛𝑒𝑞𝑢𝑎𝑙  𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠
 

(9) 

The two expressions𝑓𝑊(𝑍)𝑝𝑢𝑏𝑒𝑠𝑖𝑑𝑒𝑠 𝑓
𝑀(𝑍)𝑝𝑢show the 

average value of profit and the changes of profit in 

normalized form which are calculated based on the fuzzy 

method. 

𝑓𝑀(𝑍)𝑝𝑢 =
𝑓𝑀(𝑍) − 𝑓𝑚𝑖𝑛

𝑀 (𝑍)

𝑓𝑚𝑎𝑥
𝑀 (𝑍) − 𝑓𝑚𝑖𝑛

𝑀 (𝑍)
 (10) 

𝑓𝑊(𝑍)𝑝𝑢 =
𝑓𝑚𝑎𝑥
𝑊 (𝑍) − 𝑓𝑊(𝑍)

𝑓𝑚𝑎𝑥
𝑊 (𝑍) − 𝑓𝑚𝑖𝑛

𝑊 (𝑍)
 (11) 

The minimum and maximum average profit and profit 

changes are first determined using the fuzzy logic weighted 

summation approach. The profit deviations and the 

normalized function of the average profit are then multiplied 

by various weighted factors, and the result is added as a 

distinct objective function. The next step is to change w1 

and w2 between zero and one so that w1 + w2 = 1 to achieve 

Pareto solutions of the proposed function reduction (9). 

The average profit amounts and profit variations for each 

repetition are computed and normalized in equations (10) 

and (11). In equation (12), the lowest normalized value is 

chosen in each iteration, and then, in accordance with 

equation (13), the highest value chosen between the minimal 

values is placed on the right answer for a number of goals of 

the proposed issue. 

𝑓𝑛 = minimum(𝑓1
𝑛, … , 𝑓𝑁

𝑛) ;  ∀ 𝑛
= 1,… , 𝑁𝑝 

(12) 

𝑓𝑚𝑎𝑥 = maximum(𝑓1, … , 𝑓𝑁𝑝) (13) 

The income less the cost, which must be taken out of 

equation (14) in the power market, is what makes up the 

retailer's gain in the smart network. The gain from the supply 

is the same as the customer demand times the selling price. 

Three tariffs—fixed pricing, TOU pricing, and real-time 

pricing—determine the sales price. 

𝑀𝑎𝑥𝑓(𝑥) =∑∑𝑆𝑃(𝑙, 𝑡)𝐷(𝑙, 𝑡)

𝐿

𝑙=1

𝑇

𝑡=1

−∑𝜆𝑡𝑃𝑡
𝑃

𝑇

𝑡=1

−∑∑∑𝑆𝑗,ℎ
𝐷𝐺𝑃𝑗,ℎ,𝑡

𝐷𝐺

𝐻

ℎ=1

𝐽

𝑗=1

𝑇

𝑡=1

−∑∑𝜆𝑏,𝑡𝑃𝑏,𝑡

𝑇

𝑡=1

𝐵

𝑏

 

(14) 

The equilibrium power limits suggested by (15) should 

not prevent the retail profit function from being maximized. 

∑𝑃𝑏,𝑡

𝐵

𝑏=1

+ ∑∑𝑃𝑗,ℎ,𝑡
𝐷𝐺 + 𝑃𝑡

𝑃 + 𝑃𝑡
𝑤𝑖𝑛𝑑 + 𝑃𝑡

𝑃𝑉

𝐻

ℎ=1

𝐽

𝑗=1

+ 𝑃𝑡
𝐹𝐶 +∑𝑃𝑑𝑡,𝑣

𝑉

𝑣=1

=∑𝐷(𝑙, 𝑡)

𝐿

𝑙=1

+ 𝑃𝑡
𝐸𝐿

+∑𝑃𝑐𝑡,𝑣

𝑉

𝑣=1

 

(15) 

Equation (16) displays the set 1 consumer revenue for 

period t, which was attained by satisfying consumer demand 

by selling energy to clients. 

𝑃𝑅(𝑙, 𝑡) = 𝑆𝑃(𝑙, 𝑡)𝐷(𝑙, 𝑡) (16) 

Equations (17) and (18) illustrate, respectively, the prices 

associated with buying energy from the power market and 

through bilateral agreements. 

𝐶𝑃 =∑𝜆𝑡 × 𝑃𝑡

𝑇

𝑡=1

 (17) 
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𝐶𝐵 =∑∑𝜆𝑏,𝑡𝑃𝑏,𝑡

𝑇

𝑡=1

𝐵

𝑏

 (18) 

In addition to Equation (20), Equation (19) shows the 

allowable limits along with the power purchased from 

bilateral contracts. 

𝑃𝑏
𝑚𝑖𝑛𝑆𝑏 < 𝑃𝑏,𝑡 < 𝑃𝑏

𝑚𝑎𝑥𝑆𝑏 (19) 

𝑃𝑡
𝐵𝐶 =∑𝑃𝑏,𝑡

𝐵

𝑏=1

 

(20) 

It must be mentioned that method of linear piecewise 

modeling for distributed generation units should also be 

considered [29]. The function models the operating cost of 

DG units in Equation (21) using technical constraints (22-

29). 

𝐶𝐷𝐺 =∑∑∑𝑆𝑗,ℎ
𝐷𝐺𝑃𝑗,ℎ,𝑡

𝐷𝐺

𝐻

ℎ=1

𝐽

𝑗=1

𝑇

𝑡=1

 (21) 

0 ≤ 𝑃𝑗,ℎ,𝑡,𝑠
𝐷𝐺 ≤ 𝑃𝑗,ℎ

𝑀𝐴𝑋 − 𝑃𝑗,ℎ−1
𝑀𝐴𝑋  (22) 

0 ≤ 𝑃𝑗,1,𝑡
𝐷𝐺 ≤ 𝑃𝑗,1

𝑀𝐴𝑋 (23) 

∑𝑃𝑗,ℎ,𝑡
𝐷𝐺

𝐻

ℎ=1

−∑𝑃𝑗,ℎ,𝑡−1
𝐷𝐺

𝐻

ℎ=1

≤ 𝑅𝑗
𝑢𝑝
× 𝑈𝑗,𝑡

𝐷𝐺  (24) 

∑𝑃𝑗,ℎ,𝑡−1
𝐷𝐺

𝐻

ℎ=1

−∑𝑃𝑗,ℎ,𝑡
𝐷𝐺

𝐻

ℎ=1

≤ 𝑅𝑗
𝑑𝑜𝑤𝑛 × 𝑈𝑗,𝑡−1

𝐷𝐺  (25) 

𝑈𝑗,𝑡
𝐷𝐺 − 𝑈𝑗,𝑡−1

𝐷𝐺 ≤ 𝑈𝑗,𝑡+𝑈𝑝𝑗,𝑖
𝐷𝐺  (26) 

𝑈𝑗,𝑡−1
𝐷𝐺 − 𝑈𝑗,𝑡

𝐷𝐺 ≤ 1 − 𝑈𝑗,𝑡+𝐷𝑛𝑗,𝑖
𝐷𝐺  (27) 

𝑈𝑝𝑗,𝑖 = {
𝑖 𝑖 ≤ 𝑀𝑈𝑇𝑗
0 𝑖 > 𝑀𝑈𝑇𝑗

} (28) 

𝐷𝑛𝑗,𝑖 = {
𝑖 𝑖 ≤ 𝑀𝐷𝑇𝑗
0 𝑖 > 𝑀𝐷𝑇𝑗

} (29) 

Equations (22) and (23) in above constraint bound the 

purchasing power from distributed generation units. 

Constraints (24) besides (25) also show the increasing or 

decreasing production limit. Besides, the minimum 

increase/decrease time frames are explained by (26) and 

(27). Finally, approximate parameters are defined using 

constraints (28) and (29) to provide a linear model of the 

minimum DG increase/decrease time frames.  

Power purchases from wind turbines [30] and photovoltaic 

systems [31] are calculated with constraints (30) and (31). 

𝑃𝑡
𝑤𝑖𝑛𝑑 =

{
 
 

 
 

0 𝑉𝑡
𝑤 < 𝑉𝑐𝑖

𝑃𝑟 × (
𝑉𝑡
𝑤 − 𝑉𝑐𝑖
𝑉𝑟 − 𝑉𝑐𝑖

) 𝑉𝑐𝑖 < 𝑉𝑡
𝑤 < 𝑉𝑐𝑟

𝑃𝑟                     𝑉𝑟 < 𝑉𝑡
𝑤 < 𝑉𝑐0

0 𝑉𝑡
𝑤 > 𝑉𝑐0

 (30) 

𝑃𝑡
𝑃𝑉 =

𝐺𝑡
𝑎

𝐺𝑎0
× {𝑃𝑀𝑎𝑥,0

𝑀 + 𝜇𝑃𝑚𝑎𝑥 × (𝑇𝑡
𝑎

+ 𝐺𝑡
𝑎 ×

𝑁𝑂𝐶𝑇 − 20

800

− 𝑇𝑀,0} 

(31) 

In addition to plug-in electric vehicles, retailers may 

manage energy utilizing clever charging and discharging 

devices that use hydrogen as a fuel.  

Equations of 32-38 give technical scope for plug-in 

electric vehicles [32], and Equation (32) shows the SOC of 

PEV at beginning time  (SOC initial time). Equation (33) 

provides SOC of PEV that is used for any plug-in electric 

vehicle at any desired time. Inequality constraint in (34) 

shows the up and low bounds for SOC of PEV. Equation 

(35) depicts energy needed to move a plug-in electric 

vehicle. The charge besides discharge power ranges for PEV 

given in inequality constraints (36) & (37). Lastly, constraint 

(38) limits the modes of charging and discharging of PEV in 

binary form which cannot operate at the same time. 

𝑆𝑂𝐶𝑡0,𝑣 = 𝐸𝑣
0 (32) 

𝑆𝑂𝐶𝑡,𝑣 = 𝑆𝑂𝐶𝑡−1,𝑣 + 𝜂𝑣
𝑐 × 𝑃𝑐𝑡,𝑣 −

𝑃𝑑𝑡,𝑣
𝜂𝑣
𝑑

− 𝑃𝑡𝑟𝑡,𝑣 

(33) 

𝑆𝑂𝐶𝑣
𝑀𝑖𝑛 ≤ 𝑆𝑂𝐶𝑡,𝑣 ≤ 𝑆𝑂𝐶𝑣

𝑀𝑎𝑥 (34) 

𝑃𝑡𝑟𝑡,𝑣 = ∆𝐷𝑡,𝑣 × Ω𝑣 (35) 

𝑃𝑐𝑣
𝑀𝑖𝑛 × 𝑈𝑐𝑡,𝑣 ≤ 𝑃𝑐𝑡,𝑣 ≤ 𝑃𝑐𝑣

𝑀𝑎𝑥 × 𝑈𝑐𝑡,𝑣 (36) 

𝑃𝑑𝑣
𝑀𝑖𝑛 × 𝑈𝑐𝑡,𝑣 ≤ 𝑃𝑑𝑡,𝑣 ≤ 𝑃𝑑𝑣

𝑀𝑎𝑥 × 𝑈𝑐𝑡,𝑣 (37) 

𝑈𝑐𝑡,𝑣 + 𝑈𝑑𝑡,𝑣 ≤ 1 (38) 

The energy storage system has been studied in [32]. It 

must be mentioned the electrolyzer system, the hydrogen 

tanks besides fuel cells are the key elements of HSS. 

equations (39-51) give technical scope of HSS [32]. 

Electrolyzers utilise electric electricity during off-peak 

hours to create hydrogen molecules that are then stored in 

hydrogen tank systems. Equations (39) besides (40) are 

constraints showing min and max power consumed by 

electrolyzer system. Equation (41) limits producing the 

Molar of hydrogen. lastly, Equation (42) presents 

relationship among molar of hydrogen produced besides 

power consumed by electrolyzer system [32]. 
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𝑃𝑡
𝐸𝐿 ≤ 𝑃𝑚𝑎𝑥

𝐸𝐿 × 𝑈𝑡
𝐸𝐿  (39) 

𝑃𝑡
𝐸𝐿 ≥ 𝑃𝑚𝑖𝑛

𝐸𝐿 × 𝑈𝑡
𝐸𝐿  (40) 

𝑁𝐻2,𝑡
𝐸𝐿 ≤ 𝑁𝐻2,𝑚𝑎𝑥

𝐸𝐿 × 𝑈𝑡
𝐸𝐿 (41) 

𝑁𝐻2,𝑚𝑎𝑥
𝐸𝐿 =

𝜂𝐸𝐿𝑃𝑡
𝐸𝐿

𝐿𝐻𝑉𝐻2
 (42) 

Also, the initial pressure equations (43-45) are related to 

constraints for max and min of the hydrogen tanks system. 

[32] 

𝑃𝑡0
𝐻2 = 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝐻2  (43) 

𝑃𝑡
𝐻2 ≤ 𝑃𝑚𝑎𝑥

𝐻2  (44) 

𝑃𝑡
𝐻2 ≥ 𝑃𝑚𝑖𝑛

𝐻2  (45) 

Moreover, fuel cell during peak period produces power 

required when hydrogen that is stored in tank of hydrogen is 

used. Constraint (46) gives maximum amount hydrogen in 

molar unit which is consumed in a fuel cell. Similarly, 

relationship among molar hydrogen consumption and 

production capacity in fuel cell is depicted in (47) [32]. 

Equations (48) and (49), which are related, represent the 

highest value and lowest consumption of electricity in fuel 

cells. 

𝑁𝐻2,𝑡
𝐹𝐶 ≤ 𝑁𝐻2,𝑚𝑎𝑥

𝐹𝐶 × 𝑈𝑡
𝐹𝐶  (46) 

𝑁𝐻2,𝑡
𝐹𝐶 =

𝑃𝑡
𝐹𝐶

𝜂𝐹𝐶𝐿𝐻𝑉𝐻2
 (47) 

𝑃𝑡
𝐹𝐶 ≤ 𝑃𝑚𝑎𝑥

𝐹𝐶 × 𝑈𝑡
𝐹𝐶  (48) 

𝑃𝑡
𝐹𝐶 ≥ 𝑃𝑚𝑖𝑛

𝐹𝐶 × 𝑈𝑡
𝐹𝐶  (49) 

It should be noted that fuel cells and electrolyzers in HSS 

must not work sat the same time for producing power 

consumption (in charge or discharge state). So, the 

constraint (50) bounds charging and discharging of binary 

mode, which cannot work at the same time. Lastly, the 

constraint (51) shows HSS pressure in the form of dynamic 

model.  

𝑈𝑡
𝐸𝐿 + 𝑈𝑡

𝐹𝐶 ≤ 1 (50) 

𝑃𝑡
𝐻2 = 𝑃𝑡−1

𝐻2 +
ℜ𝑇𝐻2
𝑉𝐻2

(𝑁𝐻2,𝑡
𝐸𝐿 −𝑁𝐻2,𝑡

𝐹𝐶 ) (51) 

Consumers are flexible about the actual selling price by 

the seller. Therefore, consumers use more energy at lower 

prices and conversely. As a result, a price and power curve 

across the time frame for the retailer to purchase the demand 

(D (l, t)) is shown in Figure (2). The store then modifies the 

quantity of consumer demand in accordance with the price-

power curve and chooses the appropriate price, exactly like 

in real-time pricing.  

Equations (52)-(55) are used by the retailer to determine 

supply and demand, which are functions of the selling price 

and the existing price for the consumer group. 

𝐷(𝑙, 𝑡) = ∑𝐷𝑜𝑓𝑓𝑒𝑟(𝑙, 𝑧, 𝑡)𝐴(𝑙, 𝑧, 𝑡)

𝑍

𝑧=1

 (52) 

𝑆𝑃(𝑙, 𝑡) =∑𝑆𝑃(𝑙, 𝑧, 𝑡)

𝑍

𝑧=1

 (53) 

𝑆𝑃𝑜𝑓𝑓𝑒𝑟(𝑙, 𝑡)𝐴(𝑙, 𝑧, 𝑡) ≤ 𝑆𝑃(𝑙, 𝑧, 𝑡)
≤ 𝑆𝑃𝑜𝑓𝑓𝑒𝑟(𝑙, 𝑧
− 1)𝐴(𝑙, 𝑧, 𝑡) 

(54) 

∑𝐴(𝑙, 𝑧, 𝑡)

𝑍

𝑧=1

= 1 (55) 

Due to limitations, the selling price in the proposed model 

is determined by the retailer on an hourly basis, which is 

similar to real-time pricing (56); similarly, the selling price 

can be defined in a set price under restrictions (57); and 

finally, the selling price can be applied to both average peak 

and low demand periods. Demand response programs and 

demand-side consumption management can be implemented 

to increase the retailer's desired profit and courier 

management. 

𝑆𝑃(𝑙, 𝑡) ≤ 𝑆𝑃𝑅𝑇𝑃(𝑙, 𝑡) (56) 

𝑆𝑃(𝑙, 𝑡) ≤ 𝑆𝑃𝐹𝑖𝑥𝑒𝑑(𝑙, 𝑡) (57) 

𝑆𝑃(𝑙, 𝑡)

= {

𝑆𝑃𝐿
𝑇𝑂𝑈(𝑙)      𝑓𝑜𝑟             𝑡 ∈ 𝑙𝑜𝑤 𝑙𝑜𝑎𝑑 𝑙𝑒𝑣𝑒𝑙

𝑆𝑃𝑀
𝑇𝑂𝑈(𝑙)      𝑓𝑜𝑟     𝑡 ∈ 𝑚𝑒𝑑𝑖𝑢𝑚 𝑙𝑜𝑎𝑑 𝑙𝑒𝑣𝑒𝑙

𝑆𝑃𝑃
𝑇𝑂𝑈(𝑙)      𝑓𝑜𝑟            𝑡 ∈ 𝑝𝑒𝑎𝑘 𝑙𝑜𝑎𝑑 𝑙𝑒𝑣𝑒𝑙

} 
(58) 

The interval multi-objective optimization model, which 

is a MIP model, has been used to simulate the issue of 

pricing definition by the retailer in the presence of PEV and 

ESS. The CPLEX solver [33] inside the optimization 

program GAMS [34] resolves this issue. 

4. 4. SIMULATION AND ANALYSIS OF RESULTS 

4.1 Deterministic and fuzzy model results 

Real-time pricing is based on equation (14) (the goal 

function) and restrictions (15)–(58) of outcomes, as stated in 

Table (8). This is done by constructing a deterministic model 

for the study network in three fixed pricing modes. 

According to this data, a retailer's average profit under a 

fixed-price tariff is $1511.79. Similarly, because time-of-

use pricing was more in line with reality than fixed pricing, 

the average retail profit in this mode was $1560.149, which 
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is 3.19% higher profit than the predetermined cost. Finally, 

real-time pricing made greater sense than constant or time-

of-use pricing given the circumstances. In real-time pricing, 

the mean retail profit was therefore $1589.822, or 5.16% 

higher than the preset cost. 

 
Table 8. Results for deterministic model 

Parameters Fixed TOU RTP 

Cost of purchasing from 

Pool Market ($) 432.1069 429.7096 569.377 

Cost of Purchasing from 

Bilateral Contracts ($) 139.77 117.2662 78.90057 

Cost of Purchasing from 

DG Units ($) 146.1255 150.5467 126.899 

Total Purchased Cost ($) 718.0024 697.5225 775.1766 

Total Revenue ($) 2231.268 2259.028 2366.878 

Deviation profit ($) 132.9599 131.5935 174.2948 

Average Profit ($) 1511.79 1560.149 1589.822 

Total profit increment (%) 0 3.198819 5.161596 

 

Also, by executing the fuzzy model and the resulting 

beam-like loop and the table of results in each step are as 

Figure (4) and table (9) (bold points represent the optimal 

point selected based on the beam curve and the information 

of the above points is specified shown in bold in the table). 

 

 
Fig. 4. The beam responses are obtained according to multi-

objective interval approach. 
 

The average retailer's profit for fixed pricing based on 

Pareto solutions and choosing the right solution is 

$1492/4119, while the change in retailer's profit is $57.1577, 

which is shown in Figure (4) and Table (9). The average 

retailer's profit is reduced by 1.36% compared to the 

deterministic fixed pricing approach, while the profit 

variation is reduced by more than 56.82%. Average retailer 

profit based on time-of-use pricing was $1,535.65, while 

profit variation was $62.86. In comparison to time-of-use 

pricing's actual performance, the average retailer's profit is 

down 1.21%, and the profit change is down more than 

52.67%. The average merchant now makes more money 

than they did with fixed pricing because of the advantages 

of time-of-use pricing. 

 

Table 9. Beam responses according to the interval optimization method 

  Fixed pricing TOU pricing RTP pricing 

W1 W2 F_M F_W F_M_PU F_W_PU F_M F_W 
F_M_

PU 

F_W_

PU 
F_M F_W 

F_M_

PU 

F_W_

PU 

1 0 
1511.796

6 

132.9599

0 

1.000258

6 

1.08607E

- 
1560.1 129.98 1.0000 0.0169 1589.8 171.35 0.9999 0.0237 

0.9 0.1 
1511.747

3 

130.5425

2 

0.998347

8 

0.028859

2 
1559.8 120.57 0.9934 0.1157 1589.7 166.84 0.9971 0.0602 

0.8 0.2 
1511.219

0 

120.6355

6 

0.977896

9 

0.147125

8 
1558.9 111.98 0.9745 0.2060 1589.0 158.86 0.9856 0.1247 

0.7 0.3 
1510.348

8 

112.6891

2 

0.944207

5 

0.241988

3 
1557.8 105.60 0.9520 0.2731 1587.7 150.08 0.9617 0.1958 

0.6 0.4 
1508.352

8 

101.7430

5 

0.866933

3 

0.372659

5 
1556.1 99.536 0.9170 0.3369 1583.3 132.17 0.8824 0.3405 

0.5 0.5 
1502.807

8 

80.98231

0 

0.652259

8 

0.620495

7 
1550.2 85.544 0.7935 0.4840 1575.8 111.51 0.7459 0.5077 

0.4 0.6 
1496.227

5 

63.69097

5 

0.397504

0 

0.826915

1 
1535.5 62.863 0.4874 0.7224 1559.1 81.081 0.4428 0.7538 

0.3 0.7 
1492.411

9 

57.15770

0 

0.249787

0 

0.904907

5 
1512.1 36.454 0 0.9999 1534.6 50.632 0.0002 1.0000 

0.2 0.8 1485.96 
49.19230

3 
0 

0.999996

3 
1512.1 36.454 0 0.9999 1534.6 50.628 0 1.0001 

0.1 0.9 1485.96 
49.19230

3 
0 

0.999996

3 
1512.1 36.454 0 0.9999 1534.6 50.628 0 1.0001 

0 1 1485.96 49.19230 0 0.999996 1512.1 36.454 0 0.9999 1534.6 50.622 0 1.0001 

0
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The average retailer's profit, when using real-time 

pricing, is $1559.1, although the profit changed by $81,081. 

Real-time pricing results in a profit reduction for the average 

retailer of 1.07% compared to the deterministic method and 

a profit variation reduction of more than 53.45%. 

Comparing real-time pricing to immediate pricing and fixed 

pricing, the retailer's average profit has improved. The 

average profit of the retailer may be assessed to see if it 

exceeds the industry average by comparing the suitable 

solutions acquired in time-of-use pricing and instant pricing. 

It is now higher than fixed pricing by 4.30% and time-of-use 

pricing by 1.54%. In general, it means that the retailer's 

resistance is greater than the power market price since the 

interval optimization approach models the uncertainty better 

than the algebraic method does. 

It is evident that 8 points are optimal for the fixed model 

iteration (i.e., weight 0.3 for the mean value and 0.7 for the 

deviation value), and 7 points are optimal for TOU and RTP 

iteration (i.e., weight 0.4 for the mean value and 0.6 for the 

deviation value). 

4.2 Results from fixed pricing, time of use pricing and real-

time pricing 

In order to compare the outcomes of the interval 

optimization approach based on the suggested uncertainty 

with the deterministic method based on fixed, time of use, 

and real-time pricing, Figures (5) through (15) are provided. 

Figure (5) illustrates how the demand of the client is fulfilled 

using the sub-method in the deterministic approach as well 

as the interval optimization technique in accordance with 

fixed pricing, prices at the time of use pricing, and real-time 

pricing. This graph shows which demand profiles are more 

suited to real-time than fixed and time-of-use pricing since 

there is less demand provided at peak periods, which is 

advantageous for retailers in bilateral contracts. Therefore, 

the average profit from real-time pricing is larger than that 

from fixed and time-of-use pricing, which is also suitable for 

retailers. Finally, it can be shown that the interval 

optimization approach's ability to meet demand has been 

shown to be less effective than the deterministic method, 

leading to an increase in selling price. Additionally, 

comparative outcomes for buying energy from the electrical 

market using bilateral contracts, distributed generation units, 

an interval-based optimization strategy, a deterministic 

method based on fixed time-of-use, and real-time pricing are 

shown in Figures (6) through (8). Real-time energy sales to 

the upstream grid outpace both fixed pricing and time-of-use 

pricing in terms of the amount of energy sold. As shown in 

Figures (7) and (8), the power purchased through bilateral 

agreements and distributed generation units in the interval 

optimization method has increased compared to the 

deterministic method, while the energy purchased from the 

electricity market in the interval optimization method has 

decreased compared to the deterministic approach due to the 

management of market price uncertainty. Additionally, 

Figures (9) and (10) compare the outcomes of fixed pricing, 

time-of-use pricing, and real-time pricing using the interval 

optimization approach that has been described in addition to 

a deterministic method for industrial and residential users. It 

can be seen from Figures (9) through (10) that real-time 

pricing, which is ideal for both consumers and retailers, is 

significantly more accurate than the time of use and set 

pricing. In comparison to the time of use and set pricing, the 

real-time pricing strategy has generally boosted the retailer's 

profit. Additionally, it may be shown that the interval 

optimization strategy has a somewhat higher real-time, time-

of-use, and fixed price than the deterministic method for 

modeling the market's uncertainty by retailers. Last but not 

least, compared to the deterministic technique, the average 

merchant profit has marginally dropped in interval 

optimization. Retailers have intensified their resistance to 

the unpredictable market pricing environment despite the 

substantial fall in profit changes. Figures (11), which 

examine the outcomes of PEVs' charging and discharging 

capacities and SOC for interval optimization and 

deterministic methods based on fixed pricing, time of use 

pricing, and real-time pricing, respectively. 

- Demands supplied by the retailer: 

 
Fig. 5. The amount of demand supplied by the retailer. 

- Power purchased from the market: 
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Fig. 6. Energy purchased from the market. 

 

- Purchased power according to bilateral contracts: 

 
Fig. 7. Energy purchased under a bilateral agreement. 

- Power purchased from power plants: 

 

 
Fig. 8. Energy purchased from distributed generation units. 

- The Electricity sale price for industrial use: 

 
Fig, 9. Energy selling price for industrial subscribers. 

 

- The electricity sale price for household use: 
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Fig. 10. Energy selling price for home subscribers. 

- Charging and discharging rate of plug-in electric 

vehicles: 

 
Fig. 11. Charge and discharge rates for plug-in electric 

vehicles. 

4.3 Game Theory Method 

In this part of the article, the game theory algorithm is shown 

for comparison with the results of the previous section 

(deterministic and interval methods). The steps in this 

section are shown in Figure (12). In step (1) of this part, the 

formulation of each of the objective functions is determined 

based on game theory, which includes two deviations and 

mean functions. Each function has a linear objective 

function with several equal and unequal constraints whose 

general form is displayed. In order to equalize the value of 

different functions, in step (2), maximum and minimum 

values of each function have specified and normalized using 

the definition of normalization. In step (3), each of the 

functions determines its profit-making programming 

separately. Then, in step (4), the maximum value obtained 

in the profit game for each function is determined according 

to the solution for the other function. In the step (5), the most 

pessimistic value of each function is determined. In step (6), 

the maximum multiplication of the deviation of each 

function relative to the pessimistic value is attempted by 

determining the most pessimistic value of each function. 

The best value of each function and related programming is 

determined in step (7) by solving the above problem. 

Flowchart of multi-objective problem-solving steps 

based on game theory method 

Step 

1: 
A multi-objective MIP of the form:  

 1min ( ), , ( ) ( ) , ,T

pf x f x f x c X AX b EX d=  =  

Step

2: 
Normalize the objective functions: 

min max( ) ,

( ) ( )

i i i

normalize

i i

f x f f

f x F x

   

⎯⎯⎯⎯→
 

Step 

3: For 1, ,i p=   do: 

 min ( ) ,iF x AX b EX d =  

To get solution 
*

ix  

Step 

4: For 1, ,i p=   do: 

( )*

1maxw

i j p i jF F x =  

Step 

5: 
Set ( )

1

p
w

i i

i

S F F x
=

 = −   

Step 

6: Maximize S  by solving following problem: 

 max ,S AX b EX d =  

Step 

7: 
Return efficient solution 

 

The following model shows that, in contrast to the basic 

functions, which are Mixed Integer Linear Programming 

(MILP), the ultimate model of game theory is mixed integer 

non-linear programming (MINLP). In the simulation, 

CPLEX and DICOPT solvers are employed, respectively, to 

solve each issue. 

4.3.1 Programming Constraints 

Various programming constraints include network security 

constraints and restrictions on the operation of various 

equipment. Among the above constraints, one of the most 
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critical constraints is how the retailer offers the price and the 

suggestion of purchasing/selling. In order to use the linear 

model, the linear piecewise model has been used to model 

the sensitivity between price and energy. Figure 12. shows 

the general structure of the method: 

 

 

Fig. 12. Price offer curve by retailer. 

 

The nonlinear price curve was used in the model used and 

to simulate the number of 100 steps for modeling. 

4.3.2 Game theory simulation result 

In this part, results for the simulation are presented in two 

multi-objective modes using weight sum method and game 

theory and finally, the results of the operation of the 

equipment are shown using the game theory method. The 

examined modes are shown in Table (10). 
 

Table 10. Reviewed modes 

Multi-purpose solving method Pricing type Mode number 

Min-Max Fuzzy Fix 1 

Min-Max Fuzzy TOU 2 

Min-Max Fuzzy RTP 3 

Game Theory Fix 4 

Game Theory TOU 5 

Game Theory RTP 6 

4.3.3 Fixed pricing mode 

In this case, the beam bound table obtained in the fuzzy state 

is formed based on consecutive iterations in the table, and 

the optimal point is determined based on the fuzzy 

satisfaction condition. Also, in the case of using the game 

theory model, in case the model is solved only once, the 

answer obtained is shown in Table (11). The values of the 

two mean and deviation objective functions are 1492.412 

and 57.158, respectively, in mode 1 and are equal to 

1462.801 and 31.622 for mode 4. It is clear that in the game 

theory mode, with a decrease of 1.98% in the average profit, 

the deviation from the answer has decreased to 44.67%. As 

a result, the game theory model has achieved lower profits 

with less risk.  
 

Table 11. Results of the first and fourth modes 

 Average 

function 

amount 

Deviation 

function 

amount 

Total profit 

of the 

retailer ($)  

Mode 1 1492.412 57.158 1493.024 

Mode 4 1462.801 31.622 1463.12 

4.3.4 Time of use pricing 

The results obtained in this mode are shown in Table (12). 

The values of the two mean and deviation objective 

functions are 1535.565 and 62.863, respectively, in mode 2 

and are 1454.282 and 0 for mode 5. In this mode, the profit 

earned relative to fixed pricing in both has increased with 

increasing risk. However, in the face of rising price volatility 

in this mode, the game theory method has decided to 

eliminate risk. 

 
Table 12. Results of the second and fifth modes 

 Average 

function 

amount 

Deviation 

function 

amount 

Total profit 

of the 

retailer ($)  

Mode 2 1535.565 62.863 1536.216 

Mode 5 1454.282 0 1454.282 

4.3.5 Real-time pricing mode 

The results obtained in this mode are shown in Table (13). 

The values of the two objective and deviation objective 

functions are 1559.102 and 81.082, respectively, in mode 3 

and 1461.249 and 0 for mode 6. In this mode, it is observed 

that the average profit has increased in both models, but the 

increase in profit in the game theory model is risk-free and 

deterministic. 

 
Table 13. Results of the third and sixth modes 

 Average 

function 

amount 

Deviation 

function 

amount 

Total profit of 

the retailer ($)  

Mode 3 1559.102 81.082 1559.793 

Mode 6 1461.249 0 1461.249 

4.3.6. Results for fixed, time of use and real-time pricing 

in game theory approach 

According to the obtained results, it is clear that in game 

theory, programming has been conducted cautiously, and by 

changing the price model, the priority is to keep the risk at a 

lower level compared to the fuzzy method programming. In 

the following, how to operate the equipment in the three 

programming modes of 4, 5, and 6 is shown comparatively 

in Figures (13) - (20). 
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Fig. 13. Demands supplied in different modes. 

 
Fig. 14. The amount of energy purchased from the upstream 

grid. 

 
Fig. 15. The rate of use of bilateral contracts in each case. 

 
Fig. 16. The amount of power produced by distributed sources. 

 
Fig. 17. The selling price of power for industrial consumers. 

 
Fig. 18. Power selling price for household consumers 

 

 
Fig. 19. Charged and discharged rate for plug-in electric 

vehicle batteries. 

5. DISCUSSION 

Real-time selling prices were closer to the real situation than 

fixed pricing and usage time. Thus, in real-time pricing, 

compared to fixed pricing, it shows an increase of 5.16%. 

Compared to the firm approach to fixed pricing, the average 

retail profit fell 1.36% while earnings changes fell more than 

56.82%. According to utilization-time pricing, the average 

retail profit is also $1535.65, while the decrease in profit is 

$62.86. The typical retail profit decreased by 1.21 percent, 

while profit changes decreased by more than 52.67 percent 

from the time of decisive strategy to pricing. This 

demonstrates that the average profit of the merchant has 

grown in comparison to fixed pricing due to the favorable 

impact of pricing at the moment of usage. The average retail 

profit decreased by 1.07 percent vs. the real-time pricing 
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strategy that was decided upon, while profit changes 

decreased by more than 53.45%. This indicates that 

compared to the current price and fixed pricing, the average 

retail profit is larger in real-time. Finally, compared to fixed 

pricing and 1.54% compared to time-of-use pricing, the 

average retail profit grew by more than 4.30%. Due to the 

flexibility of battery storage systems, plug-in electric cars, 

and hydrogen storage systems, merchants' predicted profits 

have improved as a result of setting the price of selling in 

accordance with real-time pricing by energy providers. It 

has produced a win-win approach for both customers and 

retailers. Therefore, real-time pricing has a larger average 

profit than fixed and time-of-use pricing, which is also 

suitable for retailers. Lastly, it can be shown that the interval 

optimization approach's ability to meet demand has been 

shown to be less effective than the deterministic method, 

leading to an increase in selling price. Real-time energy 

sales to the upstream network outnumber use-time pricing 

and fixed sales of energy. In addition, the interval 

optimization method uses less energy than the definitive 

strategy does in the power market. The real-time approach 

is better for both consumers and retailers since it is far more 

realistic than the time of usage and a set price. Finally, the 

average retail profit in the interval optimization method is 

slightly lower than the definitive method. While profit 

changes have declined sharply, retailers have increased 

resistance to market price uncertainty. In game theory mode, 

less profit is achieved with less risk. In the time-of-use 

pricing mode, profits relative to fixed pricing in both 

increased with increasing risk. However, in the face of rising 

price volatility in this case, the game theory approach has 

decided to eliminate risk. In real-time pricing mode, it is 

observed that the average profit in both models has 

increased, but the profit increase in the game theory model 

is risk-free and definite. 

6. CONCLUSION 

The problem of determining the price of selling electricity 

to residential, commercial, and industrial consumers in three 

different types of fixed pricing, time of use pricing, and real-

time pricing by electricity retailers in the smart grid 

environment has been considered in this article, given the 

uncertainties. A benchmark of smart grid technologies has 

also been provided in this article for the demand response 

program for controlling network demand peaks and 

intelligent charging and discharging management for 

various storage systems. Due to the flexibility of battery 

storage systems, plug-in electric cars, and hydrogen storage 

systems, merchants' predicted profits have improved as a 

result of setting the price of selling in accordance with real-

time pricing by energy providers. A demand response 

program has also been suggested as a way to control peak 

demand, flatten the demand curve, lower the selling price of 

power to customers, and boost the profit of the electricity 

retailer. It has resulted in a strategy that benefits both 

customers and retailers. 

LIST OF SYMBOLS 

Indexes 

b : Index for bilateral contracts 

h : Index for production of blocks of linear piecewise model of 

distributed generation units 

i : Index for Constraint demonstrating of minimum on time 

and off time for distributed generation units 

j : Distributed generation unit index 

v : Electric car index 

s : Scenario index 

t : Time of study index 

z : Index of price-consumer curve stairs based on sales price 

Sets 

B : Number of bilateral contracts 

H : Number of generation blocks of linear piecewise curves of 

distributed generation units 

I : The maximum amount of on and off values of distributed 

generation units 

J : Number of distributed generation units 

V : plug-in electric vehicles number 

S : Scenarios number 

T : All time considered 

Z : Number of steps of consumer price-power curve 

Parameters 

,j iDn  : Auxiliary variable for linear modeling stipulates 

the minimum shutdown time of distributed 

generation units 

offerD (l, z,t,s)  : Power offered by the consumer group in curve of 

price-power expressed in kW 

maxDRP  : The maximum percentage for demand which can 

participate in demand response program 

a

t,sG  : Sunlight at any time and in any scenario expressed 

in w/m2  

0aG  : Sunlight in standard conditions expressed in w/m2 

NOCT : The normal operating temperature of photovoltaic 

systems expressed in °C 

s  : Probability of any scenario 

max

bP  : The maximum limit on bilateral contracts per 

kilowatts (kW) 

min

bP  : The minimum limit on bilateral contracts per 

kilowatts (kW) 

MAX

j,hP  : Nominal power of blocks of distributed 

generation units in modeling operating costs in 

piecewise linear functions, per kilowatts 

PV

t,sP  : The available power of the photovoltaic system 

expressed in kW 
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M

Max,0P  : Maximum power of the photovoltaic system in 

standard conditions expressed in kW 

wind

t,sP  : Available wind turbine power per kilowatts 

rp  : Nominal power of wind turbine per kilowatts 

max

chargeP  : Maximum battery charge limit per kilowatts 

max

discP  : Minimum battery charge limit expressed in kW 

up

jR  : The rate of power increase between two 

consecutive hours of distributed generation units 

expressed in kWh 

down

jR  : The rate of power reduction between two 

consecutive hours of distributed generation units 

expressed in kWh 

j,hSdg : Cost related to blocks of distributed generation 

units in the piecewise linear model of operating 

costs expressed in dollars per kWh 

offerSP (l, z,t)  : Consumer price in the price-power curve in 

dollars per kWh 

a

t,sT  : The ambient temperature at any time and in any 

scenario 

m,0T  : Photovoltaic system module temperature in 

standard conditions in degrees Celsius 

j,iUp  :  Auxiliary variable for linear modeling 

stipulates minimum unit on time 

w

t,sV  : Wind speed at any moment and time in meters per 

second 

r ci c0V ,V ,V :  Rated, minimum and maximum speeds in the 

power-speed curve of the designed wind turbine 

max

bX  : Maximum limit on the amount of energy stored in 

the battery storage system expressed in kW 

min

bX : Minimum limit on the amount of energy stored in 

the battery storage system expressed in kW 

 :  Charging efficiency for storage system battery 

  : Discharging efficiency for the battery storage 

system 

,b t  : Energy price of bilateral contracts in dollars per 

kWh 

,t s  : Electricity market price in dollars expressed in 

kWh 

Min

vPc  : Minimum power limit for plug-in electric vehicles 

Max

vPc  : Maximum power limitation of plug-in electric 

vehicles 

Min

vPd  : Maximum discharge power limit for plug-in 

electric vehicles 

Max

vPd  : Maximum discharge power limit of plug-in 

electric vehicles 

,t vPtr : Travels required for plug-in electric vehicles 

c

v  : Electric car charging efficiency 

d

v  : Plug-in electric vehicle discharge efficiency 

Min

vSOC  : Minimum of battery power for plug-in electric 

vehicle 

Max

vSOC  : Maximum of battery power of plug-in electric 

vehicle 

EL

minP  : Minimum power consumption limit in the 

electrolyzer 

EL

maxP  : Maximum power consumption limit in the 

electrolyzer 

2,max

EL

HN  : Maximum limit of hydrogen molecules produced 

in the electrolyzer 

EL  : Electrolyzer efficiency 

2HLHV  : The minimum amount of hydrogen heat 

2

0

H

tP  : The pressure of hydrogen tanks at start time 

2H

initialP  : The initial pressure of hydrogen tanks 

H2

maxP  : Maximum pressure limit for hydrogen tanks 

H2

minP  : Minimum pressure limit for hydrogen tanks 

FC

H2,maxN  : Maximum limit of hydrogen molecules used in 

the fuel cell 

FC  : Fuel cell efficiency 

max

FCP  : Minimum of power limit produced in fuel cell 

min

FCP  : Maximum of power limit produced in fuel cell 

  : Gases constant 

2HT  : The average temperature inside the chamber 

2HV  : The total volume of hydrogen storage tanks 

max

t  : Upper limit of electricity market prices 

min

t  : The lower limit of electricity market prices 

ˆ
t  : The predicted price of the electricity market 

,R OF F  : Target critical profits for functions and 

opportunities 

Variables 

A(l, z,t)  : Binary variable for selecting the selling price 

offered by the retailer to consumer groups from the 

price-power curve {0 and 1} 

BC  : Cost of purchasing energy from bilateral contracts 

(dollars) 

PC  : Cost of purchasing energy from the electricity 

market (dollars) 

DGC  : Utilization cost for distributed generation units 

(dollars) 

D(l,t,s)  : The demand fed by the consumer group by 

electricity retailer considering the demand 

response program expressed in kilowatts 
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DRP(l,t,s)  : The real variable for implementing a demand 

response program expressed in kW (it is positive 

when increasing the demand and negative when 

reducing demand) 

DRPD (l,t,s)  : New demand fed by the consumer group by the 

electricity retailer considering the Demand 

response program expressed in kW 

b,tP : Power purchasing from bilateral contracts 

expressed in kW 

BC

tP  : Total power purchased by bilateral contracts 

expressed in kW 

charge

t,sP  : Charged power of battery storage system 

expressed in kW 

disc

t,sP  : The discharging capacity for battery storage 

system expressed in kW 

P

t,sP  : Purchasing power from electricity market 

expressed in kW 

DG

j,h,t,sP  : Power utilized by distributed generation units 

RR (l,t)  : Revenue obtained from each of the distributed 

generation units 

bS  : Binary variable for selecting or not selecting 

bilateral contracts {0 and 1} 

SP(l, z,t)  : Price of power-price curve intervals for groups of 

consumers in dollars per kWh 

RTPSP (l,t) : Pricing of real-time sales by electricity retailers for 

consumer groups in dollars per kWh 

TOU

LSP (l)  : Time of use pricing for sales at low-demand time 

by electricity retailers for the consumer group in 

dollars per kWh 

TOU

MSP (l)  : Time of use pricing for sales at medium-demand 

time by electricity retailers for the consumer group 

in dollars per kWh 

TOU

PSP (l)  : Time of use pricing for sales at peak-demand time 

by electricity retailers for the consumer group in 

dollars per kWh 

charge

t,sU  : The Binary variable for determining the charging 

status of the battery storage system {0 and 1} 

disc

t,sU  : The Binary variable for determining the 

discharging status of the battery storage system {0 

and 1} 

DG

j,tU  : Binary variable for utilization status of distributed 

production units {0 and 1} 

,

b

t sX  : amount of the energy stored in battery storage 

system expressed in kWh 

, ,t v sSOC  : amount of the energy stored in battery of plug-in 

electric vehicles 

, ,t v sUc  : Binary variable for plug-in electric vehicles 

charging mode 

, ,t v sUd  : Binary variable for electric vehicle discharge 

mode 

, ,t v sPc  : Charged power of plug-in electric vehicles 

, ,t v sPd  : Discharged power of plug-in electric vehicles 

2,

FC

H tsN  : Hydrogen moles consumed by the fuel cell 

2,

EL

H tsN  : Hydrogen moles produced by the electrolyzer 

2

,

H

t sP  : The pressure of hydrogen tanks 

,

EL

t sP  : Power consumed by the electrolyzer 

,

FC

t sP  : The power generated by the fuel cell 

,

EL

t sU  : Binary variable for electrolyzer working status 

,

FC

t sU  : Binary variable for fuel cell working status 

Functions 

F(p, )  : Electricity retailer profit function 

ˆ
R(F )  : Resistance function in information gap decision 

theory 

ˆ
O(F )  : Opportunity function in information gap decision 

theory 
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