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A B S T R A C T 

Epilepsy is a dangerous disorder after Alzheimer's. Around 50 – 70 million people around 

the world are affected by this disease. It happens due to the disturbance in the motor nerves 

of the brain which results in epileptic seizures. A seizure is a state, in which it has 

misbalancing or breaks out of electrical movement in the brain having properties like time 

frequent and unpredictable. This neurological illness is transient, chronic, and recurrent. 

An epileptic seizure occurs when neurons suddenly misfire and synchronize; mimicking 

the brain's excessive and hyper-synchronous neural activity. It causes sudden fainting, 

uncontrollable motion of upper and lower limbs, and anxiety. The seizures are measured 

by the process of electroencephalogram (EEG). Using EEG records from the CHB-MIT 

scalp EEG collection, we compare how well deep learning and traditional machine 

learning models predict seizures. The data set, which includes preprocessed EEG data 

from pediatric individuals with spontaneous seizures, enables a thorough assessment of 

the model's effectiveness. Traditional machine learning models like Artificial Neural 

Networks (ANN) and Decision Trees are combined with Bidirectional LSTM (deep 

learning technique). The model aims to classify epileptic seizures from non-epileptic 

seizures. The total accuracy obtained by the model is 99.99%. 

 

1. INTRODUCTION 

Epilepsy is a disease that is caused by a disturbance of the 

electrical activity in the brain. In every 100,000 people, the 

48th individual has epilepsy. It is the third 

most occurred type of seizure after stroke and Alzheimer’s 

disease. The World Health Organization reports that most of 

the patients are from underdeveloped countries, and from 

rural areas. Even the likelihood of dying young people is 

higher in epilepsy. Epilepsy is defined by the brief episodes 

of uncontrolled movement that may impact only a specific 

area of the body (partial) or the entire body (generalized). 

There are situations when these seizures are followed by 

unconsciousness. Every year, between 100,000 and 120,000 

children are hospitalized due to being epileptic. When an 

adult (over 18) is having epilepsy experiences two or more 

times within a year, their condition is considered active. Low 

blood sugar, low oxygen levels, or a severe electrolyte 

imbalance are the symptoms that children usually 

experience at a very young age. Consequently, having 

seizures does not automatically indicate that a person has 

epilepsy. Seizures caused by anomalies throughout the body 

are not taken into consideration for inclusion in the diagnosis 

of epilepsy. If a patient has a seizure that lasts more than 1-

2 minutes, they should get medical attention right away. 

Electroencephalography is a technique used to detect 

epileptic symptoms [1]. The procedure involves applying 

electrodes, which are tiny metal discs with thin wires, to the 

patient's scalp. The electrodes capture electrical charges 

generated by brain cell activity. The charges are amplified 

and shown in the Fig. 1 (EEG amplitude of the channel). 

There are many kinds of epileptic seizures depending on 

the features of the seizure [2]-[3].  EEG uses the principle of 

differential amplification. It diagnosed brain disorders like 

stroke and epilepsy. However, EEG recorded from the 

cortex surface or the scalp cannot record short-term changes 

in local field potential caused by action potentials in neurons. 

Moreover [1], motion errors in the EEG traces are mostly 

caused by the lengthy wires that are used to link several 

electrodes. As a result, wearable EEG solutions with few 

electrodes are highly desired by patients because they enable 

continuous monitoring throughout the day [4], [5]. EEG 
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signal collection is not simple, and even in the absence of 

lengthy wires, data can get tainted with artifacts. In real, 

physiological variables are irrelevant to the brain and can 

produce artifacts (eye blinks, muscle movement). Because 

of their structural similarities in amplitude and frequency, 

these EEG artifacts are misinterpreted as seizures, which 

cause problems for the algorithms used for epilepsy 

detection. Therefore, it is crucial to identify EEG 

abnormalities accurately to prevent false alarms in epilepsy 

detection systems. The epilepsy detection system then 

decides whether to extract elements that can help in the 

system's classification of seizures. Accurate seizure 

detection is essential for automated detection systems when 

a seizure is identified based on the characteristics taken from 

the epileptic EEG signals that describe the patient's state. 

During neurological surgery, precise seizure detection can 

be applied to evaluate the state of the patient. It takes a lot 

of time for EEG specialists to observe EEG readings since 

they must evaluate each patient's whole 45 min to 1-hour 

recording period. We provide machine learning (Decision 

tree) and deep learning (Bi-LSTM) models to reduce the 

time required for epilepsy detection. It involves extracting 

complex characteristics out of the EEG signals and 

categorizing them. It is crucial to choose the relevant 

characteristic from the data for accurate detection. 

 

Fig. 1. EEG amplitude of the channel. 

2. RELATED WORK 

EEG signals are widely used in epilepsy research, especially 

for seizure detection, as they represent brain cell activity. 

EEG data is analyzed by automatic algorithms in a fast and 

precise manner, transforming the information into discrete 

outputs that allow the determination of various epileptic 

states, including post-seizure and seizure occurrences. 

Improving the model's accuracy and speed is the foremost 

purpose. Numerous methods for detecting epilepsy have 

been proposed and most of which include machine-

learning approaches and deep learning algorithms, which 

also employ multi-view learning techniques, and have 

demonstrated remarkable potential in this field by 

effectively diagnosing the condition of epilepsy based on 

EEG readings. 

2.1 Epilepsy detection using Machine Learning 

The author [1] outlines the automatic identification of 

epileptic seizures through the use of a multi-layer network 

built using the mutual information (MI), permutation dis-

alignment index (PDI), and Pearson correlation coefficient 

(PCC) as three distinct correlation measures. The method 

utilizes an improved genetic algorithm (IGA) for the 

optimization of features and network weights within the 

multi-layer network. PCC measures linear relationships, MI 

measures nonlinear relationships, and PDI is introduced as a 

permutation-based correlation index. For seizure detection, 

three classifiers are employed: K-nearest neighbor (KNN), 

Support Vector Machine (SVM), and Random Forest (RF). 

Random Forest (RF) has better model accuracy, 

generalization capacity, and training speed. The suggested 

approach outperforms single-layer networks in terms of 

performance. The author [2] demonstrates that the 

Electroencephalogram (EEG) has the data required to 

identify brain activity in humans, making scans helpful for 

diagnosing and treating epileptic seizures. However, it 

requires time to visually identify seizures from EEG images. 

Thus, a fast and accurate method is needed to diagnose more 

patients in less time. An auto-regressive moving average 

(ARMA) model is introduced for the dynamic and varying 

nature of EEG time series data. The further step is to classify 

suspicious elements together by using pattern recognition 

and later deducting them. As the data contains other seizures 

too so to solve this issue the paper has proposed the method 

of one class SVM for diagnosis. During the training phase, 

the EEG samples are used to train one-class SVM (RBF 

kernel), and the normal epilepsy EEG records to train the 

other one. The author [3] proposed a 54-DWT mother 

wavelet analysis for EEG segments, which employs four 

machine learning algorithms: SVM (support vector 

machine), KNN (k-nearest neighbors), Naïve Bayes, and 

ANN (artificial neural network). It employs an optimal 

technique using a genetic algorithm. It is observed that 

compared to others ANN gives more accurate predictions 

than others. After optimization (GA) the accuracy of ANN 

improves to 99.6%. But machine learning models are less 

efficient to work with complex time-series data due to its 

varying nature. Further, Table 1 presents the various ml 

techniques for epilepsy. 

 

Table 1. ML techniques for epilepsy 

Sr. Methodology Feature 

Extraction 

Accuracy 

[4] Single-Channel  and 

Multichannel 

Embedding Module: 

DWT 86.68% 

[6] ARMA, SVM SVD, EMD 93-94% 

[5] MLP DWT 97.26% 
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2.2 Epilepsy detection using Deep Learning 

The paper [7] describes the automated identification of 

epilepsy using electroencephalogram (EEG) data with deep 

learning techniques. The goal is to identify epilepsy so that 

it can be treated quickly and the probability of further 

seizures and the problems related to them can be decreased. 

This approach uses the chronological correlations between 

several EEG channels to identify epilepsy, in contrast to 

other current EEG-based methods that rely on deep learning 

models. A Bidirectional Long Short-Term Memory (Bi-

LSTM) neural network with an attention mechanism is used 

in the process. Based on weight distribution, the attention 

mechanism brings key features from sequences. Following 

the input of these characteristics, a Bi-LSTM model 

evaluates the intrinsic temporal correlations concealed in 

EEG signal features, generating high accuracies on various 

datasets with an accuracy range of 95.60% to 99.87. The 

research [8]-[12] demonstrates how multiple deep learning 

(DL) model architectures can be employed for epilepsy 

detection by using transfer learning (TL) approaches. It also 

introduces a Transformer-based algorithm and investigates 

its performance in comparison to pure Convolutional Neural 

Networks (CNNs). A customized Convolutional Neural 

Network (CCNN) architecture is designed for extracting 

features from preprocessed EEG data. Convolutional layers 

with ReLU activation, max-pooling layers, and fully linked 

layers with a Softmax activation function are incorporated 

into the design. The design of the CCNN attempts to 

increase spatial invariance, and it is trained using the Adam 

optimizer. It performs better than current technologies, as 

evidenced by its high values for accuracy (95%) specificity, 

sensitivity, F1-Score, precision, and specificity. The 

automated feature extraction and real-time detection 

capabilities of machine learning (ML) classifiers are limited 

when it comes to doing multiple-class categorization. So, a 

deep Convolutional LSTM neural network model was 

suggested in the study [12]-[18]. The C-LSTM model 

predicts results at a fast rate, with short detection duration 

time. The paper addresses the challenges of establishing a 

multiple-class model for epileptic seizure detection and the 

requirement for predicting seizures within short-time 

segments.   

The C-LSTM network has a short detection period and 

predicts outcomes quickly. To distinguish between epileptic 

seizure activity and those of other classes, a sliding window 

approach is used. Logical values are obtained by converting 

the likelihood of events using the Softmax activation 

function, once the FC layer's output is obtained. The final 

classification results are determined by selecting the highest 

values obtained from the likelihood of each node's input in 

the softmax layer.  Manual feature extraction was necessary 

for ML approaches, which limited their versatility. DL 

allows for the complete automation of feature extraction and 

classification. A recurrent neural network (RNN) model 

[19]-[22] called long short-term memory is suggested as the 

basis for automated epileptic seizure detection. Because of 

its memory capacities and suitability for sequence data, 

LSTMs are useful for evaluating time-series data, such as 

EEG signals. For seizure detection, normal in comparison to 

ictal and normal in comparison to pre-ictal are the two 

classes in the two-class categorization in this study [23]-[34]. 

Using spectrograms of EEG signal segments, the 

Convolutional Neural Network (CNN) with residual blocks 

is the baseline model. The second model employs a three-

layer CNN that processes spectrograms as well. The third 

model uses a five-layer CNN and Phase Space 

Reconstruction (PSR) to get over spectrogram restrictions. 

The primary pattern of various signal activity is captured by 

PSR, which offers a direct projection from the time domain. 

Moreover, Table 2 shows the various deep learning 

techniques for epilepsy used in the state of the art. 

 

Table 2. Deep learning techniques for epilepsy 

Sr. Methodology Feature Extraction Performance 

[2] MDCNN _ Accuracy of 

99.56% 

[1] Bi-LSTM _ Accuracy of 

95.6% 

[14] DCNN, 

LSTM, D-

LSTM 

DWT Accuracy of 

98.80% 

[16] CNN FFT, ICA, PCA AUC values 

are 0.82 and 

0.89 

[22] C-LSTM Softmax activation 

function 

Accuracy of 

98.8% 

3. MATERIALS AND METHODS 

This section presents the major techniques that are taken 

in this study, which started with the dataset's extraction and 

resampling and ended with the model selection and pre-

processing. Three classifiers are used for model evaluation 

(Decision tree, ANN, and Bi-LSTM). A workflow chart is 

shown in Fig. 2. 

3.1 Dataset Description 

For algorithm evaluation, the Children's Hospital Boston's 

CHB-MIT scalp EEG database has been used. The 

Children's Hospital Boston gathered the EEG recordings 

from young patients who had spontaneous seizures. The 

patients were monitored for a few days at most after 

stopping anti-seizure medication to figure out if they were 

suitable candidates for surgery and to characterize their 

seizures. 24 instances (Chb01–Chb24) from 23 pediatric 

patients with uncontrolled epilepsy are included in the 

database. The worldwide 10-20 system standard is followed 

for electrode locations, and 256 Hz sampling is used for 
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EEG readings. The 661 recordings from 23 individuals in 

the CHB-MIT dataset include 158 seizures across 958 hours 

of EEG data. Band pass filter is applied to the EEG signals 

at 0 Hz and 128 Hz after being captured at 256 training on 

overlapping 1-, 2-, and 4-second EEG segment 

segment. Analysis of 6000 examples of 1-second 

normalized data, 3000 examples of 2-second data, and 1500 

examples of 4-second data was done. Preictal and ictal data 

that are balanced in the dataset provide a thorough 

assessment of the model's performance. The EEG 

(electroencephalogram) datasets from the “CHB-MIT Scalp 

EEG Database” are in open source. The dataset contains the 

following files.  

 

 

Fig. 2. Workflow of the model. 

Only preictal data from all 24 patients that is contained in 

the Chbmit preictal channels data file, and only ictal data 

from all 24 patients contained in the Chbmit ictal channels 

data file. The balanced pre-ictal and ictal data files from all 

24 patients are included in the chbmit preprocessed data file. 

There are 24 columns in this file; however, only 23 columns 

represent the channels, and last column is the label column. 

'0' in the label column denotes the absence of seizures, 

whereas '1' denotes the presence of seizures. 

3.2 Preprocessing 

Normalization is a preprocessing method applied to the 

dataset to standardize the data and ensure that it is consistent 

across different features and variables. Normalization plays 

a significant role in preparing the data for analysis and 

model training for epilepsy detection using EEG data. The 

CHB-MIT dataset consists of EEG recordings obtained from 

patients, which include both preictal (before seizure) and 

ictal (during seizure) data. It's essential to ensure that the 

dataset is balanced, meaning that there is an equal 

representation of both preictal and ictal samples. This 

balance helps prevent bias in the model and ensures that it 

can effectively learn patterns associated with seizure activity. 

The dataset is initially loaded from a file named 

'chbmit_preprocessed_data.csv'. This file contains a 

structured format where each row represents a sample (a 

time series segment of EEG data), and each column 

represents a feature or channel (EEG readings from specific 

electrodes). 

After loading the dataset, the next step is featuring scaling, 

where the features are normalized using standard scaling 

techniques. Standard scaling, also known as z-score 

normalization, involves transforming the data such that it 

has a mean of zero and a standard deviation of one. This 

transformation ensures that all features have similar 

dimensions, preventing features with high magnitudes from 

controlling the model training process. Then the data is 

reshaped to fit the proper format for input into a 

Bidirectional Long Short-Term Memory (Bi-LSTM) neural 

network. Bi-LSTM is a type of recurrent neural network 

(RNN) that is well-suited for sequential data, such as time 

series data like EEG recordings. Bi-LSTM networks require 

three-dimensional input data, typically in the form of (batch 

size, timesteps, features), where batch size represents the 

number of samples, timesteps represent the length of each 

sequence, and features represent the number of input 

features at each timestep. Here no explicit feature extraction 

is performed. Instead, the EEG data, after normalization and 

reshaping, serves as input to the Bi-LSTM model, which 

learns to extract relevant features and patterns associated 

with seizure activity during the training process. This 

approach leverages the representational power of Deep 

Learning models to handle complex, high-dimensional data 

like EEG recordings effectively. 

3.3 Methodology 

Deep learning models, including Bidirectional LSTM and 

Dense Neural Networks, are compared against classical 

machine learning model Artificial Neural Networks (ANN). 

The objective is to develop a model that accurately predicts 

binary outcomes based on various features. 

ANN: The term Artificial Neural Network refers to a 

computational model whose architecture is modelled after 

biological neural networks present in the brain. An artificial 

neural network (ANN) is made up of layers of network 

processing units, known as neurons or nodes. It consists of 

an input layer, one or more hidden layers, and an output 

layer. After receiving input signals, it applies an activation 

function, and each neuron transmits the outcome to the 

neurons in the subsequent layer. To enable the network to 

learn from input data and provide the desired output, weights 

connected to the neurons are altered during the training 

phase. 
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Fig. 3: Confusion matrix for ANN. 

The training progresses over 20 epochs, with 

improvements observed in the both training and validation 

accuracy. The model shows a consistent decrease in loss 

over epochs. After training, the model is evaluated on the 

test set, achieving a test accuracy of 84.75%, indicating its 

efficiency in extracting information well on unseen data. 

The blue area indicates the correct prediction in the 

confusion matrix. Confusion matrix: It is the matrix made 

by the predicted variables, having four terminologies in the 

Fig. 3: 

▪ True positive (TP): True positives are instances 

where seizure is detected and in actuality, seizure is 

also present. Here the percentage of TP is 42.41%. 

▪ True negative (TN): True negatives are instances 

where seizure is not detected and in actuality, seizure 

is also absent. Here the percentage of TN is 42.35%. 

▪ False positive (FP): False positives are instances 

where seizure is detected but in actual seizure is not 

present. Here the percentage of FP is 7.58%.  

▪ False negative (FN): False negatives are instances 

where seizure is not detected but in actuality, seizure 

is present. Here the percentage of FN is 7.66%. 

The accuracy and loss evaluated during the training phase 

in the ANN model are described in Fig. 4 and Fig. 5. 

The following Table 3 shows the accuracy, precision, 

recall, and F-1 score of the ANN model. Fig. 6 show the 

workflow of combine model.  

Table 3: Performance evaluation of ANN 

Performance metrics ANN model 

Accuracy 84.75% 

Precision 84.82% 

Recall 84.67% 

F-1 Score 84.74% 

 

Fig. 4: Graph between epoch and model accuracy 

 

Fig. 5. Loss evaluated during each epoch. 

 

Fig. 6. Workflow of combined model. 

Bi-LSTM: LSTM is an extended RNN designed to 

address the issue of gradient disappearance and explosion 

during back-propagation. It is appropriate for classifying 

EEG signals and effectively captures long-term dependent 

information from time-series data. The information 

propagates along with the LSTM units in the hidden layer of 

the LSTM network in a temporal order. We used forward 
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and backward propagated information to build a Bi-LSTM-

based neural network model, which helps to better capture 

long-term dependent aspects in EEG signals. 

 

Proposed Methodology 

________________________________________________ 

 

 

Forward LSTM:  

 (1) 

Backward LSTM: 

 (2) 

Combined state: 

 (3) 

A sequential model (Bi-LSTM) with many dense layers 

and a ReLU activation function is constructed. The Bi-

LSTM layer analyzes EEG sequence data of brain activity 

in past and future signals. This helps the model focus on 

relevant information in the data and increases the model's 

accuracy. The parameters for adaptive estimates are 

examined by the "Adam" optimizer. Two dropout layers are 

added in the LSTM layer and ReLU activation function. The 

dropout network helps to lower the training error as the 

number of neural network layers rises. After receiving the 

output from the FC layer, probabilities are transformed into 

logic values using the softmax activation function. The 

highest values were found from the probability of each 

node's input in the softmax layer. Then, a fully linked layer 

is employed to achieve the binary classification of seizure 

and non-seizure classes. To track validation performance 

throughout training, the model uses a batch size of 128 and 

a validation split of 0.2 across 20 epochs. The accuracy and 

loss evaluated during each epoch are described in (Fig. 7) 

and (Fig. 8). Table 4 list the performance evaluation of BI-

LSTM technique. 

 

 

Fig. 7: Graph between epoch and model accuracy. 

 

Fig. 8. Loss evaluated during each epoch. 

Table 4. Performance evaluation of BI-LSTM 

Performance metrics Class 1 Class 0 

Accuracy 86.395% 

Precision 89% 84% 

Recall 84% 89% 

F-1 Score 86% 87% 

 

Decision tree classifier: Decision trees are constructed 

from the nodes that create hierarchical structures, with each 

node having a feature or characteristic from the dataset. 

Decision trees iteratively split the dataset into subsets until 

a stopping condition is satisfied by a sequence of binary 
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splits based on feature values. The Bi-LSTM model gives an 

accuracy of 86.39%.  We integrate the Decision tree into the 

input of the Bi-LSTM model to improve the performance. 

To reduce impurity and increase class homogeneity, the tree 

partitions the feature space during training. A dataset's 

entropy is a measure of its randomness or impurity. The Gini 

impurity (G) of a dataset for a binary classification having 

classes {0, 1} is computed as follows: 

 (4) 

p0 = Samples indicating absence of seizures (class 0) 

p1 = Samples indicating the presence of seizures (class 1) 

The Gini impurity-based cost function in decision tree 

training aims to reduce the likelihood of an inaccurate 

categorization by lowering the Gini impurity at each split. 

More child nodes are result from the decision tree 

algorithm's selection of the characteristic that optimizes the 

process. To assess classifiers' overall classification accuracy, 

a confusion matrix, Accuracy, Sensitivity, and F1-score to 

evaluate each binary classification task's performance is 

used. EEG data is sequential (time-ordered) by nature. The 

time-dependent components of the EEG data can 

be challenging for a simple Decision Tree to extract on its 

own. Temporal features are extracted using a Bi-LSTM and 

then sent to the Decision Tree. In combination, the 

architecture can perform better than individual models. It is 

described in the following equation. 

 (5) 

 Bi-LSTM extracts high level complex features and 

decision tree interprets the result based on extracted features 

by providing high-level classification. The system gains 

precision, rule-based categorization from Decision Tree and 

capacity to handle sequential input from Bi-LSTM. Fig. 9 

shows the confusion matrix of Bi-LSTM and decision tree. 

 

 

Fig. 9. Confusion matrix of Bi-LSTM and decision tree Results 

and discussion. 

The combined Bidirectional LSTM and decision tree 

classifier model performs well, achieving high seizure 

prediction accuracy. Additionally, the effectiveness of 

Decision Trees and Artificial Neural Networks (ANN) in 

seizure prediction is evaluated as well. Further Table 5 and 

6 show the comparison table with other models and 

performance metrics of proposed model, respectively. 

 

Table 5. Comparison table with other models 

Sr. Methodology Performance 

[2] MDCNN Accuracy of 99.56% 

[1] Bi-LSTM Accuracy of 95.6% 

[14] DCNN, LSTM, D-LSTM Accuracy of 98.80% 

 Proposed method Accuracy of 99.99% 

 

Training Loss: Over epochs, the training loss gradually 

drops from 0.42 to 0.34 and the validation loss decreases 

from 0.37 to 0.32. 

Bi-LSTM and Decision tree: The model is assessed on 

the test set after training. With an accuracy of 86.39% on the 

Bi-LSTM model, the output is fed to the decision tree 

classifier to enhance the working of the model. 
 

Table 6. Performance metrics of proposed model 

Performance metrics Our model 

Accuracy 99.99% 

Precision 99.98% 

Recall 99.99% 

F-1 Score 99.98% 

 

Working on epilepsy detection encountered many 

challenges. A good quality database is hard to find. The 

popular available datasets [31] have the EEG recordings of 

a small set of patients. Even the diversity in the state of the 

patient is minimal. The annotations are not proper in some 

databases. Incorrect seizure annotations create difficulty in 

the epilepsy detection and the patient’s treatment. EEG 

recording also contains noise and artifacts like eye blink, 

muscle twitch. Artifacts are not generated by brain but by 

other factors. These noise and artifacts hinder seizure 

activity. Predicting seizures accurately before they happen 

in a real-time is a challenge for researchers. For many 

patients, real-time, continuous monitoring is limited because 

the majority of existing EEG based technologies is only 

available in clinical settings. The majority of detection 

technologies rely on generalized models, which may not 

work well for all patients because of the variation in seizure 

patterns. The detection of seizures is limited when relying 

only on EEG data since it excludes important physiological 
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contexts. To create real-time monitoring devices and to 

evaluate it experts are still needed. 

4. CONCLUSION AND FUTURE WORK 

The study demonstrates how effectively EEG recordings can 

predict epileptic seizures using both deep learning and 

traditional machine learning models. Understanding 

complicated patterns and capturing temporal correlations are 

advantages of deep learning models. A traditional machine 

learning model like ANN still perform well but does not 

capture complex characteristics properly. When it comes to 

forecasting medical outcomes, the Decision Tree Classifier 

shows encouraging results. The Bidirectional LSTM model 

achieves an accuracy of 86.39% on the test set, indicating 

good performance in predicting medical outcomes. Then the 

model is integrated with a decision tree classifier to give a 

higher accuracy of 99.99%.  The model is useful in 

predicting epileptic seizures from long-term EEG because of 

its capacity to capture temporal connections and generalize. 

Better signal processing methods, such as adaptive 

filtering, can help distinguish real EEG signals from 

artifacts, producing cleaner data and more precise detection. 

By leveraging patient specific data and creating 

personalized seizure detection model could enhance 

accuracy. This can be achieved by transfer learning, where 

model is developed using individual patient data. The 

creation of non-invasive, wearable EEG equipment may 

enable ongoing, in-person monitoring. Observing and 

studying the effect of brain tumors on epilepsy patients and 

how it affects the brain signals. Build an effective seizure 

detection model by utilizing spectrogram images for EEG 

signals. 
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