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Epilepsy is a dangerous disorder after Alzheimer's. Around 50 — 70 million people around
the world are affected by this disease. It happens due to the disturbance in the motor nerves
of the brain which results in epileptic seizures. A seizure is a state, in which it has
misbalancing or breaks out of electrical movement in the brain having properties like time
frequent and unpredictable. This neurological illness is transient, chronic, and recurrent.
An epileptic seizure occurs when neurons suddenly misfire and synchronize; mimicking
the brain's excessive and hyper-synchronous neural activity. It causes sudden fainting,
uncontrollable motion of upper and lower limbs, and anxiety. The seizures are measured
by the process of electroencephalogram (EEG). Using EEG records from the CHB-MIT
scalp EEG collection, we compare how well deep learning and traditional machine
learning models predict seizures. The data set, which includes preprocessed EEG data
from pediatric individuals with spontaneous seizures, enables a thorough assessment of
the model's effectiveness. Traditional machine learning models like Artificial Neural
Networks (ANN) and Decision Trees are combined with Bidirectional LSTM (deep
learning technique). The model aims to classify epileptic seizures from non-epileptic

seizures. The total accuracy obtained by the model is 99.99%.

1. INTRODUCTION

Epilepsy is a disease that is caused by a disturbance of the
electrical activity in the brain. In every 100,000 people, the
48"  individual has epilepsy. It is the third
most occurred type of seizure after stroke and Alzheimer’s
disease. The World Health Organization reports that most of
the patients are from underdeveloped countries, and from
rural areas. Even the likelihood of dying young people is
higher in epilepsy. Epilepsy is defined by the brief episodes
of uncontrolled movement that may impact only a specific
area of the body (partial) or the entire body (generalized).
There are situations when these seizures are followed by
unconsciousness. Every year, between 100,000 and 120,000
children are hospitalized due to being epileptic. When an
adult (over 18) is having epilepsy experiences two or more
times within a year, their condition is considered active. Low
blood sugar, low oxygen levels, or a severe electrolyte
imbalance are the symptoms that children usually
experience at a very young age. Consequently, having
seizures does not automatically indicate that a person has

epilepsy. Seizures caused by anomalies throughout the body
are not taken into consideration for inclusion in the diagnosis
of epilepsy. If a patient has a seizure that lasts more than 1-
2 minutes, they should get medical attention right away.
Electroencephalography is a technique used to detect
epileptic symptoms [1]. The procedure involves applying
electrodes, which are tiny metal discs with thin wires, to the
patient's scalp. The electrodes capture electrical charges
generated by brain cell activity. The charges are amplified
and shown in the Fig. 1 (EEG amplitude of the channel).
There are many kinds of epileptic seizures depending on
the features of the seizure [2]-[3]. EEG uses the principle of
differential amplification. It diagnosed brain disorders like
stroke and epilepsy. However, EEG recorded from the
cortex surface or the scalp cannot record short-term changes
in local field potential caused by action potentials in neurons.
Moreover [1], motion errors in the EEG traces are mostly
caused by the lengthy wires that are used to link several
electrodes. As a result, wearable EEG solutions with few
electrodes are highly desired by patients because they enable
continuous monitoring throughout the day [4], [5]. EEG
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signal collection is not simple, and even in the absence of
lengthy wires, data can get tainted with artifacts. In real,
physiological variables are irrelevant to the brain and can
produce artifacts (eye blinks, muscle movement). Because
of their structural similarities in amplitude and frequency,
these EEG artifacts are misinterpreted as seizures, which
cause problems for the algorithms used for epilepsy
detection. Therefore, it is crucial to identify EEG
abnormalities accurately to prevent false alarms in epilepsy
detection systems. The epilepsy detection system then
decides whether to extract elements that can help in the
system's classification of seizures. Accurate seizure
detection is essential for automated detection systems when
a seizure is identified based on the characteristics taken from
the epileptic EEG signals that describe the patient's state.
During neurological surgery, precise seizure detection can
be applied to evaluate the state of the patient. It takes a lot
of time for EEG specialists to observe EEG readings since
they must evaluate each patient's whole 45 min to 1-hour
recording period. We provide machine learning (Decision
tree) and deep learning (Bi-LSTM) models to reduce the
time required for epilepsy detection. It involves extracting
complex characteristics out of the EEG signals and
categorizing them. It is crucial to choose the relevant
characteristic from the data for accurate detection.

Preictal

Time(s

Fig. 1. EEG amplitude of the channel.

2. RELATED WORK

EEG signals are widely used in epilepsy research, especially
for seizure detection, as they represent brain cell activity.
EEG data is analyzed by automatic algorithms in a fast and
precise manner, transforming the information into discrete
outputs that allow the determination of various epileptic
states, including post-seizure and seizure occurrences.
Improving the model's accuracy and speed is the foremost
purpose. Numerous methods for detecting epilepsy have
been proposed and most of which include machine-
learning approaches and deep learning algorithms, which
also employ multi-view learning techniques, and have
demonstrated remarkable potential in this field by
effectively diagnosing the condition of epilepsy based on
EEG readings.

2.1 Epilepsy detection using Machine Learning

The author [1] outlines the automatic identification of
epileptic seizures through the use of a multi-layer network
built using the mutual information (MI), permutation dis-
alignment index (PDI), and Pearson correlation coefficient
(PCC) as three distinct correlation measures. The method
utilizes an improved genetic algorithm (IGA) for the
optimization of features and network weights within the
multi-layer network. PCC measures linear relationships, MI
measures nonlinear relationships, and PDI is introduced as a
permutation-based correlation index. For seizure detection,
three classifiers are employed: K-nearest neighbor (KNN),
Support Vector Machine (SVM), and Random Forest (RF).
Random Forest (RF) has better model accuracy,
generalization capacity, and training speed. The suggested
approach outperforms single-layer networks in terms of
performance. The author [2] demonstrates that the
Electroencephalogram (EEG) has the data required to
identify brain activity in humans, making scans helpful for
diagnosing and treating epileptic seizures. However, it
requires time to visually identify seizures from EEG images.
Thus, a fast and accurate method is needed to diagnose more
patients in less time. An auto-regressive moving average
(ARMA) model is introduced for the dynamic and varying
nature of EEG time series data. The further step is to classify
suspicious elements together by using pattern recognition
and later deducting them. As the data contains other seizures
too so to solve this issue the paper has proposed the method
of one class SVM for diagnosis. During the training phase,
the EEG samples are used to train one-class SVM (RBF
kernel), and the normal epilepsy EEG records to train the
other one. The author [3] proposed a 54-DWT mother
wavelet analysis for EEG segments, which employs four
machine learning algorithms: SVM (support vector
machine), KNN (k-nearest neighbors), Naive Bayes, and
ANN (artificial neural network). It employs an optimal
technique using a genetic algorithm. It is observed that
compared to others ANN gives more accurate predictions
than others. After optimization (GA) the accuracy of ANN
improves to 99.6%. But machine learning models are less
efficient to work with complex time-series data due to its
varying nature. Further, Table 1 presents the various ml
techniques for epilepsy.

Table 1. ML techniques for epilepsy

Sr. Methodology Feature Accuracy
Extraction
[4] Single-Channel and DWT 86.68%
Multichannel
Embedding Module:
[6] ARMA, SVM SVD, EMD 93-94%
[5] MLP DWT 97.26%
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2.2 Epilepsy detection using Deep Learning

The paper [7] describes the automated identification of
epilepsy using electroencephalogram (EEG) data with deep
learning techniques. The goal is to identify epilepsy so that
it can be treated quickly and the probability of further
seizures and the problems related to them can be decreased.
This approach uses the chronological correlations between
several EEG channels to identify epilepsy, in contrast to
other current EEG-based methods that rely on deep learning
models. A Bidirectional Long Short-Term Memory (Bi-
LSTM) neural network with an attention mechanism is used
in the process. Based on weight distribution, the attention
mechanism brings key features from sequences. Following
the input of these characteristics, a Bi-LSTM model
evaluates the intrinsic temporal correlations concealed in
EEG signal features, generating high accuracies on various
datasets with an accuracy range of 95.60% to 99.87. The
research [8]-[12] demonstrates how multiple deep learning
(DL) model architectures can be employed for epilepsy
detection by using transfer learning (TL) approaches. It also
introduces a Transformer-based algorithm and investigates
its performance in comparison to pure Convolutional Neural
Networks (CNNs). A customized Convolutional Neural
Network (CCNN) architecture is designed for extracting
features from preprocessed EEG data. Convolutional layers
with ReLU activation, max-pooling layers, and fully linked
layers with a Softmax activation function are incorporated
into the design. The design of the CCNN attempts to
increase spatial invariance, and it is trained using the Adam
optimizer. It performs better than current technologies, as
evidenced by its high values for accuracy (95%) specificity,
sensitivity, F1-Score, precision, and specificity. The
automated feature extraction and real-time detection
capabilities of machine learning (ML) classifiers are limited
when it comes to doing multiple-class categorization. So, a
deep Convolutional LSTM neural network model was
suggested in the study [12]-[18]. The C-LSTM model
predicts results at a fast rate, with short detection duration
time. The paper addresses the challenges of establishing a
multiple-class model for epileptic seizure detection and the
requirement for predicting seizures within short-time
segments.

The C-LSTM network has a short detection period and
predicts outcomes quickly. To distinguish between epileptic
seizure activity and those of other classes, a sliding window
approach is used. Logical values are obtained by converting
the likelihood of events using the Softmax activation
function, once the FC layer's output is obtained. The final
classification results are determined by selecting the highest
values obtained from the likelihood of each node's input in
the softmax layer. Manual feature extraction was necessary
for ML approaches, which limited their versatility. DL
allows for the complete automation of feature extraction and
classification. A recurrent neural network (RNN) model
[19]-[22] called long short-term memory is suggested as the

basis for automated epileptic seizure detection. Because of
its memory capacities and suitability for sequence data,
LSTMs are useful for evaluating time-series data, such as
EEG signals. For seizure detection, normal in comparison to
ictal and normal in comparison to pre-ictal are the two
classes in the two-class categorization in this study [23]-[34].
Using spectrograms of EEG signal segments, the
Convolutional Neural Network (CNN) with residual blocks
is the baseline model. The second model employs a three-
layer CNN that processes spectrograms as well. The third
model uses a five-layer CNN and Phase Space
Reconstruction (PSR) to get over spectrogram restrictions.
The primary pattern of various signal activity is captured by
PSR, which offers a direct projection from the time domain.
Moreover, Table 2 shows the various deep learning
techniques for epilepsy used in the state of the art.

Table 2. Deep learning techniques for epilepsy

Sr. | Methodology | Feature Extraction | Performance

[2] | MDCNN _ Accuracy of
99.56%

[1] | Bi-LSTM _ Accuracy of
95.6%

[14] | DCNN, DWT Accuracy of
LSTM, D- 98.80%
LSTM

[16] | CNN FFT, ICA, PCA AUC values

are 0.82 and
0.89
[22] | C-LSTM Softmax activation Accuracy of
function 98.8%

3. MATERIALS AND METHODS

This section presents the major techniques that are taken
in this study, which started with the dataset's extraction and
resampling and ended with the model selection and pre-
processing. Three classifiers are used for model evaluation
(Decision tree, ANN, and Bi-LSTM). A workflow chart is
shown in Fig. 2.

3.1 Dataset Description

For algorithm evaluation, the Children's Hospital Boston's
CHB-MIT scalp EEG database has been used. The
Children's Hospital Boston gathered the EEG recordings
from young patients who had spontaneous seizures. The
patients were monitored for a few days at most after
stopping anti-seizure medication to figure out if they were
suitable candidates for surgery and to characterize their
seizures. 24 instances (Chb01-Chb24) from 23 pediatric
patients with uncontrolled epilepsy are included in the
database. The worldwide 10-20 system standard is followed
for electrode locations, and 256 Hz sampling is used for
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EEG readings. The 661 recordings from 23 individuals in
the CHB-MIT dataset include 158 seizures across 958 hours
of EEG data. Band pass filter is applied to the EEG signals
at 0 Hz and 128 Hz after being captured at 256 training on
overlapping 1-, 2-, and 4-second EEG segment
segment. Analysis of 6000 examples of 1-second
normalized data, 3000 examples of 2-second data, and 1500
examples of 4-second data was done. Preictal and ictal data
that are balanced in the dataset provide a thorough
assessment of the model's performance. The EEG
(electroencephalogram) datasets from the “CHB-MIT Scalp
EEG Database” are in open source. The dataset contains the
following files.

EEG based data

l

Preprocessing

l

Feature Extraction

l

Classification model

|
! !

Seizure

Non seizure

Fig. 2. Workflow of the model.

Only preictal data from all 24 patients that is contained in
the Chbmit preictal channels data file, and only ictal data
from all 24 patients contained in the Chbmit ictal channels
data file. The balanced pre-ictal and ictal data files from all
24 patients are included in the chbmit preprocessed data file.
There are 24 columns in this file; however, only 23 columns
represent the channels, and last column is the label column.
'0" in the label column denotes the absence of seizures,
whereas 'l' denotes the presence of seizures.

3.2 Preprocessing

Normalization is a preprocessing method applied to the
dataset to standardize the data and ensure that it is consistent
across different features and variables. Normalization plays
a significant role in preparing the data for analysis and
model training for epilepsy detection using EEG data. The
CHB-MIT dataset consists of EEG recordings obtained from
patients, which include both preictal (before seizure) and
ictal (during seizure) data. It's essential to ensure that the
dataset is balanced, meaning that there is an equal

representation of both preictal and ictal samples. This
balance helps prevent bias in the model and ensures that it
can effectively learn patterns associated with seizure activity.
The dataset is initially loaded from a file named
'chbmit_preprocessed data.csv'. This file contains a
structured format where each row represents a sample (a
time series segment of EEG data), and each column
represents a feature or channel (EEG readings from specific
electrodes).

After loading the dataset, the next step is featuring scaling,
where the features are normalized using standard scaling
techniques. Standard scaling, also known as z-score
normalization, involves transforming the data such that it
has a mean of zero and a standard deviation of one. This
transformation ensures that all features have similar
dimensions, preventing features with high magnitudes from
controlling the model training process. Then the data is
reshaped to fit the proper format for input into a
Bidirectional Long Short-Term Memory (Bi-LSTM) neural
network. Bi-LSTM is a type of recurrent neural network
(RNN) that is well-suited for sequential data, such as time
series data like EEG recordings. Bi-LSTM networks require
three-dimensional input data, typically in the form of (batch
size, timesteps, features), where batch size represents the
number of samples, timesteps represent the length of each
sequence, and features represent the number of input
features at each timestep. Here no explicit feature extraction
is performed. Instead, the EEG data, after normalization and
reshaping, serves as input to the Bi-LSTM model, which
learns to extract relevant features and patterns associated
with seizure activity during the training process. This
approach leverages the representational power of Deep
Learning models to handle complex, high-dimensional data
like EEG recordings effectively.

3.3 Methodology

Deep learning models, including Bidirectional LSTM and
Dense Neural Networks, are compared against classical
machine learning model Artificial Neural Networks (ANN).
The objective is to develop a model that accurately predicts
binary outcomes based on various features.

ANN: The term Artificial Neural Network refers to a
computational model whose architecture is modelled after
biological neural networks present in the brain. An artificial
neural network (ANN) is made up of layers of network
processing units, known as neurons or nodes. It consists of
an input layer, one or more hidden layers, and an output
layer. After receiving input signals, it applies an activation
function, and each neuron transmits the outcome to the
neurons in the subsequent layer. To enable the network to
learn from input data and provide the desired output, weights
connected to the neurons are altered during the training
phase.
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Confusion Matrix (Combined Model) in %age

35

- 30

- 25

- 20

Predicted

Fig. 3: Confusion matrix for ANN.

The training progresses over 20 epochs, with
improvements observed in the both training and validation
accuracy. The model shows a consistent decrease in loss
over epochs. After training, the model is evaluated on the
test set, achieving a test accuracy of 84.75%, indicating its
efficiency in extracting information well on unseen data.
The blue area indicates the correct prediction in the
confusion matrix. Confusion matrix: It is the matrix made
by the predicted variables, having four terminologies in the
Fig. 3:

* True positive (TP): True positives are instances

where seizure is detected and in actuality, seizure is
also present. Here the percentage of TP is 42.41%.

* True negative (TN): True negatives are instances
where seizure is not detected and in actuality, seizure
is also absent. Here the percentage of TN is 42.35%.

= False positive (FP): False positives are instances
where seizure is detected but in actual seizure is not
present. Here the percentage of FP is 7.58%.

= False negative (FN): False negatives are instances
where seizure is not detected but in actuality, seizure
is present. Here the percentage of FN is 7.66%.

The accuracy and loss evaluated during the training phase
in the ANN model are described in Fig. 4 and Fig. 5.

The following Table 3 shows the accuracy, precision,
recall, and F-1 score of the ANN model. Fig. 6 show the
workflow of combine model.

Table 3: Performance evaluation of ANN

Performance metrics ANN model
Accuracy 84.75%
Precision 84.82%
Recall 84.67%
F-1 Score 84.74%

Training Accuracy

0.8350 4

0.8325 4

0.8300 4

0.8275 4

0.8250 4

Accuracy

0.8225 4

0.8200 4

0.8175 1

T T T T
10 15 20 25
Epoch

=}
w

Fig. 4: Graph between epoch and model accuracy

Training Loss

0.400

0.395 4

0.390

0.385 1
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o—
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5]
=
&
™
=}

25
Epoch

Fig. 5. Loss evaluated during each epoch.

outputs

Dataset ——> Preprocessing

inputs X1

Decision Tree Feature Extraction

l

Training and Testing

l—lﬁ

Epileptic Non- epileptic

|V I—

Fig. 6. Workflow of combined model.

Bi-LSTM: LSTM is an extended RNN designed to
address the issue of gradient disappearance and explosion
during back-propagation. It is appropriate for classifying
EEG signals and effectively captures long-term dependent
information from time-series data. The information
propagates along with the LSTM units in the hidden layer of
the LSTM network in a temporal order. We used forward
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and backward propagated information to build a Bi-LSTM-
based neural network model, which helps to better capture
long-term dependent aspects in EEG signals.

Proposed Methodology

1. Start

[~

. Input EEG Data and apply preprocessing: filtering and feature extraction.

Xpreprocessed = filter(Xraw)

. Split EEG data into training and testing sets:
Xtrains Xtest — SPlit(Xpreprocessed)
4. Define Bi-LSTM architecture:
hy = [II;L?I,]
Compile and train the Bi-LSTM model:
Ii-Lst™ = BILSTM (X yain)
Evaluate on test data:

Yrest = BILSTM(Xest)

o

. Input Bi-LSTM Predictions into Decision Tree
Concatenate Bi-LSTM predictions:

F = concat(§pi-LsT™)

. Train the Decision Tree model with Gini impurity:

K

GMD)=1->_p}

k=1

Final decision:

7 = DecisionTree(F)
7. End

Forward LSTM:

— —

hy = LSTM(x¢, he 1) (1)
Backward LSTM:

— —

hy = LSTM(zy, hys1) (2)
Combined state:

—
hy = [he; By (3)

A sequential model (Bi-LSTM) with many dense layers
and a ReLU activation function is constructed. The Bi-
LSTM layer analyzes EEG sequence data of brain activity
in past and future signals. This helps the model focus on
relevant information in the data and increases the model's
accuracy. The parameters for adaptive estimates are
examined by the "Adam" optimizer. Two dropout layers are
added in the LSTM layer and ReL U activation function. The
dropout network helps to lower the training error as the
number of neural network layers rises. After receiving the
output from the FC layer, probabilities are transformed into
logic values using the softmax activation function. The
highest values were found from the probability of each
node's input in the softmax layer. Then, a fully linked layer

is employed to achieve the binary classification of seizure
and non-seizure classes. To track validation performance
throughout training, the model uses a batch size of 128 and
a validation split of 0.2 across 20 epochs. The accuracy and
loss evaluated during each epoch are described in (Fig. 7)
and (Fig. 8). Table 4 list the performance evaluation of BI-
LSTM technique.

—— Training Accuracy
validation Accuracy

0.86

Accuracy

0.84

0.0 25 5.0 75 10.0 125 15.0 175
Epoch

Fig. 7: Graph between epoch and model accuracy.

0.42 —— Training Loss
—— Validation Loss

7 034
35

0.0 25 5.0 75 10.0 125 15.0 17.5
Epoch

Fig. 8. Loss evaluated during each epoch.

Table 4. Performance evaluation of BI-LSTM

Performance metrics | Class 1 Class 0
Accuracy 86.395%

Precision 89% 84%
Recall 84% 89%
F-1 Score 86% 87%

Decision tree classifier: Decision trees are constructed
from the nodes that create hierarchical structures, with each
node having a feature or characteristic from the dataset.
Decision trees iteratively split the dataset into subsets until
a stopping condition is satisfied by a sequence of binary
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splits based on feature values. The Bi-LSTM model gives an
accuracy of 86.39%. We integrate the Decision tree into the
input of the Bi-LSTM model to improve the performance.
To reduce impurity and increase class homogeneity, the tree
partitions the feature space during training. A dataset's
entropy is a measure of its randomness or impurity. The Gini
impurity (G) of a dataset for a binary classification having
classes {0, 1} is computed as follows:

G(p) =1 (p§ + pi) o

po = Samples indicating absence of seizures (class 0)
p1= Samples indicating the presence of seizures (class 1)

The Gini impurity-based cost function in decision tree
training aims to reduce the likelihood of an inaccurate
categorization by lowering the Gini impurity at each split.
More child nodes are result from the decision tree
algorithm's selection of the characteristic that optimizes the
process. To assess classifiers' overall classification accuracy,
a confusion matrix, Accuracy, Sensitivity, and F1-score to
evaluate each binary classification task's performance is
used. EEG data is sequential (time-ordered) by nature. The
time-dependent components of the EEG data can
be challenging for a simple Decision Tree to extract on its
own. Temporal features are extracted using a Bi-LSTM and
then sent to the Decision Tree. In combination, the
architecture can perform better than individual models. It is
described in the following equation.

y = DecisionTree(BiLSTM(z;)) 5)

Bi-LSTM extracts high level complex features and
decision tree interprets the result based on extracted features
by providing high-level classification. The system gains
precision, rule-based categorization from Decision Tree and
capacity to handle sequential input from Bi-LSTM. Fig. 9
shows the confusion matrix of Bi-LSTM and decision tree.

Confusion Matrix (Combined Model) in %age

- 20

Predicted

Fig. 9. Confusion matrix of Bi-LSTM and decision tree Results
and discussion.

The combined Bidirectional LSTM and decision tree
classifier model performs well, achieving high seizure
prediction accuracy. Additionally, the effectiveness of
Decision Trees and Artificial Neural Networks (ANN) in
seizure prediction is evaluated as well. Further Table 5 and
6 show the comparison table with other models and
performance metrics of proposed model, respectively.

Table 5. Comparison table with other models

Sr. | Methodology Performance

[2] | MDCNN Accuracy of 99.56%

[1] | Bi-LSTM Accuracy of 95.6%

[14] | DCNN, LSTM, D-LSTM | Accuracy of 98.80%

Proposed method Accuracy of 99.99%

Training Loss: Over epochs, the training loss gradually
drops from 0.42 to 0.34 and the validation loss decreases
from 0.37 to 0.32.

Bi-LSTM and Decision tree: The model is assessed on
the test set after training. With an accuracy of 86.39% on the
Bi-LSTM model, the output is fed to the decision tree
classifier to enhance the working of the model.

Table 6. Performance metrics of proposed model

Performance metrics Our model

Accuracy 99.99%
Precision 99.98%
Recall 99.99%
F-1 Score 99.98%

Working on epilepsy detection encountered many
challenges. A good quality database is hard to find. The
popular available datasets [31] have the EEG recordings of
a small set of patients. Even the diversity in the state of the
patient is minimal. The annotations are not proper in some
databases. Incorrect seizure annotations create difficulty in
the epilepsy detection and the patient’s treatment. EEG
recording also contains noise and artifacts like eye blink,
muscle twitch. Artifacts are not generated by brain but by
other factors. These noise and artifacts hinder seizure
activity. Predicting seizures accurately before they happen
in a real-time is a challenge for researchers. For many
patients, real-time, continuous monitoring is limited because
the majority of existing EEG based technologies is only
available in clinical settings. The majority of detection
technologies rely on generalized models, which may not
work well for all patients because of the variation in seizure
patterns. The detection of seizures is limited when relying
only on EEG data since it excludes important physiological
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contexts. To create real-time monitoring devices and to
evaluate it experts are still needed.

4. CONCLUSION AND FUTURE WORK

The study demonstrates how effectively EEG recordings can
predict epileptic seizures using both deep learning and
traditional machine learning models. Understanding
complicated patterns and capturing temporal correlations are
advantages of deep learning models. A traditional machine
learning model like ANN still perform well but does not
capture complex characteristics properly. When it comes to
forecasting medical outcomes, the Decision Tree Classifier
shows encouraging results. The Bidirectional LSTM model
achieves an accuracy of 86.39% on the test set, indicating
good performance in predicting medical outcomes. Then the
model is integrated with a decision tree classifier to give a
higher accuracy of 99.99%. The model is useful in
predicting epileptic seizures from long-term EEG because of
its capacity to capture temporal connections and generalize.

Better signal processing methods, such as adaptive
filtering, can help distinguish real EEG signals from
artifacts, producing cleaner data and more precise detection.
By leveraging patient specific data and creating
personalized seizure detection model could enhance
accuracy. This can be achieved by transfer learning, where
model is developed using individual patient data. The
creation of non-invasive, wearable EEG equipment may
enable ongoing, in-person monitoring. Observing and
studying the effect of brain tumors on epilepsy patients and
how it affects the brain signals. Build an effective seizure
detection model by utilizing spectrogram images for EEG
signals.
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