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The issue of the retailer's selling price based on three time-of-use (TOU) tariffs, fixed
pricing (FP), and real-time pricing (RTP) in a microgrid with the presence of wind
turbines, photovoltaics, distributed generation (DG), a hydrogen storage system (HSS),
fuel cells, and plug-in electric vehicles (PEV), taking demand response program reviews
into consideration, is discussed in this paper. The profit function is modeled based on the
retailer's uncertainty using two models: deterministic (algebraic) optimization and multi-
objective periodic optimization. This paper presents a Mixed Integer Linear Programming
(MILP) planning model for periodic multi-objective optimization that can be addressed
using the Pareto approach or weighted summation. To choose a suitable outcome from
Pareto solutions, the fuzzy method is used. The CPLEX solver from the GAMS
optimization package was used for this. The game theory technique is used to compare
the outcomes of two deterministic and interval portions of a Mixed Integer Non-Linear
Programming (MINLP) model that combines CPLEX and DICOPT solvers in the GAMS
package to solve the model.

1. INTRODUCTION

Referencing [1] from the retailer's viewpoint, the strategy
encourages customers to shift their purchases from busy
periods to less busy times. This model's main objective is to
offer a framework for merchants that, by participating in the
pool market and bilateral agreements, win the happiness of
customers and cause them to alter their desires. The most
crucial objective is to offer a template for merchants that
concur with the buyer throughout the pool market and
bilateral contracts and want to modify their wishes.
Researchers [2] have examined three different basic
infrastructures that can be used to charge electric vehicles.
The remaining two infrastructures were more expensive and
more powerful. In addition, three specific intelligent
charging approaches as well as the impact of these
approaches on the realization cost and load index of the
power system are examined separately. A stochastic
programming method has been proposed by another group
of researchers [3] for optimal programming of connected
MG and RES with connected electric vehicles (PEV). They
have utilized a variety of sources, including battery storage
systems, microturbines, wind turbines, fuel cells, and solar
photovoltaic systems. The MG was regarded as being
powered by an upstream system when it was linked to the
grid. The suggested stochastic optimization issue was
resolved using an appropriate optimization technique, such
as the modified harmonic search algorithm (MHS). In Ref.

[4], The economic advantages of various charging
techniques have been assessed by academics in light of
various subsidy programs. They examine the pattern of
shifting subsidy policies in the first stage and provide an
overview of these policies for EVCI (Electric Vehicle
Charging Infrastructure). Then, two various EVCI
fabrication business models are assessed. Lastly, a case
study comparing the advantages of three distinct charging
methods based on cost-benefit analysis and EVCI subsidy
schemes was conducted. Researchers looked at hybrid-
electric cars connected to supply and demand schemes
related to the grid in Ref. [5]. The charge was then scheduled
and optimized using the ICA (Imperial Competitive
Algorithm) and PSO (Particle Swarm Optimization)
algorithms. In Ref. [6], it is said that this will both lower the
cost of charging EVs and stop the distribution transformer
from operating normally. Researchers have proposed an
optimal charging strategy that is consistent with the
Dynamic Spike Pricing (DSP) policy. In the first stage, they
created electric car load models in four different types.
Second, they created a new DSP strategy for transmitting
high loads during rush hour based on the TOU approach.
They have developed the best charging model to safeguard
EV owners from different financial losses and avoid
transformer overload in order to lower the cost of electric
car charging. The model was solved using a genetic
algorithm (GA) in the last stage. In summary, this study

!Department of Electrical Engineering, ST.C., Islamic Azad University, Tehran, Iran.
*Corresponding author: Seyed Mohammad Hassan Hosseini; Email: smhh110@azad.ac.ir.


mailto:smhh110@azad.ac.ir

160 M. R. Alvandi and S. M. H. Hosseini / GMSARN International Journal 20 (2026) 159-167

proposes an ideal charging approach and shows how it
affects the correction peak and lowers charging costs. In Ref.
[7], an island microgrid powered by EVs is suggested as a
means of facilitating energy storage and supporting voltage
management. In addition, they have proposed a control
method for power distribution between each EV, and this
procedure is simulated on a microgrid. The proposed
controller can improve the stability along with the reliability
of the microgrid. In reference [8], a model for studying the
behavior of power market players is presented in a
multilayered manner.

Reference [9] looks at how demand-side response
systems are used and how consumer surveys affect
consumers' ability to be flexible with their purchases. The
majority of this study is conducted on the market and is done
in real-time.

The distribution of ideal energy procurement plans from
dispersed microgrid production sources and customer
involvement in demand-side response initiatives to cut
operational costs are provided in reference [10]. According
to reference [11], the logical connection connecting energy
production and consumption in the microgrid and energy
exchange via the real-time market and the day-ahead market
is crucial for optimizing retailer profitability.

The proposed strategy is based on consumer
participation in retailer-monitored demand response
programs and the availability of connected electric vehicles
[11-12]. In reference [13], interactions in the energy market
are discussed, and a best practice for selling in the
marketplace using a pool and bilateral agreements to meet
requirements is provided. Uses a robust and optimal
approach to retailers' decisions in order to take into account
uncertainties [14]. Examines retailer risk management
issues in [15]. In reference [16], customer compensation
methods and in reference [17] value and reliability
indicators are examined by defining tariffs and the
relationship between customers and retailers. A stochastic
programming technique is employed in reference [18] to
identify the best retail strategy, apply it in real-time, and
maximize profit while lowering the risk to the retail
organization. To ascertain the retailer's ideal approach using
a stochastic reference planning framework in which the
retailer minimizes risk by setting prices and offering power,
see reference (19). Demand is influenced by a number of
variables, including the time of day, the kind of consumers,
and the weather, all of which may be forecasted utilizing
actuarial methods or artificial intelligence algorithms like
neural networks, fuzzy logic, and regression [21]. In
accordance with the structure presented in the reference
[22], the purchase cost of electricity for subscribers is
determined using consumption-time charges. This
framework is based on the medium-term random planning
market. In the reference [22], retailers employ a variety of
sources to satisfy their demand while being protected from
the inherent hazards of the electrical marketplace. The

reference [23] looks at how energy is obtained from various
sources to increase retailer profitability. Reference [24]
provides a structure for selecting how to obtain power using
the subsequent agreements, with the aim of reducing the
expense of supply to the local distribution company (LDC)
by considering price limits: A fictitious LDC in the city of
Florida is used in this reference. In the proposed model of
this paper, which is solved as the MIP model in GAMS
software, the electricity retailer's profit function, which is
uncertain, is formulated based on a definite two-objective
structure in addition to the average profit and its changes.
According to this study, real-time pricing (RTP) provides
higher average profits than constant prices and TOU (Time
of Use Pricing). The decision for buying energy from POOL
market, bilateral contract, renewable units, as well as the
amount of customer demand met by the retailer and other
related issues affecting the retailer’s profit based on three
types of RTP, TOU, and fixed are discussed in this study.

The Innovations of the paper are as follows:

1) It is suggested to use the interval optimization
approach to simulate price uncertainty in the power market.

2) The function of profit based on the custom of
uncertainty of sellers with the model of the target medium
with the average profit and its changes They become a
contradictory objective function.

The following suggestions that can be used to improve
the article and to have more research in this field are as
follows.

Use of other sources of new energy and other
technologies of energy storage systems by retailers
Sell electricity to increase retailer profits

- Use of energy storage systems by electricity retailers to
increase retailer profits

- Use other time-based burden response programs or
incentives to increase retail profit Sale

- Use of other smart grid technologies to increase the
profit of electricity retailers

Multi-level problem modeling with other market players
in mind

Considering common interests as a constraint on the
proposed optimization problem

2. INPUT DATA OF THE PROBLEM

The interval market price includes the highest price, the
desired price, and the lowest price, which are shown in
Figure (1). Figure (2) also shows the basic demand profile
of the consumer. Lastly, the correlation between consumer
demand and selling price is depicted in Figure (3). Retail
price besides the demand supplied via retailer are
determined according to this curve. In this curve, 100 stages
are considered as step-price curve for all consumer.
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Fig. 2. Consumer predicted demand curve.
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Fig. 3. Price-power curve.

Besides, Table 1 provides three levels of demand,
including peak, medium besides low demand for demand of
one day. Table 2 proposes data of bilateral contract. In Table
3 data of DG units shown. the predicted of radiation for one
day and temperature like the daily wind speed. the
parameters of the wind turbine and photovoltaic (PV)
system depicted in table (5). Lastly, HSS and parameters of
PEV shown in table (6) and (7) respectively.

Table 1. Grouping daily demand based on hours of day

Load Level Hours
low load (L) 1¢2¢3¢4¢5¢6¢7:8
medium load (M) 9¢10¢11¢12¢13¢14¢15¢16
peak load (P) 1718¢19¢20421:22:23:24

Table 2. Parameters of bilateral contract

. .. Price
Contract | | o1 of load | Maximum | Minimum | 1o acio
No. (kilowatt) | (kilowatt)
att-hour)
One | oW, medium 50 15 0.04
and peak
Two | 1OW> medium 40 10 0.043
and peak
Three | 1OW> medium 50 15 0.05
and peak
Four | 10W, medium 40 10 0.048
and peak
Five | 1OW> medium 70 25 0.032
and peak
six | low, medium 60 20 0.041
and peak
Seven | 10W> medium 70 25 0.051
and peak
cighth | 1%, medium 60 20 0.048
and peak
g | low, medium 70 25 0.043
and peak
1o | low,medium 60 20 0.058
and peak
11 | low, medium 70 25 0.052
and peak
1o | low, medium 60 20 0.057
and peak
Table 3. Data for distributed generation
First Second Third .
DG parameters DG DG DG Units
Max for output | 5 180 | 200 | Kilowatt
power
Min for output | 0 0 Kilowatt
power
spe 0.03 0.037 | 0.044 | $/kilowatt
526 0.036 0.04 0.049 | $/kilowatt
5P 0.039 | 0.045 | 0.054 | $/kilowatt
pMAX 60 80 100 kilowatt
phax 110 120 150 kilowatt
phax 150 180 200 kilowatt
MUT; 2 2 2 hour
MDT; 2 2 2 hour
Ri® 80 90 100 | kilowatt /h
Rfown 80 90 100 | kilowatt /h
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Table 4. Predicted daily wind speed, temperature, and LHVy, 240 MJ/kmol
intensity of daily radiation for a day
PRG<PEC 0.5¢6 kW
Time | Wind speed | Temperature Radiation FC Nm/h
(h) (m/s) (°C) intensity (W/m?) Nitzmax 39 o
FC
1 10.5 247 0 U 45 %
2 13.5 24.5 0 NFe 300 No.
3 14.9 243 0 R 8.314 J/kmol
4 15.6 24.4 0 Ty 313 K
5 19.5 24.5 93.5 Virz 4 m?®
6 20.6 26.5 219
7 14.4 275 467.5 Table 7. Parameters of plug-in electric vehicles
8 14.1 28 637.5 Parameters | Amount | Units | Parameters | Amount | Units
9 113 28.5 780 pelin 0 W e 9% %
10 9.7 28.8 916 quiwax 25 kW T],‘,i 90 %
11 7 29 1100 ) ;
pdMn 0 kW SocHm 50 kWh
12 5.9 29.7 1033 JHax 5 . M | oWh
13 8.9 29.8 850 Pdy > W | Sl il
” 95 20 630 Q, 0.1667 | kW/km N, 30 No.
15 10.4 29.8 595
3. PROBLEM FORMULATION
16 8.8 29.5 255
17 71 29 2125 For the definite optimization issue, an example of an
13 33 277 153 optimization model may be given. It is crucial to remember
o 9'9 26.5 P that the optimization model is stated using the following
. . formulae with equal and unequal restrictions on the
20 75 24.8 0 appearance of an ambiguous parameter in the standard form
21 8.8 25 0 structure:
22 9.8 24.8 0
Min f(Z,U, 1
23 9.2 24.6 0 i« 2 M
24 8.4 24.8 0 s.t.
Table 5. Parameters of Wind turbine and PV system 9(Z,U,p)=0 (2)
Parameters of Wind turbine Parameters of PV system h(Z,U,p) <0 (3)
Paramet | Amou | Paramet | Paramet | Amou | Paramet . L
ors of nt ors ers of nt ors The interval optimization of the upper and lower bounds
cach one Units cach Units using the formula peU = [UM™, UM% In other terms, the
one ambiguous parameter p is referred to as a distance. With this
P 1200 KW pM 700 KW approach, the goal function's upper and lower limits are
’ Max0 determined because p is taken into account as (f(z) €
Vei 2 m/s Gao 1000 | W/m’ [f~(Z), f*(Z)]) rather than the uncertainty parameter. The
|78 14 m/s Ty 25 °C primary goal function's upper and lower limits are computed
Vo 25 /s NOCT m o using equations 4 and 5, respectively.

Table 6. Hydrogen storage system parameters

Parameters Amount Units
PYe <Pt 2138 Bar
Pltiar P 10 <10 Bar
PriéixPrin 1.5¢6.2 kW
N3 max 1.05 Nm?/h
n°t 55 %
NEE 300 No.

fH(2) = max f(2) 4)
pEU

f~@ =minf(2) )
pEU

The interval parameter, which shifts into the form of a
deterministic multi-objective model with an average amount
of profit, causes the final objective function to have
uncertainty and distance. It takes the shape of the opposite
objective function of the average profit, whose change in
profit should be minimized and whose maximum value
should be sought. The model being suggested Equations 6—
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8, which depend on the interval optimization strategy, state
that the profit change is decreased till the store is resilient to
the unpredictability of the market price.

Min f(z) = min (—f"(2), " (2)) (6)
juiy LD o
w(Z) = w (8)

It should be noted that (Z) f" and (Z)f™ are the average
profit and changes in the profit of the electricity retailer,
respectively.

3.1 Fuzzy method and weighted sum

The Pareto solution approach, the weighted method, the
constraint method, or the multi-objective and distance-based
objective function can all be used to solve it. The weighted
sum approach is employed to resolve the suggested model.
Finally, a suitable outcome is chosen from all Pareto
solutions using the fuzzy technique. The calculated total
technique employs a number of weighting coefficients
depending on the significance of each objective function. As
a consequence, the ultimate goal function for optimizing the
multi-objective model using the calculated total method may
be stated as follows:

MinOF = w; X fM(Z), + wy X fY(Z) py 9)
s.t.
{ W1 + W2 = 1
All equal &inequal constraints

The two expressionsf W (Z),,,, besides f"(Z),,show the
average value of profit and the changes of profit in
normalized form which are calculated based on the fuzzy
method.

_ fM"D) ~ fren(@)
M@= g = . @

@ - Y@
Do = D17 @

The minimum and maximum average profit and profit
changes are first determined using the fuzzy logic weighted
summation approach. The profit deviations and the
normalized function of the average profit are then multiplied
by various weighted factors, and the result is added as a
distinct objective function. The next step is to change w1
and w2 between zero and one so that wl + w2 =1 to achieve
Pareto solutions of the proposed function reduction (9).

The average profit amounts and profit variations for each
repetition are computed and normalized in equations (10)
and (11). In equation (12), the lowest normalized value is
chosen in each iteration, and then, in accordance with

(10)

(11)

equation (13), the highest value chosen between the minimal
values is placed on the right answer for a number of goals of
the proposed issue.

f™ = minimum(f*, ..., fit); Vn

= 1,...,Np (12)
f™M* = maximum(f?, ..., fVr) (3)

The income less the cost, which must be taken out of
equation (14) in the power market, is what makes up the
retailer's gain in the smart network. The gain from the supply
is the same as the customer demand times the selling price.
Three tariffs—fixed pricing, TOU pricing, and real-time
pricing—determine the sales price.

T

Maxf (x) = Z Z SP(L,OD(, )

t=11=1

T
=D art
t=1

T (14)

T H
G pDG
2.2, . SR
=1
B
b

IIM\.

[y

t h=1

2.

The equilibrium power limits suggested by (15) should
not prevent the retail profit function from being maximized.

-

Ab,tpb,t

M"i

~
I
=

B J H
Z Py + z PP+ Pf + Y™ + PPV
b=1 =1

=ik
174
+ PF¢ + Z Pd,,
v=1
L
- Z D(L,t) + PE-
=1

v
+ Z Pcy,,
v=1

Equation (16) displays the set 1 consumer revenue for
period t, which was attained by satisfying consumer demand
by selling energy to clients.

Po(i,t) = SP(L,OD(L, t) (16)

(15)

Equations (17) and (18) illustrate, respectively, the prices
associated with buying energy from the power market and
through bilateral agreements.

T
Co =Z,1txpt (17)
t=1
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B T
Co= D" AP (18)
b

In addition to Equation (20), Equation (19) shows the
allowable limits along with the power purchased from
bilateral contracts.

PM™S, < P, < PMOYS, (19)

B
BC _—_
PEC =) Py
b=1

It must be mentioned that method of linear piecewise
modeling for distributed generation units should also be
considered [29]. The function models the operating cost of
DG units in Equation (21) using technical constraints (22-
29).

T J H
Coo =) > > SRR, e

(20)

t=1 j=1 h=1
0 < Piiles < PI™™ — P23 (22)
0 < PPf < PN (23)
H H
D P =Y PRy < R X UPS 24)
h=1 h=1
H H
D RN = ) BRG <RI X URS, (5)
h=1 h=1
U = Upla < Upfup, (26)
Uﬁta—1 - Ujl,)tG =1- Ujl,)t(-;i—Dn ji (27)
i i< MUT .
Upji = {0 P> MUT]-} (28)
5 i i< MDT 2
M = {0 i > MDT]-} (29)

Equations (22) and (23) in above constraint bound the
purchasing power from distributed generation units.
Constraints (24) besides (25) also show the increasing or
decreasing production limit. Besides, the minimum
increase/decrease time frames are explained by (26) and
(27). Finally, approximate parameters are defined using
constraints (28) and (29) to provide a linear model of the
minimum DG increase/decrease time frames.

Power purchases from wind turbines [30] and photovoltaic
systems [31] are calculated with constraints (30) and (31).

( 0 VY <V,
. Px(u) Vi <V¥ <V,
thmd — r Vr _ Vci cl t cr (30)
Pr Vr < Vtw < VcO
0 VY >V
G G
PLFV = G_ X {PI\I/\;Iax,O + Upmax X (Tta
a0
L ga x NOCT =20
‘ 800
= Tuo}

In addition to plug-in electric vehicles, retailers may
manage energy utilizing clever charging and discharging
devices that use hydrogen as a fuel.

Equations of 32-38 give technical scope for plug-in
electric vehicles [32], and Equation (32) shows the SOC of
PEV at beginning time (SOC initial time). Equation (33)
provides SOC of PEV that is used for any plug-in electric
vehicle at any desired time. Inequality constraint in (34)
shows the up and low bounds for SOC of PEV. Equation
(35) depicts energy needed to move a plug-in electric
vehicle. The charge besides discharge power ranges for PEV
given in inequality constraints (36) & (37). Lastly, constraint
(38) limits the modes of charging and discharging of PEV in
binary form which cannot operate at the same time.

SOCyo,, = EY (32)
SOC,, = SOC,_1,, + 15 X Pcyyy — i;"’

’ ’ Toong (33)

— Ptry,,

socMin < s0c,, < Sochx (34)
Ptr,, = AD,, X Qv (35)
Pcl™ x Uc,,, < Pc,,, < Pc)l%* x Ucy, (36)
PAY™ x Uc,,, < Pd,, < PdY% x Uc, (37)
Uc,p +Ud,, <1 (38)

The energy storage system has been studied in [32]. It
must be mentioned the electrolyzer system, the hydrogen
tanks besides fuel cells are the key elements of HSS.
equations (39-51) give technical scope of HSS [32].

Electrolyzers utilise electric electricity during off-peak
hours to create hydrogen molecules that are then stored in
hydrogen tank systems. Equations (39) besides (40) are
constraints showing min and max power consumed by
electrolyzer system. Equation (41) limits producing the
Molar of hydrogen. lastly, Equation (42) presents
relationship among molar of hydrogen produced besides
power consumed by electrolyzer system [32].
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PEL < pPEL x UF™ (39)
PFL > PEL x UFL (40)
Nfie < Nffzmax X UE- (41)
EL pEL
n=" Py
Nf% max = LAV, (42)

Also, the initial pressure equations (43-45) are related to
constraints for max and min of the hydrogen tanks system.
[32]

Pi? = Phitial (43)
P{"? < Priax (44)
P{? 2 Pl (45)

Moreover, fuel cell during peak period produces power
required when hydrogen that is stored in tank of hydrogen is
used. Constraint (46) gives maximum amount hydrogen in
molar unit which is consumed in a fuel cell. Similarly,
relationship among molar hydrogen consumption and
production capacity in fuel cell is depicted in (47) [32].
Equations (48) and (49), which are related, represent the
highest value and lowest consumption of electricity in fuel
cells.

NI-I;ZC,t =< NII-;ZC,max X Ufc (46)
PFC

NFC — 't 47

H2t T]FCLHVHZ ( )

PEC < Prgx X UEC (48)

P = PG, x UF€ (49)

It should be noted that fuel cells and electrolyzers in HSS
must not work sat the same time for producing power
consumption (in charge or discharge state). So, the
constraint (50) bounds charging and discharging of binary
mode, which cannot work at the same time. Lastly, the
constraint (51) shows HSS pressure in the form of dynamic
model.

UL+ Uf¢ <1 (50)

RTy»
Viz

P2 = P34+ P2 (NEL  NEC, (51)
Consumers are flexible about the actual selling price by
the seller. Therefore, consumers use more energy at lower
prices and conversely. As a result, a price and power curve
across the time frame for the retailer to purchase the demand
(D (1, t)) is shown in Figure (2). The store then modifies the
quantity of consumer demand in accordance with the price-

power curve and chooses the appropriate price, exactly like
in real-time pricing.

Equations (52)-(55) are used by the retailer to determine
supply and demand, which are functions of the selling price
and the existing price for the consumer group.

Z

D(l,t) = » Do (l,z,t)A(l, z,t) (52)
VA
SP(L,t) = Y SP(,zt) (53)

SPoITer (1, t)A(l, z,t) < SP(l, z,t)
< gpoffer 1,z (54)
—1DA(, z1t)

VA
ZA(Z,Z, =1 (55)
z=1

Due to limitations, the selling price in the proposed model
is determined by the retailer on an hourly basis, which is
similar to real-time pricing (56); similarly, the selling price
can be defined in a set price under restrictions (57); and
finally, the selling price can be applied to both average peak
and low demand periods. Demand response programs and
demand-side consumption management can be implemented
to increase the retailer's desired profit and courier
management.

SP(l,t) < SPRTP(L,t) (56)
SP(l,t) < SPFxed(l,t) (57)
SP(l,t)

SPIOU()  for
=<{SPIOY(D)  for
SPIOU()  for

t € low load level 58
t € medium load level (58)

t € peak load level

The interval multi-objective optimization model, which
is a MIP model, has been used to simulate the issue of
pricing definition by the retailer in the presence of PEV and
ESS. The CPLEX solver [33] inside the optimization
program GAMS [34] resolves this issue.

4. 4. SIMULATION AND ANALYSIS OF RESULTS
4.1 Deterministic and fuzzy model results

Real-time pricing is based on equation (14) (the goal
function) and restrictions (15)—(58) of outcomes, as stated in
Table (8). This is done by constructing a deterministic model
for the study network in three fixed pricing modes.
According to this data, a retailer's average profit under a
fixed-price tariff is $1511.79. Similarly, because time-of-
use pricing was more in line with reality than fixed pricing,
the average retail profit in this mode was $1560.149, which
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is 3.19% higher profit than the predetermined cost. Finally,
real-time pricing made greater sense than constant or time-
of-use pricing given the circumstances. In real-time pricing,
the mean retail profit was therefore $1589.822, or 5.16%
higher than the preset cost.

Table 8. Results for deterministic model

Parameters Fixed TOU RTP

Cost of purchasing from

Pool Market ($) 432.1069 | 429.7096 | 569.377
Cost of Purchasing from

Bilateral Contracts ($) 139.77 | 117.2662 | 78.90057
Cost of Purchasing from

DG Units ($) 146.1255 | 150.5467 | 126.899
Total Purchased Cost ($) 718.0024 | 697.5225 | 775.1766
Total Revenue ($) 2231.268 | 2259.028 | 2366.878
Deviation profit ($) 132.9599 | 131.5935 | 174.2948
Average Profit ($) 1511.79 | 1560.149 | 1589.822
Total profit increment (%) 0 3.198819 | 5.161596

Also, by executing the fuzzy model and the resulting
beam-like loop and the table of results in each step are as
Figure (4) and table (9) (bold points represent the optimal
point selected based on the beam curve and the information
of the above points is specified shown in bold in the table).

200
W

= 150 O@

2 100 § o O Fixed
o ‘Do ®

§ 50 o 8 TOU
.E O

z ORTP

o 1450 1500 1550 1600

Average Profit (S)

Fig. 4. The beam responses are obtained according to multi-
objective interval approach.

The average retailer's profit for fixed pricing based on
Pareto solutions and choosing the right solution is
$1492/4119, while the change in retailer's profit is $57.1577,
which is shown in Figure (4) and Table (9). The average
retailer's profit is reduced by 1.36% compared to the
deterministic fixed pricing approach, while the profit
variation is reduced by more than 56.82%. Average retailer
profit based on time-of-use pricing was $1,535.65, while
profit variation was $62.86. In comparison to time-of-use
pricing's actual performance, the average retailer's profit is
down 1.21%, and the profit change is down more than
52.67%. The average merchant now makes more money
than they did with fixed pricing because of the advantages
of time-of-use pricing.

Table 9. Beam responses according to the interval optimization method

Fixed pricing TOU pricing RTP pricing

W1 | W2 F_M FW |(FMPUIFWPU FM | FW Ff)%/[— FT"I)}]_ FM | FW Ff)lg— FT)‘[)}]—

1 0 151 16'796 132'3599 1.00é)258 1'08_607E 1560.1 | 129.98 | 1.0000 | 0.0169 | 1589.8 | 171.35 | 0.9999 | 0.0237
09 ] 0.1 151 2'747 130'25425 0'995347 0'025859 1559.8 | 120.57 |1 0.9934 | 0.1157 | 1589.7 | 166.84 | 0.9971 | 0.0602
081 0.2 151 })'219 120'66355 0'9797896 0.1452125 1558.9 | 111.98 | 0.9745 | 0.2060 | 1589.0 | 158.86 | 0.9856 | 0.1247
07103 15]%348 112'2689] 0'94§207 0'2431 088 1557.8 1 105.60 | 0.9520 | 0.2731 | 1587.7 | 150.08 | 0.9617 | 0.1958
06| 04 150%352 101 '57430 0'8636933 0'3752659 1556.1 1 99.536 | 0.9170 | 0.3369 | 1583.3 | 132.17 | 0.8824 | 0.3405
05105 150%807 80'9(?23] 0'655259 0'62;)495 1550.2 | 85.544 | 0.7935 | 0.4840 | 1575.8 | 111.51 | 0.7459 | 0.5077
04| 0.6 14965'227 63'659097 0'395504 0'8216915 1535.5 | 62.863 | 0.4874 | 0.7224 | 1559.1 | 81.081 | 0.4428 | 0.7538
03] 0.7 149@'411 57'13770 0'243787 0'90;‘907 1512.1 | 36.454 0 0.9999 | 1534.6 | 50.632 | 0.0002 | 1.0000
0.2 | 0.8 | 1485.96 49'139230 0 0‘9939996 1512.1 | 36.454 0 0.9999 | 1534.6 | 50.628 0 1.0001
0.1 | 0.9 | 1485.96 49'139230 0 0‘9939996 1512.1 | 36.454 0 0.9999 | 1534.6 | 50.628 0 1.0001

0 1 1485.96 | 49.19230 0 0.999996 | 1512.1 | 36.454 0 0.9999 | 1534.6 | 50.622 0 1.0001
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The average retailer's profit, when using real-time
pricing, is $1559.1, although the profit changed by $81,081.
Real-time pricing results in a profit reduction for the average
retailer of 1.07% compared to the deterministic method and
a profit variation reduction of more than 53.45%.
Comparing real-time pricing to immediate pricing and fixed
pricing, the retailer's average profit has improved. The
average profit of the retailer may be assessed to see if it
exceeds the industry average by comparing the suitable
solutions acquired in time-of-use pricing and instant pricing.
It is now higher than fixed pricing by 4.30% and time-of-use
pricing by 1.54%. In general, it means that the retailer's
resistance is greater than the power market price since the
interval optimization approach models the uncertainty better
than the algebraic method does.

It is evident that 8 points are optimal for the fixed model
iteration (i.e., weight 0.3 for the mean value and 0.7 for the
deviation value), and 7 points are optimal for TOU and RTP
iteration (i.e., weight 0.4 for the mean value and 0.6 for the
deviation value).

4.2 Results from fixed pricing, time of use pricing and real-
time pricing

In order to compare the outcomes of the interval
optimization approach based on the suggested uncertainty
with the deterministic method based on fixed, time of use,
and real-time pricing, Figures (5) through (15) are provided.
Figure (5) illustrates how the demand of the client is fulfilled
using the sub-method in the deterministic approach as well
as the interval optimization technique in accordance with
fixed pricing, prices at the time of use pricing, and real-time
pricing. This graph shows which demand profiles are more
suited to real-time than fixed and time-of-use pricing since
there is less demand provided at peak periods, which is
advantageous for retailers in bilateral contracts. Therefore,
the average profit from real-time pricing is larger than that
from fixed and time-of-use pricing, which is also suitable for
retailers. Finally, it can be shown that the interval
optimization approach's ability to meet demand has been
shown to be less effective than the deterministic method,
leading to an increase in selling price. Additionally,
comparative outcomes for buying energy from the electrical
market using bilateral contracts, distributed generation units,
an interval-based optimization strategy, a deterministic
method based on fixed time-of-use, and real-time pricing are
shown in Figures (6) through (8). Real-time energy sales to
the upstream grid outpace both fixed pricing and time-of-use
pricing in terms of the amount of energy sold. As shown in
Figures (7) and (8), the power purchased through bilateral
agreements and distributed generation units in the interval
optimization method has increased compared to the
deterministic method, while the energy purchased from the
electricity market in the interval optimization method has

decreased compared to the deterministic approach due to the
management of market price uncertainty. Additionally,
Figures (9) and (10) compare the outcomes of fixed pricing,
time-of-use pricing, and real-time pricing using the interval
optimization approach that has been described in addition to
a deterministic method for industrial and residential users. It
can be seen from Figures (9) through (10) that real-time
pricing, which is ideal for both consumers and retailers, is
significantly more accurate than the time of use and set
pricing. In comparison to the time of use and set pricing, the
real-time pricing strategy has generally boosted the retailer's
profit. Additionally, it may be shown that the interval
optimization strategy has a somewhat higher real-time, time-
of-use, and fixed price than the deterministic method for
modeling the market's uncertainty by retailers. Last but not
least, compared to the deterministic technique, the average
merchant profit has marginally dropped in interval
optimization. Retailers have intensified their resistance to
the unpredictable market pricing environment despite the
substantial fall in profit changes. Figures (11), which
examine the outcomes of PEVs' charging and discharging
capacities and SOC for interval optimization and
deterministic methods based on fixed pricing, time of use
pricing, and real-time pricing, respectively.

- Demands supplied by the retailer:

Deterministic Approach

1000 e’

Interval Approach

Supplied demand (kw)

Time (hour)
Fig. 5. The amount of demand supplied by the retailer.

- Power purchased from the market:
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. . Fig. 8. Energy purchased from distributed generation units.
- Purchased power according to bilateral contracts:
- The Electricity sale price for industrial use:
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Fig. 7. Energy purchased under a bilateral agreement. Fig, 9. Energy selling price for industrial subscribers.

- Power purchased from power plants:
- The electricity sale price for household use:
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Deterministic Approach

Interval Approach

for commercial customers ($/MWh)

ing p ricing

Sell

Time (hour)

Fig. 10. Energy selling price for home subscribers.

- Charging and discharging rate of plug-in electric
vehicles:

Deterministic Approach

.....

Interval Approach

o
1
i
(-

charge and discharge power of PEVs (kw)

[

Time (hour)

Fig. 11. Charge and discharge rates for plug-in electric
vehicles.

4.3 Game Theory Method

In this part of the article, the game theory algorithm is shown
for comparison with the results of the previous section
(deterministic and interval methods). The steps in this
section are shown in Figure (12). In step (1) of this part, the
formulation of each of the objective functions is determined
based on game theory, which includes two deviations and
mean functions. Each function has a linear objective
function with several equal and unequal constraints whose
general form is displayed. In order to equalize the value of
different functions, in step (2), maximum and minimum
values of each function have specified and normalized using
the definition of normalization. In step (3), each of the
functions determines its profit-making programming
separately. Then, in step (4), the maximum value obtained

in the profit game for each function is determined according
to the solution for the other function. In the step (5), the most
pessimistic value of each function is determined. In step (6),
the maximum multiplication of the deviation of each
function relative to the pessimistic value is attempted by
determining the most pessimistic value of each function.
The best value of each function and related programming is
determined in step (7) by solving the above problem.

Flowchart of multi-objective problem-solving steps
based on game theory method

itep A multi-objective MIP of the form:
min{ﬁ(x),...,fp(x)\f(x) =c"X,AX <b,EX :d}
gztep Normalize the objective functions:
fi(x)e ':f;min,f;max:l
fi(x) = F(x)
Step

3: For i=1,...,p do:
min {F,(x)|4X <b,EX =d}

To get solution x;

Ste
4: P For i=1,...,p do:

wo_ *
F"=max_,_, F (x)

i J

Step
5: P ;
Set S = H[E -F (x)}
i=l
Step o ' '
6: Maximize S by solving following problem:
max {S|AX <b,EX =d|
E.tep Return efficient solution

The following model shows that, in contrast to the basic
functions, which are Mixed Integer Linear Programming
(MILP), the ultimate model of game theory is mixed integer
non-linear programming (MINLP). In the simulation,
CPLEX and DICOPT solvers are employed, respectively, to
solve each issue.

4.3.1 Programming Constraints

Various programming constraints include network security
constraints and restrictions on the operation of various
equipment. Among the above constraints, one of the most
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critical constraints is how the retailer offers the price and the
suggestion of purchasing/selling. In order to use the linear
model, the linear piecewise model has been used to model
the sensitivity between price and energy. Figure 12. shows
the general structure of the method:

DRq,t)
(MWh) A
DRa.Ly - p—
[DLYU N0 S — | S
DR(.LY i :
- > > PE—
| pRAD | PR, PRAD | pRQ)
: . "> ($/MWh)
pR(,0) pR(LD)  pR(L2) pR(LT)

Fig. 12. Price offer curve by retailer.

The nonlinear price curve was used in the model used and
to simulate the number of 100 steps for modeling.

4.3.2 Game theory simulation result

In this part, results for the simulation are presented in two
multi-objective modes using weight sum method and game
theory and finally, the results of the operation of the
equipment are shown using the game theory method. The
examined modes are shown in Table (10).

Table 10. Reviewed modes

Mode number | Pricing type | Multi-purpose solving method
1 Fix Min-Max Fuzzy
2 TOU Min-Max Fuzzy
3 RTP Min-Max Fuzzy
4 Fix Game Theory
5 TOU Game Theory
6 RTP Game Theory
4.3.3 Fixed pricing mode

In this case, the beam bound table obtained in the fuzzy state
is formed based on consecutive iterations in the table, and
the optimal point is determined based on the fuzzy
satisfaction condition. Also, in the case of using the game
theory model, in case the model is solved only once, the
answer obtained is shown in Table (11). The values of the
two mean and deviation objective functions are 1492.412
and 57.158, respectively, in mode 1 and are equal to
1462.801 and 31.622 for mode 4. It is clear that in the game
theory mode, with a decrease of 1.98% in the average profit,
the deviation from the answer has decreased to 44.67%. As

a result, the game theory model has achieved lower profits
with less risk.

Table 11. Results of the first and fourth modes

Average Deviation | Total profit

function function of the

amount amount retailer ($)
Mode 1 | 1492.412 57.158 1493.024
Mode 4 | 1462.801 31.622 1463.12

4.3.4 Time of use pricing

The results obtained in this mode are shown in Table (12).
The values of the two mean and deviation objective
functions are 1535.565 and 62.863, respectively, in mode 2
and are 1454.282 and 0 for mode 5. In this mode, the profit
earned relative to fixed pricing in both has increased with
increasing risk. However, in the face of rising price volatility
in this mode, the game theory method has decided to
eliminate risk.

Table 12. Results of the second and fifth modes

Average | Deviation | Total profit

function | function of the

amount amount retailer ($)
Mode 2 | 1535.565 62.863 1536.216
Mode 5 | 1454.282 0 1454.282

4.3.5 Real-time pricing mode

The results obtained in this mode are shown in Table (13).
The values of the two objective and deviation objective
functions are 1559.102 and 81.082, respectively, in mode 3
and 1461.249 and 0 for mode 6. In this mode, it is observed
that the average profit has increased in both models, but the
increase in profit in the game theory model is risk-free and
deterministic.

Table 13. Results of the third and sixth modes

Average Deviation | Total profit of
function function | the retailer ($)
amount amount
Mode 3 1559.102 81.082 1559.793
Mode 6 1461.249 0 1461.249

4.3.6. Results for fixed, time of use and real-time pricing
in game theory approach

According to the obtained results, it is clear that in game
theory, programming has been conducted cautiously, and by
changing the price model, the priority is to keep the risk at a
lower level compared to the fuzzy method programming. In
the following, how to operate the equipment in the three
programming modes of 4, 5, and 6 is shown comparatively
in Figures (13) - (20).
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Fig. 15. The rate of use of bilateral contracts in each case.
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Fig. 16. The amount of power produced by distributed sources.
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Fig. 19. Charged and discharged rate for plug-in electric
vehicle batteries.

5. DISCUSSION

Real-time selling prices were closer to the real situation than
fixed pricing and usage time. Thus, in real-time pricing,
compared to fixed pricing, it shows an increase of 5.16%.
Compared to the firm approach to fixed pricing, the average
retail profit fell 1.36% while earnings changes fell more than
56.82%. According to utilization-time pricing, the average
retail profit is also $1535.65, while the decrease in profit is
$62.86. The typical retail profit decreased by 1.21 percent,
while profit changes decreased by more than 52.67 percent
from the time of decisive strategy to pricing. This
demonstrates that the average profit of the merchant has
grown in comparison to fixed pricing due to the favorable
impact of pricing at the moment of usage. The average retail
profit decreased by 1.07 percent vs. the real-time pricing
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strategy that was decided upon, while profit changes
decreased by more than 53.45%. This indicates that
compared to the current price and fixed pricing, the average
retail profit is larger in real-time. Finally, compared to fixed
pricing and 1.54% compared to time-of-use pricing, the
average retail profit grew by more than 4.30%. Due to the
flexibility of battery storage systems, plug-in electric cars,
and hydrogen storage systems, merchants' predicted profits
have improved as a result of setting the price of selling in
accordance with real-time pricing by energy providers. It
has produced a win-win approach for both customers and
retailers. Therefore, real-time pricing has a larger average
profit than fixed and time-of-use pricing, which is also
suitable for retailers. Lastly, it can be shown that the interval
optimization approach's ability to meet demand has been
shown to be less effective than the deterministic method,
leading to an increase in selling price. Real-time energy
sales to the upstream network outnumber use-time pricing
and fixed sales of energy. In addition, the interval
optimization method uses less energy than the definitive
strategy does in the power market. The real-time approach
is better for both consumers and retailers since it is far more
realistic than the time of usage and a set price. Finally, the
average retail profit in the interval optimization method is
slightly lower than the definitive method. While profit
changes have declined sharply, retailers have increased
resistance to market price uncertainty. In game theory mode,
less profit is achieved with less risk. In the time-of-use
pricing mode, profits relative to fixed pricing in both
increased with increasing risk. However, in the face of rising
price volatility in this case, the game theory approach has
decided to eliminate risk. In real-time pricing mode, it is
observed that the average profit in both models has
increased, but the profit increase in the game theory model
is risk-free and definite.

6. CONCLUSION

The problem of determining the price of selling electricity
to residential, commercial, and industrial consumers in three
different types of fixed pricing, time of use pricing, and real-
time pricing by electricity retailers in the smart grid
environment has been considered in this article, given the
uncertainties. A benchmark of smart grid technologies has
also been provided in this article for the demand response
program for controlling network demand peaks and
intelligent charging and discharging management for
various storage systems. Due to the flexibility of battery
storage systems, plug-in electric cars, and hydrogen storage
systems, merchants' predicted profits have improved as a
result of setting the price of selling in accordance with real-
time pricing by energy providers. A demand response
program has also been suggested as a way to control peak
demand, flatten the demand curve, lower the selling price of
power to customers, and boost the profit of the electricity

retailer. It has resulted in a strategy that benefits both
customers and retailers.

LIST OF SYMBOLS

Indexes
b : Index for bilateral contracts
h : Index for production of blocks of linear piecewise model of

distributed generation units

i : Index for Constraint demonstrating of minimum on time
and off time for distributed generation units

j : Distributed generation unit index
: Electric car index

s : Scenario index

t : Time of study index

z : Index of price-consumer curve stairs based on sales price
Sets

B : Number of bilateral contracts

H  : Number of generation blocks of linear piecewise curves of

distributed generation units

1 : The maximum amount of on and off values of distributed

generation units

J : Number of distributed generation units

V' :plug-in electric vehicles number

S : Scenarios number

T :All time considered

Z : Number of steps of consumer price-power curve

Parameters

Dn,, : Auxiliary variable for linear modeling stipulates
the minimum shutdown time of distributed
generation units

DY (1 z,t5s) :Power offered by the consumer group in curve of
price-power expressed in kW

DRP™™ : The maximum percentage for demand which can
participate in demand response program

G/ : Sunlight at any time and in any scenario expressed
in w/m?

G, : Sunlight in standard conditions expressed in w/m?

NOCT : The normal operating temperature of photovoltaic
systems expressed in °C

o, : Probability of any scenario

B : The maximum limit on bilateral contracts per
kilowatts (kW)

P : The minimum limit on bilateral contracts per
kilowatts (kW)

P; Max Nominal power of blocks of distributed
generation units in modeling operating costs in
piecewise linear functions, per kilowatts

Pi’ : The available power of the photovoltaic system

expressed in kW
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: Maximum power of the photovoltaic system in

standard conditions expressed in kW
: Available wind turbine power per kilowatts

: Nominal power of wind turbine per kilowatts
: Maximum battery charge limit per kilowatts
: Minimum battery charge limit expressed in kW

The rate of power increase between two

consecutive hours of distributed generation units
expressed in kWh

The rate of power reduction between two

consecutive hours of distributed generation units
expressed in kWh

Cost related to blocks of distributed generation

units in the piecewise linear model of operating
costs expressed in dollars per kWh

: Consumer price in the price-power curve in
dollars per kWh

: The ambient temperature at any time and in any
scenario

: Photovoltaic system module temperature in
standard conditions in degrees Celsius

Auxiliary variable for linear modeling

stipulates minimum unit on time

: Wind speed at any moment and time in meters per
second

Rated, minimum and maximum speeds in the
power-speed curve of the designed wind turbine

: Maximum limit on the amount of energy stored in
the battery storage system expressed in kW
Minimum limit on the amount of energy stored in
the battery storage system expressed in kW
Charging efficiency for storage system battery

: Discharging efficiency for the battery storage
system

: Energy price of bilateral contracts in dollars per
kWh

: Electricity market price in dollars expressed in
kWh

: Minimum power limit for plug-in electric vehicles

: Maximum power limitation of plug-in electric
vehicles

: Maximum discharge power limit for plug-in
electric vehicles

: Maximum discharge power limit of plug-in
electric vehicles

Travels required for plug-in electric vehicles
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Variables

Al z,1)

D(lts)

: Electric car charging efficiency
: Plug-in electric vehicle discharge efficiency

: Minimum of battery power for plug-in electric
vehicle
: Maximum of battery power of plug-in electric
vehicle

Minimum power consumption limit in the
electrolyzer
: Maximum power consumption limit in the
electrolyzer
: Maximum limit of hydrogen molecules produced
in the electrolyzer
: Electrolyzer efficiency
: The minimum amount of hydrogen heat
: The pressure of hydrogen tanks at start time
: The initial pressure of hydrogen tanks
: Maximum pressure limit for hydrogen tanks

: Minimum pressure limit for hydrogen tanks

: Maximum limit of hydrogen molecules used in
the fuel cell

: Fuel cell efficiency

: Minimum of power limit produced in fuel cell

: Maximum of power limit produced in fuel cell

: Gases constant

: The average temperature inside the chamber
: The total volume of hydrogen storage tanks
: Upper limit of electricity market prices

: The lower limit of electricity market prices

: The predicted price of the electricity market

Target critical profits for functions and

opportunities

: Binary variable for selecting the selling price

offered by the retailer to consumer groups from the
price-power curve {0 and 1}

: Cost of purchasing energy from bilateral contracts
(dollars)

: Cost of purchasing energy from the electricity
market (dollars)

: Utilization cost for distributed generation units
(dollars)

: The demand fed by the consumer group by

electricity retailer considering the demand

response program expressed in kilowatts
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DRP(t,s) : The real variable for implementing a demand mode
response program expressed in kW (it is positive Pc,, . : Charged power of plug-in electric vehicles
when increasing the demand and negative when .
reducing demand) Pd,, : Discharged power of plug-in electric vehicles
D" (1ts)  :New demand fed by the consumer group by the N< : Hydrogen moles consumed by the fuel cell
electricity retailer considering the Demand ELY
response program expressed in kW N : Hydrogen moles produced by the electrolyzer
B,: Power purchasing from bilateral contracts p : The pressure of hydrogen tanks
expressed in kW pE : Power consumed by the electrolyzer
P’ : Total power purchased by bilateral contracts e
expressed in kW P, *\C : The power generated by the fuel cell
P Charged power of battery storage system Uk : Binary variable for electrolyzer working status
expressed in kW v : Binary variable for fuel cell working status
P : The discharging capacity for battery storage i
system expressed in kW Functions
P’ Purchasing power from electricity market Fp, A) : Electricity retailer profit function
expressed in kW &(F,) : Resistance function in information gap decision
P; L;f” : Power utilized by distributed generation units theory
R, (L1) : Revenue obtained from each of the distributed B(F,) : Opportunity function in information gap decision
generation units theory
S, : Binary variable for selecting or not selecting REFERENCES
bilateral contracts {0 and 1} ‘ .
SP(,z,1) : Price of power-price curve intervals for groups of [1] E:?alileelrsg}alr]ggiB;?;z:itio:salcfn };qucaeri Gsr?:im;%olaoofl)a;;
consumers in dollars per kWh 2028-2035. 2013 ’ ’
SP®" 1) :  Pricing of real-time sales by electricity retailers for [2] Sachan S, Deb S, Singh SN. Different charging
consumer groups in dollars per kWh infras.tructur.es along With sm_a%’t charging. strategies for
SP ()  Time of use pricing for sales at low-demand time Tl;.?(r)lzczgzhlde& Sustainable Cities and Society. 2020 May
by electricity retailers for the consumer group in [3] Lil'l C, Abaulkareem SS, Rezvani A, Samad S, Aljojo N,
dollars per kWh Foong LK, Nishihara K. Stochastic scheduling of a
SPIY @) : Time of use pricing for sales at medium-demand renewable-based microgrid in the presence of electric
time by electricity retailers for the consumer group vehicles using modified harmony search algorithm with
in dollars per kWh control policies. Sustainable Cities and Society. 2020 May
SPPT v : Time of use pricing for sales at peak-demand time 3:102183. . .

o ) ) [4] Yang M, Zhang L, Dong W. Economic Benefit Analysis of
by electricity retailers for the consumer group in Charging Models Based on Differential Electric Vehicle
dollars per kWh Charging Infrastructure Subsidy Policy in China. Sustainable

U s : The Binary variable for determining the charging Cities and Society. 2020 Apr 23:102206.
status of the battery storage system {0 and 1} [5] Amlr.hosselm. B, Hpsselnl S.M..H. Scheduling charging of
dise The Binarv variable for determining the hybrid-electric vehicles according to supply and demand
Uy Y & based on particle swarm optimization, imperialist
discharging status of the battery storage system {0 competitive and teaching-learning algorithms. Sustainable
and 1} cities and society. 2018 Nov 1; 43:339-49.
U : Binary variable for utilization status of distributed ~ [6] ~Gong L, Cao W, Liu K, Zhao J. Optimal charging strategy
g ducti its 10 and 1 for electric vehicles in residential charging station under
production units {0 and 1} dynamic spike pricing policy. Sustainable Cities and Society.
X II’J : amount of the energy stored in battery storage 2020 Dec 1; 63:102474.
system expressed in kWh [7] Singh S, Jagota S, Singh M. Energy management and voltage
soc - amount of the enerey stored in battery of plug-in stabilization in an islanded microgrid through an electric
L8 ' &y 1y olpue vehicle charging station. Sustainable cities and society. 2018
electric vehicles Aug 1; 41:679-94.
Ue,, . : Binary variable for plug-in electric vehicles [8] Christophe Defeuilley, “Retail Competition in Electricity
. chareine mode Markets”, Energy Policy37, Pages 377-386, 2009.
.g g ] ) ) ) [91 Miadreza Shafie-khah and Jodo P. S. Cataldo. “A Stochastic
Ud + Binary variable for electric vehicle discharge Multi-Layer Agent-Based Model to Study Electricity Market


http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Raquel%20Garc%C3%ADa-Bertrand.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5165411

M. R. Alvandi and S. M. H. Hosseini / GMSARN International Journal 20 (2026) 159-167

167

[10]

[11]

[12]

[13]

[15]

[17]

[21]

[22]

Participants Behavior”, IEEE Transactions on Power
Systems, Vol 30, Pages 867-881, 2015.

Benjamin Biegel, Lars Henrik Hansen, Jakob Stoustrup and
Palle Andersen, “Value of Flexible Consumption in the
Electricity Markets”, Energy, Vol 66, Pages 354-362, 2014.
Guodong Liu, Yan Xu and Kevin Tomsovic, “Bidding
Strategy for Microgrid in Day-Ahead Market Based on
Hybrid Stochastic/Robust Optimization.” IEEE Transactions
on Smart Grid, Vol.7, Pages 227-237, 2016.

Meng Song and Mikael Amelin, “Purchase Bidding Strategy
for a Retailer with Flexible Demands in Day-ahead
Electricity Market.” IEEE Transactions on Power Systems,
Vol.32, Pages 1839-1850, 2017.

Marina Gonzalez Vaya and Goran Anderson, “Optimal
Bidding Strategy of a Plug-In Electric Vehicle Aggregator in
Day-Ahead Electricity Markets Under Uncertainty.” IEEE
Transactions on Power Systems, Vol.30, Pages 2375-2385,
2015.

P. Rezaei Baravatia, M. Moazzami, SMH Hosseini, HR
Mirzaei, B. Fani, “Achieving the exact equivalent circuit of
a large-scale transformer winding using an improved detailed
model for partial discharge study.” International Journal of
Electrical Power & Energy Systems, Vol.134, Pages 107451,
2024.

Sayyad Nojavan, Behnam Mohammadi-Ivatloo and Kazem
Zare, “Optimal Bidding Strategy of Electricity Retailers
Using Robust Optimisation Approach Considering Time-of-
use Rate Demand Response Programs Under Market Price
uncertainties.” IET  Generation, Transmission &
Distribution, Vol.9, Pages 328-338, 2015.

M. Rajabi, S.M. Hassan Hosseini, “Maximum power point
tracking in photovoltaic systems under different operational
conditions by using ZA-INC algorithm.” SN Applied
Sciences, Vol.1, Issue 12, Pages 1535-1543, 2019.
J.Manikya Rao, P.V.N.Prasad, G.Tulasi Ram Das,
“Customer Outage Cost Evaluation in Electric Power
Systems”, ARPN Journal of Engineering and Applied
Science, Vol.5, No.8, 2010.

Eero Lehto, “Electricity Prices in the Finnish Retail Market”,
Energy Policy, Vol.39, Pages 2179-2192, 2011.
M.Rastegar, and M.F.Firuzabadi,” Outage Management in
Residential Demand Response Program”, IEEE.Tran.Smart
Grid, 2014.

R. H. Boroumand and G. Zachmann, “Retailers’ Risk
Management and Vertical Arrangements in Electricity
Markets,” Energy Policy, vol. 40, Pages 465-472, 2012.

E. A. Feinberg and D. Genethliou, “Load forecasting”, in
Applied Mathematics for Restructured Electric Power
Systems, Pages 269-285, 2005.

A. Hatami, H. Seifi and M. K. Sheikh-El-Eslami, “A
Stochastic-Based Decision-Making Framework for an
Electricity Retailer: Time-of-Use Pricing and Electricity
Protfolio Optimization”, IEEE Transactions on Power

[24]

(23]

[26]

(27]

(30]

(31]

[33]

[34]

Systems, Vol.26, Pages 255-267, 2011.

A. Hatami, H. Seifi and M. K. Sheikh-El-Eslami, “Optimal
Selling Price and Energy Procurement Strategies for a
Retailer in an Electricity Market”, Electric Power Systems
Research, Vol.4, Pages 246-254, 2009.

Woo, Ch, R. I. Karimov and I. Horowitz, “Managing
Electricity Procurement Cost and Risk by a Local
Distribution Company”, Energy Policy, Vol.32, Pages 635-
645, 2004.

Nojavan, S., Majidi, M., Najafi-Ghalelou, A., Ghahramani,
M., Zare, K., 2017g. A costemission model for fuel
cell/PV/battery hybrid energy system in the presence of
demand response program: g-constraint method and fuzzy
satisfying approach. Energy Convers. Manage. 138 (April),
383-392.

Nojavan, S., Majidi, M., Zare, K., 2018. Optimal scheduling
of heating and power hubs under economic and environment
issues in the presence of peak load management. Energy
Convers. Manage. 156 (January), 34—44.

Hosseini SMH, Rezaei Baravati P., 2014. Transformer
winding modeling based on multi-conductor transmission
line model for partial discharge study, Journal of Electrical
Engineering and Technology, Vol.9, 154-161.
Mohseni-Bonab, S.M., Rabiee, A., Mohammadi-Ivatloo, B.,
Jalilzadeh, S., Nojavan, S., 2016. A two-point estimate
method for uncertainty modeling in multi-objective optimal
reactive power dispatch problem. Int. J. Electr. Power Energy
Syst. 75 (February), 194-204.

Nojavan, S., Aalami, H. allah, 2015. Stochastic energy
procurement of large electricity consumer considering
photovoltaic, wind-turbine, micro-turbines, energy storage
system in the presence of demand response program. Energy
Convers. Manage. 103, 1008—-1018.

Aalami, H.A., Nojavan, S., 2016. Energy storage system and
demand response program effects on stochastic energy
procurement of large consumers considering renewable
generation. IET Gener. Transm. Distrib. 10 (1), 107-114.
Ghalelou, A.N., Fakhri, A.P., Nojavan, S., Majidi, M.,
Hatami, H., 2016. A stochastic selfscheduling program for
compressed air energy storage (CAES) of renewable energy
sources (RESs) based on a demand response mechanism.
Energy Convers. Manage. 120, 388—396.

Hosseini SMH, Rezaei Baravati P., 2015. Partial discharge
localization based on detailed models of transformer and
wavelet transform techniques. Journal of Electrical
Engineering and Technology. Vol.10, 1093-1101.

The GAMS Software Website, 2018. [Online]. Available:
http://www.gams.com/dd/ docs/solvers/cplex.pdf.

Brooke, A., Kendrick, D., Meeraus, A., 1990. GAMS User’s
Guide. The Scientific Press, Redwood City, CA [Online].
Available:  http://www.gams.com/docs/gams/GAMSUsers
Guide.


http://www.gams.com/docs/gams/GAMSUsers

