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ABSTRACT

Rainfall prediction has been a critical area of research due to its significant impact on
several industries such as agriculture, water resource management, and catastrophe
preparedness. Anticipating rainfall provides crucial awareness, enabling proactive
measures to be taken in advance. Precise estimations of daily rainfall not only enhance
agricultural productivity but also play a pivotal role in securing food and water supplies.
Machine Learning and the more recent Deep Learning based approaches have shown
promising results in modelling complex patterns inherent in meteorological data. This
paper presents an in-depth exploration and evaluation of various ML and DL algorithms,
encompassing Naive Bayes, Decision Trees, Support Vector Machines, K-Nearest
Neighbour, Artificial Neural Network, XgBoost, Convolutional Neural Networks, Long
Short-Term Memory Network, RNN with LSTM and LSTM Encoder-Decoder. The
evaluation metrics of Mean Square Error (MSE), Root Mean Squared Error (RMSE),
Matthews Correlation Coefficient (MCC), Accuracy, and Precision are employed to
assess the performance of the model. Here, the proposed approach LSTM Encoder-
Decoder achieves accuracy 92.13%. Here, the comparative analysis is performed with
machine learning and demonstrated how well the suggested method predicts rainfall when

compared to alternative methods.

1. INTRODUCTION

Predicting rainfall is a pivotal yet inherently challenging
task within the domain of meteorology. The accurate
prediction of the rainfall increases the output produced in
agricultural field, ensure proper food and water supply,
providing it to a healthy population. Anticipating rainfall
can help avoid flooding, save human lives and property. The
shortage of rainfall adversely affects the aquatic ecosystem,
water supply quality, and agricultural productivity. Hence,
forecasting is essential for understanding the state of the
atmosphere. Predictive analytics emerges as a cutting-edge
analytical approach for conducting such predictions and
anticipating future events based on historical datasets. It
plays a crucial role in prompting various human activities,
including the generation of power, production related to
agriculture, tourism, and forestry [1]. The prediction of
meteorological phenomena is intricate, primarily attributed
to the challenge of obtaining accurate data, with instances
where data collection is either impossible or may yield
inaccurate information from highly sensitive sensors [2].
Therefore, predictions are made using probabilistic models
[3]. Lately, there has been a widespread adoption of machine
learning and deep learning algorithms for modelling
phenomena that involve substantial and diverse datasets.
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Many factors are responsible for this trend. Firstly, machine
learning algorithms demonstrate proficiency in handling
large volumes of data [4]. Secondly, they exhibit the
capability to unveil patterns of behaviour or implicit
relationships within processed data that may not be directly
apparent [5]. For identifying patterns in past weather data,
machine learning algorithms like Random Forests, Support
Vector Machines (SVM), and Gradient Boosting work well.
However, deep learning algorithms are adept at modelling
transitory dependencies in sequence data, especially
Recurrent Neural Networks (RNNs) and Long Short-Term
Memory networks (LSTMs). As a result, these algorithms
are excellent at processing big datasets, identifying intricate
patterns, and forecasting future events based on past patterns.
This paper's goal is to perform an exploratory evaluation
with an emphasis on modelling rainfall prediction using
machine learning and deep learning algorithms. It explores
the challenges associated with conventional methods and
highlights the potential of data-driven approaches in
enhancing prediction accuracy. The utilization of various
climatic parameters, such as speed of the wind, temperature,
atmospheric pressure, and humidity, in combination with
historical rainfall data, forms the basis for training these
models.
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2. RELATED WORKS

The literary survey encompassed a wide array of intriguing
techniques aimed at conducting weather forecasts using
various machine learning and deep learning algorithms. This
paper presents study of multiple algorithms used in past by
various other authors. Recent research has brought attention
to the prevailing weather conditions can perhaps affect
various things like increase in air pollution [6], solar
radiations [7] and several additional factors. The research
and literary survey have been made for the rainfall
prediction model that widely affects or is a major reason
behind many catastrophic disasters like flood [8], drought
[9], landslide [10], rise in local mean sea level [11] and so
on. Although a substantial part of historical forecasting
methods relies on differential equations and physics-based
simulations, recent studies show the advancements that have
introduced alternative approaches from machine learning
and deep learning. These methods primarily leverage
machine learning techniques such as Bayesian network or
Naive Bayes [12], SVM [13], decision trees [14], K-nearest
neighbor [15], ANN while CNN included [16], RNN [17],
and further advancements in these neural networks using
long-short term memory (LSTM) algorithms. In paper [18],
the authors combined 5 machine learning (ML) algorithms
Decision trees, KNN, Random Forest, SVM, and AdaBoost)
together and used a hybrid approach of Principal Component
Analysis (PCA) with the stochastic machine learning (ML)
algorithms. In the recent studies it has been seen that authors
tend more towards the deep learning model rather than
stochastic and mathematical machine learning models. The
parameters such as precipitation, humidity, wind speed at
different times, sunshine, cloud characteristics and direction
have been used for rainfall prediction and weather
forecasting. Authors used Artificial Neural Network (ANN)
algorithm to enhance accuracy by taking into account the
mentioned parameters and factors to predict weather
fluctuations [19]. In paper [20], the authors studied and

implemented various methodologies such as gradient
boosting, polynomial regression, recurrent neural network
neural and prophet models to the intricate process of weather
forecasting. The comprehensive comparative analysis
entailed the utilization of various techniques such as ANN,
Auto Regression, RNN with the LSTM model to capture
non-linear relationships among weather variables and
patterns within the dataset. In paper [21], In order to create
a sophisticated and statistically sound model for predicting
univariate weather variables, the authors employed LSTM.
Using a single-layer Long Short-Term Memory (LSTM)
model and a multi-layer-LSTM model, the authors
investigated the impact of intermediate weather variables on
prediction accuracy using data from an Indonesian airport
area. In paper [22], The weather translation, which changes
an image's weather condition from one category to another,
was created by the authors using Generative Adversarial
Networks (GAN). For this a large-scale weather image
dataset was used which comprised of 5 weather categories.
An attention module was integrated to concentrate the image
translation process on the region of interest, effectively
minimizing superfluous alterations or artifacts. The authors
used LSTM to optimize the accuracy of model forecasting
by using multiple meteorological factors. The authors
employed a real-time dataset covering eight meteorological
parameters from the European Centre for Medium-Range
Weather Forecasting (ECMWF). The relationships between
meteorological elements and the predicted rainfall were
identified through the use of feature extraction and
continuous debugging throughout the LSTM model's
training, allowing for precise modifications to the model's
rainfall forecasts. [23].

The author mentioned the various models and their
algorithms in terms of progress of research with description.
See Table 1.

Table 1. Summary of Machine Learning based approaches for weather prediction

Models Year Author Dataset Result Description
ANN 2012 |Kumar Abhishek, |Data available from the MSE=1.52 According to the findings, the model
et. al. station Toronto Lester B. performs better overall when there are
Pearson Int’l A, Ontario, more neurons per layer because this lowers
Canada Mean Squared Error (MSE) [24].
2015 |Mislana, et. al. Rainfall dataset from MSE=0.00096 | The study's findings suggest that the
BMKG Tenggarong 31 Artificial Neural Network (ANN) model
Station and Universitas can function as a powerful prediction
Mulawarman algorithm with a high degree of predicted
accuracy [25].
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KNN

2008

Zahoor Jan, et. al.

National Climatic Data
Center (NCDC)

Accuracy=96.
66%

In the experiment, it was observed that for
a smaller dataset size of 40,000, the range
of k values from 5 to 10 yielded accurate
results. However, for a larger dataset size
of 80,000, the accurate results were
obtained within the range of k values from
35 to 40 [26].

2013

Jian Hu, et. al.

Nanjing city and the
Dahuofang reservoir basin.

RMSE=327.7
MAE=247.3

This work presents a nonparametric model
that replicates relevant statistical aspects of
the observed time series to forecast yearly
average rainfall [27].

2017

Mingming, et. al.

Rainfall dataset Beijing

Accuracy=48.
37%

When working with precipitation datasets
that have irregular distributions, the KNN
algorithm's resilience to different
neighborhood size selections is
particularly clear [28].

Naive
Bayes

2019

Li Tiancheng, et.
al.

China Meteorological
Data Network

Accuracy=76.
9%

Experimental results demonstrated that the
Naive Bayesian algorithm-based
sandstorm prediction model outperformed
other approaches in terms of prediction
accuracy [29].

2019

Wei Chen, Yang
Li, Weifeng Xue,
et. al.

Jiangxi Province
Meteorological Bureau

Accuracy=83.
5%

The results showed that Naive Bayes,
along with all other models, demonstrated
favorable outcomes.[30]

2020

A U Azmi, et. al.

BMKG Banyuwangi
Meteorological Station

Accuracy=95.
91%

The test outcomes indicate a relatively
high accuracy in classifying rainfall
categories [31].

RNN

2021

Han, J. M, et. al.

Harvard Gund Hall data
(Jan to May)

MSE=0.3969

Validation of the model showed how
important it is to use localized weather
data in building performance simulations.
The GRU, one of the RNN models,
performed better than the regular models
[32].

LSTM

2019

Pradeep Hewage,
Ardhendu et.al.

Surface Weather Data

Global Forecast System
0.25” dataset

MSE: 0.0168

Accuracy:
79%

For the Snow and Soil Moisture (SMOIS)
variables, the Weather Research and
Forecasting (WRF) model produces the
best results [33].

2020

Shweta Mittal,
et.al.

Integrated Global
Radiosonde Archive
(IGRA) dataset

MAE : 0.04

To evaluate their impact on the accuracy
of the network, the number of hidden
layers was increased to three. A network
with two hidden layers was found to attain
acceptable accuracy with less learning
time. Additionally, experimental findings
indicate that the Adam optimizer
outperforms SGD and RMSProp
optimizers, delivering superior results
[34].

Encoder -
Decoder

2021

Kumar, R, et.al.

Real-time data from sensor
locations

at the farm

Accuracy =
85.97

Utilizing DeepMC for micro-climate
predictions enables cost-effective
forecasting using accessible IoT sensors.
This empowers partner farmers to optimize
chemical applications, ensuring timely and
effective usage [35].

Multiple
models

2021

Schultz, M. G.,
Betancourt, C.,
Gong, B., Kleinert,
F., Langguth, et.al.

Three datasets including
meteorological time series
dataset

Considering the ambition to substitute
computationally intensive NWP models
with DL algorithms, it's crucial to reassess
weather forecasting goals and articulate
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precise criteria for alternative methods
[36].

LSTM +
Attention
model

2018

Yirui Wu, et.al.

Flood dataset of Changhua
River

Accuracy:67.5
9%

Experiments on the Changhua dataset
show that the suggested approach
outperforms a number of comparison
approaches, demonstrating the potency of
the context-aware attention model
presented in this work [37].

2022

Suleman, M. A. R.,
& Shridevi

Real meteorological data
of weather

station at Saskatoon John
G. Diefenbaker Intl.
Airport

MSE = 0.0871

Accurate predictions are made even when
input sequences abruptly shift because the
spatial feature attention method quantifies
the mutual influence of input features on
the target feature [38].

Transform
er

2022

Chattopadhyay, A.,
Mustafa, et.al.

ECMWEF Reanalysis 5
(ERAS) dataset

RMSE (m2
s2)at3d =
294

The relative spatial correlations of the
features in the spatiotemporal data are
encoded by integrating a deep spatial
transformer into the network architecture's
latent space [39].

2022

Alerskans, E.,
Nyborg, J., et.al.

GFS dataset with
resolution of 0.25

RMSE (C) =
1.50

Even though the Transformer post-
processing model was trained using data
from less than two years ago, it shows
encouraging results [40].

CNN +
Attention
+LSTM

2023

Hou, X., et. al.

GHI dataset for solar
radiance

CNN-A-
LSTM

RMSE=0.076

To increase the accuracy of solar
irradiance forecast and accomplish the
objective of better power system optimal
dispatching and management, an enhanced
CNN-A-LSTM and attention mechanism
are suggested.

GBT, SVM, ANN, DNN, LSTM, CNN-
DNN, and CNN-LSTM models are
contrasted with the suggested model [41].

Deep
LSTM

2023

Ilias C, Georgios
T., etal

Nisorys rainfall dataset
since 2017

Accuracy =
96.45%

The suggested machine learning pipeline
initiates the deep LSTM regressor's
execution solely upon the classifier's
prediction of a rainfall event. This
approach reduces computational demands
while enabling the utilization of a dataset
exclusively comprised of rainfall events
during the regressor's training phase.
Consequently, this method enhances
forecasting performance [42].

2023

Sunkavalli Akash,
Sarikonda S, et.al.

Weather dataset over
Delhi between 1996 and
2017.

The types of different machine learning
methods were discussed to find the best
model [43].

Generative
Adversaria
I networks

2023

Sigg, C., et. al.

dataset with Sentinel-2
photos that correspond to
climatic and topographic
factors.

Accuracy =
59%

Propose a method for visualizing weather
forecasts using photographic images, a
complex task requiring realism and
alignment with predictions. Seamless
transitions from observed to forecasted
conditions and visual consistency between
consecutive images are crucial. Leveraging
conditional generative adversarial
networks (cGANs) enables synthesis of
realistic visualizations [44].
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3. METHODOLOGY

Rainfall prediction using traditional artificial intelligence
relies on predefined rules and explicit programming. It
works like step-by-step instructions, guiding the Al system
to solve problems or perform tasks. Traditional Al systems,
however, struggle with adapting to new or unexpected
situations and handling complexity, as they rely heavily on
predefined rules and explicit programming. Initial weather
forecasting methods were constrained by their dependence
on static rules and lacked flexibility. This approach was

limited in handling complex, unpredictable weather patterns.

Traditional programming laid the groundwork for Al in
weather forecasting. It provided a systematic approach to
interpreting meteorological data, setting the stage for more
dynamic solutions.

Rainfall prediction using Machine Learning (ML) uses
algorithms to analyze historical data and predict future
patterns. ML models in weather forecasting consider factors
like temperature, wind speed, and precipitation, leading to
improved accuracy, faster response times, and more
efficient forecasting operations. ML algorithms can
automate aspects of the forecasting process, thereby
enhancing efficiency and accuracy. As weather phenomena
became more erratic the need for a more adaptable and
accurate forecasting method became apparent. Machine
Learning algorithms, applied in institutions like ECMWF,
began to analyse historical weather data, enhancing
prediction accuracy and responsiveness. This was a
significant step towards more reliable and efficient weather
forecasting.

Unlike traditional programming or even basic machine
learning algorithms that require feature engineering or
explicit instructions, deep learning systems automatically
identify and learn the relevant features from the data itself.
Text, music, and image data are examples of unstructured
data that this works particularly well with. Using data
instead of mathematical formulas, deep learning creates
weather forecasting systems. It uses historical weather data
to learn the cause-and-effect links that govern Earth's
weather evolution. Deep learning offers more accurate
forecasts in less time than traditional systems, making it
essential for mitigating the consequences of severe weather
conditions. Deep Learning technologies, exemplified by
models like Google DeepMind’s GraphCast, were able to
process vast amounts of historical data, uncovering complex
weather patterns with greater precision and speed.

In the context of climate science and related fields,
Large Language Models (LLMs) offer unique advantages.
They can process and summarize large volumes of scientific
literature, making it easier for researchers and policymakers
to stay informed. LLMs can also assist in drafting reports,
simplifying complex scientific information for public
communication, and even generating predictive narratives
based on climate data. Large Language Models offered a
solution by processing and generating human-like text. They

played a vital role in making climate data more accessible
and understandable, thus enhancing the overall utility of
weather forecasts.

One significant advancement in artificial intelligence is
the capacity of generative Al to synthesis and create new
material from learned data. Generative artificial intelligence
is based on the ability to process and integrate vast volumes
of data, often millions of data points, and generate concise,
logical, and often original ideas or content. This is achieved
through the wuse of sophisticated machine learning
techniques including Generative Adversarial Networks
(GANSs), autoencoders, and transformer models. These
techniques enable the Al to learn from a dataset and then
generate new data instances that are similar but not identical
to the original data. For weather forecasting, Generative Al
brings a transformative approach. Traditional models in
meteorology rely on analyzing historical data to predict
future conditions. Generative Al, however, synthesizes this
data to provide not just predictions but also actionable
insights and comprehensive summaries. This ability makes
it particularly valuable for businesses and organizations that
require quick, accurate interpretations of complex data to
make informed decisions. Generative AIl’s uniqueness lies
in its capability to create outputs that are both informative
and easy to assimilate, bridging the gap between complex
data analysis and practical, everyday decision-making. This
makes it an invaluable tool in fields where data is abundant,
but clarity and conciseness are essential. The evolving
climate demanded not just accurate forecasts but also
actionable insights for better decision-making.

Prediction Techniques

Here, this paper presents some machine learning and
deep learning based techniques used for rainfall prediction.

Naive Bayes: The Naive Bayes classifier works on
Bayes’ theorem, which is used to determine that whether an
event will occur or not when another event has already
occurred. In a classification, the objective of the task is to
assign the input to a single predefined category [45]. The
Naive Bayes classifier operates by computing the
probabilities that are associated with the input belonging to
each category and subsequently selecting the category that
has the highest probability as the predicted output. The term
"naive" comes from the assumption that, given the class
label, the qualities used to describe the input are
conditionally independent of one another. According to this,
the presence or absence of one attribute has no bearing on
the presence or absence of another. [46]. Although, this
presumption may not be applicable to all the cases, but it
eases the computation and often performs effectively, even
when dealing with attributes that are correlated.

Decision Tree: It utilizes tree architecture to represent
the relationship among variables [47]. It facilitates the
partitioning of data into two or more interconnected sets
based on important factors. Initially, the entropy of each
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attribute is computed, and subsequently, the data is
partitioned based on predictors that exhibit the highest
information gain or minimal entropy [48]. Building a model
that forecasts the value of the target variable is the primary
goal. With each leaf node denoting a distinct class label and
the inside nodes representing attributes, the decision tree
employs a tree structure to solve the given problem. [49].

K-Nearest Neighbours: The K-Nearest Neighbours
(KNN) predict the label or category of a given data point by
taking into account the labels of its nearest neighbours in the
attribute space. KNN assumes that data points with similar
attributes tend to have similar labels [50]. The KNN method
typically uses a constant k value and runs several
experiments with various k values to produce the best
prediction results. The method works by gradually
enlarging the area surrounding test sample point y until k
training sample points are covered. [51]. Pprimary
challenges with KNN is its heightened susceptibility to
hyper parameter configurations, including factors such as
the selection of the number of nearest neighbours (k), the
choice of distance function, and the type of weighting
function used. The neighbours are selected from the dataset

and their classes or object property estimates are known [52].

Extreme Gradient Boosting: Extreme Gradient
Boosting (Xgboost) is used in regression, classification,
ranking, and prediction activities [53]. It represents an
enhanced iteration of the gradient boosting algorithm, with
a primary objective of improving model efficiency and
accuracy by reducing the computation time required for
gradient calculations [54]. The capacity of Xgboost to
efficiently handle big datasets, attain high accuracy, and
handle missing values has led to its rise in popularity. Since
decision tree are weak learner, are methodically integrated
into the model during the process in which each successive
tree is trained to address errors made by its predecessors.
Thus, Xgboost constructs a collection of decision trees, with
each tree dedicated to capturing patterns in the data that may
have been overlooked by the preceding trees [55].

Long Short-Term Memory: One kind of recurrent
neural network (RNN) that works well for sequence
prediction tasks, such as time series forecasting, is called an
LSTM. [56]. Because LSTM can detect long-range
dependencies, it performs more accurately than
conventional RNNs. Unlike traditional RNNs, LSTM's
recurrent hidden layer includes unique units known as
memory blocks. [57]. Within these memory blocks, there are
memory cells that feature self-connections, serving to
preserve the transistor network state. Additionally,
specialized multiplicative units, referred to as gates are
included to regulate the flow of information. LSTM
effectively addresses the issue of error backflow, ensuring
that the algorithm utilizes only the relevant error feedback
for making more accurate predictions [58]. LSTM can be
applied effectively to rainfall prediction problem.

Recurrent Neural Networks: it suffers from the
limitation of short-term memory. Consequently, when
making predictions with extensive data, RNN has various
variations designed to provide solutions. Thus, it commonly
encounters the vanishing gradient problem, in which the
information gradually tends to fade depending on the
activation function. The non-linearity term is frequently
insufficient for preserving long-term memory [59]. To
address this issue, a Long Short-Term Memory network has
been used. LSTMs play a crucial role in retaining issues that
are capable of being back-propagated through both time and
layers. This preservation of issues enables RNN algorithm
to enhance learning efficiency over numerous time-steps
[60]. Therefore, the model can capture temporal patterns of
rainfall data that include both short-term and long-term
dependencies thanks to the integration of RNNs and LSTMs.
The sequential nature of RNNs enables the network to
process the time series data, while the LSTM architecture
helps mitigate the vanishing gradient problem, allowing for
better retention of relevant information over extended
sequences [61].

4. PROPOSED APPROACH
4.1 Data Set Description

In this comprehensive dataset, an extensive collection of
daily weather observations spanning approximately a
decade across various locations in Australia is meticulously
documented. The focal point of interest is the target variable
"Rain Tomorrow," which serves as the key element for
predictive modeling. The objective is to forecast whether it
will rain on the subsequent day, with binary outcomes
indicating either a positive affirmation ("Yes") or a negative
one ("No"). Specifically, the affirmative response is
assigned when the recorded rainfall for a given day
surpasses or equals 1Imm. This dataset offers a rich and
diverse repository of meteorological information, such as
temperature of the place, humidity, speed of the wind, and
atmospheric pressure of a particular location, providing an
invaluable resource for the development and evaluation of
classification models aimed at predicting rainfall patterns in
Australia.

4.1.1 Data Collection

The data was obtained from Kaggle
(https://www kaggle.com/datasets/jsphyg/weather-dataset-

rattle-package), making it a valuable resource for academics,
analysts, and enthusiasts. The collection consists of daily
weather observations for about 10 years. These
observations were made in a variety of Australian places;
therefore, the dataset is rich and varied for study. The
collection contains 23 features, each of which captures a
different aspect of the weather. The dataset, which has
145460 rows, is divided into 20% for testing and 80% for
training. These features include temperature, wind speed,
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humidity, wind direction and atmospheric pressure. The
temporal nature of the data allows for time series analysis,
making it particularly relevant for modeling using
techniques like LSTM (Long Short-Term Memory)
Encoder-Decoder.

4.1.2 Data pre-processing and data analysis:

In preparing the Rain in Australia dataset for analysis,
several essential preprocessing steps are undertaken.
Initially, missing values are addressed by employing
techniques like imputation or removal, depending on the
extent of missing data. Additionally, categorical variables,
such as “Rain Today”, underwent encoding to facilitate their
use in machine learning models. Standardization or
normalization is applied to ensure consistent feature scaling,
a crucial aspect, especially for models like LSTM Encoder-
Decoder, which benefit from uniform scales. Outliers, if
present, are identified and treated using robust techniques to
prevent their undue influence on model performance. Given
the dataset's temporal nature, temporal aggregation is
performed, creating sequences of observations to capture
time-dependent trends effectively. Lastly, a prudent train-
test split is implemented to configure the performance of the
model on that data which has not been trained, ensuring
unbiased assessments.

During the data training phase for the LSTM Encoder-
Decoder model on the Rain in Australia dataset, the pre-
processed data underwent careful preparation for model
learning. This involved structuring the entire data into input
sequences and its corresponding target values, essential for
training a time series prediction model. The LSTM
architecture is configured with suitable parameters,
including the number of LSTM units, activation functions,
and input dimensions. Model compilation is done using the
Adam optimizer and the Binary cross-entropy loss function.
The data was split into 80% for training set, and 20% of the
dataset for testing. To avoid over-fitting, early termination
criteria were included to the training process, which started
over several epochs. To guarantee ideal generalization, the
model's performance was continuously tracked on a
validation subset. Through this training process, the LSTM
Encoder-Decoder  learned  temporal patterns and
dependencies within the data, ultimately enhancing its
capability to predict rainfall occurrences effectively.

The testing of the model is performed on the left out 20%
of the dataset. The testing phase of the dataset using LSTM
(Long Short-Term Memory) Encoder-Decoder involves
evaluating the performance of the trained model in
predicting “Rain Tomorrow”. After preprocessing the data,
splitting it into training sets and testing sets, and training the
LSTM Encoder Decoder model, the testing phase is crucial
for the assessment of the model's generalization to unseen
data. The testing process involves feeding the model with
sequences of input features from the testing set and

comparing the predicted “Rain Tomorrow” values with the
true labels. Here the is done on 10 number of epochs,
sequence length is 10, LSTM units are 100 number, batch
size are 128 number and learning rate is 0.7. The 23 number
of features are used for rainfall prediction these are: Date,
Location, MinTemp, MaxTemp, Rainfall, Evaporation,
Sunshine, WindGustDir, WindGustSpeed, WindDir9am,
WindDir3pm, WindSpeed9am, WindSpeed3pm,
Humidity9am, Humidity3pm, Pressure9am, Pressure3pm,
Cloud9am, Cloud3pm, Temp9am, Temp3pm, RainToday
and RainTomorrow. The efficacy of the model is assessed
using performance indicators like accuracy, precision, and
the Matthews Correlation Coefficient (MCC).

4.2 Model architecture

In the LSTM Encoder-Decoder model architecture for
rainfall prediction, the LSTM Layer records the temporal
dependencies and encodes the information into a fixed-size
context vector, while the Encoder's Input Layer processes
the time series data of previous rainfall observations. In
order to return the complete sequence for every time step, it
sets the number of layers and LSTM units according to the
problem's complexity and return sequences to true. Then in
Intermediate Context Vector the Repeat Vector Layer
repeats the encoded sequence to match the length of the
decoder input sequence, this helps in providing the context
vector for each time step of the decoder. After this in the
Decoder the LSTM Layers decodes the context vector into a
sequence of future rainfall predictions. It configures the
amount of LSTM units and the number of layers similarly to
the encoder and return sequences set to true to output a
sequence for each time step [62] (See Fig.1).

Fig. 1. LSTM Encoder-Decoder Model Architecture.
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“

Forget Gate
(Forget
meaningless
Content)

Input Gate
(Update the
Information)

Output Gate
(Hold updated
information)

Fig. 2. LSTM Architecture.

In an LSTM cell, input, output, and forget gates are
coupled. (See Fig.2). Which data should be deleted
from the cell state is determined by the forget gate. It
receives as inputs the current input and the prior cell
state and outputs a forgetting factor. Input Gate picks
the fresh information kept in the cell state. It uses the
previous cell state and the current input to determine
likely new values that could be added to the cell state.
What information should be shown as the output is
decided by the output gate. To provide the output for
the current time step, it takes into account the current
input and the updated cell state.

In an LSTM cell, a cell state ¢, is employed to retain
information from previous time steps. This
information is regulated by the: Forget gate unit f;
which is responsible for carrying some of the portion
of past information that is to be retained from c., Input
gate unit i, which incorporates the quantity of new
information ¢’; and Output gate unit o; which triggers
the activation of the new cell state ¢, to generate the
hidden state h,. In each time step the following
calculations occur:

fi = 6(Usxi + Wihet + br) (1)
it = o(Uix; + Wihe + by) (2)
0t = 6(Uox + Wohi-—1 + bo) (3)
¢’ = @(Uexe + Wehe + be) “)
c=f0c1+1Oc (5)
hi=0.0 @ (c) (6)

where, O represents the element wise vector product, 6
denotes the sigmoid function, @ represents an
activation function.

Here, in Output Layer the Dense Layer produces the final
rainfall prediction for each time step. Further the model is
trained on the historical rainfall data, adjusting hyper
parameters as needed. Then this trained model is used to
predict future rainfall based on new input sequences [63].
The LSTM Encoder-Decoder structure is particularly
beneficial in handling the sequence-to-sequence nature of
rainfall prediction. It allows the model to consider historical
rainfall patterns, learn temporal dependencies, and make
accurate predictions for future time steps [64] (See Fig. 3).
LSTMs have the advantage of being able to capture long-
term dependencies, which makes them ideal for time series
data tasks like rainfall prediction. The difficulties posed by
different input and output sequence lengths in rainfall
forecasting are successfully addressed by this architecture.
[65] (See Fig.4-8). In figure 4, one cans see as the time steps
are increasing, the corresponding rainfall start showing a
fixed kind of pattern. Figure 5 describes the correlation
between the actual and predicted rainfall, as a color changes
from blue to red indicates the low correlation to high
correlation. Figure 6 explains, as the frequency becomes
low, prediction error becomes high. Figure 7 explains that a
will fit models have small residuals for all data points.
Figure 8 explains that the variance is regularly distributed.

4.3 Performance Evaluation Metrics

Performance metrics are essential tools used to evaluate the
accuracy and efficacy of predictive models. These metrics
furnish quantitative measures for evaluating the model's
predictive capabilities. The research presents the
performance metrics specifically for the LSTM encoder-
decoder model. For evaluating the performance of the
model, the various parameters are involved in this model
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such as Accuracy, RMSE (root mean squared error), MSE
(mean squared error), Precision and MCC (Matthews
correlation coefficient). These parameters give the models
predictive capability:

Mean Squared Error: A loss function called MSE
(Mean Squared Error) is applied to regression issues. Its
function in this situation is to calculate the average squared
difference. between the predicted values (yb) and the actual
values (y,) in the dataset.

MSE== 3" (Y = ¥)? (7)

In this formula, n represents the total number of samples,
ya denotes the observed (actual) value of i sample and ys
signifies the predicted value for the i sample.

Root Mean Squared Error: The square root of Mean
Squared Error is known as RMSE. It calculates the
residuals' standard deviation.

Accuracy: Accuracy is a measure that represents the
proportion of accurately predicted instances to the total
number of instances in the dataset. It is frequently used for
evaluating performance in classification problems.

Number of correct predictions

Accuracy = 8
Y Total number of predictions ( )
LSTM Encoder
LSTM [4——m————— LSTM LST™M
i
LSTM 4 LSTM  |====—= — LSTM
T T T LSTM Decoder

ORNNO ®

Fig. 3. LSTM Encoder-Decoder Model.
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Precision: By calculating the proportion of accurately
predicted positive observations to all predicted positives,
precision evaluates the accuracy of positive predictions.A
high value of precision indicates a lower rate of false
positives.

True Positives

Precision = ©

True Positives+False Positives
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Matthews Correlation Coefficient (MCC): By taking
into account both true and false positives as well as
negatives, MCC acts as a balanced metric. Its utility is
especially pronounced when handling imbalanced datasets.

5. RESULTS AND COMPARATIVE ANALYSIS

The LSTM encoder and decoder model's flawless
integration has produced rainfall pattern predictions with
previously unheard-of accuracy, setting a new benchmark
for forecasting precision. In order to assess the proficiency
and precision of the model's predictions, quantitative metrics
are chosen and applied in the context of the LSTM Encoder-
Decoder model for rainfall prediction. Three assessment
measures are used in this research to evaluate the LSTM-ED
model's efficacy. The recurrent structure of the LSTM-ED
model is complex. Using an optimizer such as Adam, which
is well-known for its first-order training properties, reduces
the complexity of the training procedure and makes model
training easier overall. The ReLU (Rectified Linear Unit)
activation function was essential to our modeling strategy
for maximizing our neural network's performance and
training effectiveness. This paper offered a non-linearity
that allowed the network to comprehend intricate patterns
and correlations within the data by using ReLU as the
activation function in this model neural network design. The
key characteristic of ReLU is its ability to output the input
directly if it is positive, and zero otherwise. This introduces
a desirable sparsity in the network, promoting faster
convergence during training. The LSTM encoder and
decoder model employed in our study demonstrated
exceptional accuracy, particularly at a critical juncture
during the training process: at epochs with a value of 100
and for larger values of epochs it started to decrease and then
became constant.

For comparative analysis, this paper involved working in
the various models and comparing their Accuracy, Precision
and MCC values. The study involved, statistical as well as
neural network models such as Naive Bayes, SVM, Decision
Tree, KNN, Xgboost, ANN, CNN, RNN, DNN, LSTM,
LSTM+RNN, and the proposed model combining LSTM
with the encoder and decoder (LSTM-ED). Here, it is found

that the LSTM-ED model achieves an Accuracy= 92.13%,
Precision 0.7282 and MCC 0.6545 the prediction of rainfall
on the given dataset (See Table 2).

Here, in this paper presents the evaluation temporal
patterns, comparing predictions with actual values,
assessing variable importance, conducting threshold
analyses. The model worked with the binary cross entropy
and the ADAM optimizer function, apt for classification
task. The model has been regularized and validated using
early stopping.

Table 2. Comparative analysis of different models for rainfall

prediction
Methods Accuracy | Precision MCC
(in %)

SVM 83.5354 0.7438 0.4089
KNN 78.9858 0.5351 0.3434
Decision Tree 77.6143 0.4814 0.3524
Naive Bayes 72.9883 0.4319 0.3881
ANN 84.3672 0.6645 0.5263
Xgboost 85.2734 0.7317 0.5448
RNN 82.7329 0.7707 0.3477
CNN 77.9321 0.5241 0.3989
LSTM 77.5926 0.6338 0.3478
LSTM Encoder- 92.13812 0.7282 0.6545
Decoder
DNN 85.7763 0.7506 0.5494
RNN+LSTM 86.08 0.6578 0.3456

On performing the evaluation and running the model on
the different values of the epochs for determining the best
accuracy score of the model, the values are taken starting
from epochs=50 (Accuracy=92.1270%), then gradually
decreased and the best accuracy is achieved at epochs=10
(Accuracy=92.13812%) i.e., it reached its maximum and
then started decreasing as further epochs are increased for
instance at epochs=150 the accuracy started decreasing. (See
Table 3.).

Table 3. Accuracy for different number epochs with patience
=3

Epochs 10 20 50

92.1381 92.1276 | 92.1270

Accuracy

Here, the EarlyStopping callback is used to validate the
model after every epoch. Its hyperparameters include
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monitor="val loss, which monitors the validation loss and
stops training if the validation loss does not improve after a
predetermined number of epochs (patience=5). When
restore_best weights=True is selected, the model weights
are returned to the lowest validation loss. (See Fig. 9.).

0.0225
—— Training Loss

0.0220 Validation Loss

0.0215

0.0210 4

0.0205

Loss

0.0200 -

0.0195 4

0.0190 4

0.0185 -

Epochs

Fig. 9. Validation loss and Training loss with increase in value
of epochs.

The learning rate is crucial for achieving accurate and
efficient training in the LSTM-ED model, and thus the used
hyper parameter is involved in finding the best accuracy for
the given model. The accuracy of the LSTM-ED has been
evaluated for different values of the learning rate starting
from learning rate = 0.1 to 0.9. On performing the
evaluation, it is found that the highest Accuracy 92.13%) is
achieved at learning rate= 0.7 (See Table 4.) (See Fig. 10.).

Table 4. Calculation of accuracy for changing values of
learning rate

Learning Rate Accuracy
0.1 90.6497
0.2 86.5012
0.3 84.6319
0.4 81.4861
0.5 86.0479
0.6 86.2002
0.7 92.13812
0.8 89.656
0.9 87.6389

The dataset included various parameters such as the wind
speed at different timings, temperature, humidity at different
timings, precipitation, sunshine, and so on. While evaluating
the model, in order to find the optimized accuracy, the
combination out of these given parameters has been used
and the model was implemented on these combinations. The

best result was concluded when parameters including
rainfall, sunshine, maximum temperature, minimum
temperature and evaporation were used as selected features.
Due to their high correlation with the optimal results, the
authors applied a principal component analysis using the
combination of these features in the proposed model.

le-8+3.6374e-2 Learning Rate Impact on Training Loss

6.25

6.00

Training Loss

575

107! 10! 10° 10!
Learning Rate (log scale)

Fig. 10. The impact of learning rate on Training loss.

Here, it is find that that the best accuracy for the proposed
model has been evaluated to be 92.138% on 10 number of
epochs and learning rate is 0.7 with early stopping callback
used for validation.

The goal of training was to minimize the loss . Monitor
(quantitity to be measured ,defaults to “value loss”) and
min_data (minimum changes in the measured quantity to
consisred as improvement )were used as early stopping
callback parameters.

6. CONCLUSION

In order to accurately analyze and predict rainfall using
meteorological data, this paper has employed a variety of
machine learning and deep learning techniques. The
application of the suggested LSTM encoder-decoder model
for rainfall prediction has been discovered to represent a
noteworthy development in weather forecasting. Here, the
suggested LSTM Encoder-Decoder method has proved
successful.  92.13% accuracy. Here, a comparative
examination using machine learning demonstrates that the
suggested method outperforms alternative methods for
rainfall prediction. The proposed approach maintained its
accuracy across additional epochs, showcasing a decrease in
loss, root mean square error (RMSE), and learning rate. The
capacity of the proposed models to analyze complex
temporal patterns in meteorological data has displayed
encouraging outcomes in reliably forecasting rainfall
patterns over extended periods. Thus, the model's capability
to glean insights from historical data and generate
dependable predictions contributes to better preparedness
for extreme weather events, aiding in effective risk
management, agriculture planning, water resource
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management, and disaster mitigation strategies. This
research can be further extended to predict multivariate
predictions with transfer learning, and can be integrated with
several ensemble models to achieve higher forecasting
efficiency.
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