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A B S T R A C T 

Rainfall prediction has been a critical area of research due to its significant impact on 

several industries such as agriculture, water resource management, and catastrophe 

preparedness. Anticipating rainfall provides crucial awareness, enabling proactive 

measures to be taken in advance. Precise estimations of daily rainfall not only enhance 

agricultural productivity but also play a pivotal role in securing food and water supplies. 

Machine Learning and the more recent Deep Learning based approaches have shown 

promising results in modelling complex patterns inherent in meteorological data. This 

paper presents an in-depth exploration and evaluation of various ML and DL algorithms, 

encompassing Naïve Bayes, Decision Trees, Support Vector Machines, K-Nearest 

Neighbour, Artificial Neural Network, XgBoost, Convolutional Neural Networks, Long 

Short-Term Memory Network, RNN with LSTM and LSTM Encoder-Decoder. The 

evaluation metrics of Mean Square Error (MSE), Root Mean Squared Error (RMSE), 

Matthews Correlation Coefficient (MCC), Accuracy, and Precision are employed to 

assess the performance of the model. Here, the proposed approach LSTM Encoder-

Decoder achieves accuracy 92.13%. Here, the comparative analysis is performed with 

machine learning and  demonstrated how well the suggested method predicts rainfall when 

compared to alternative methods. 

 

1. INTRODUCTION 

Predicting rainfall is a pivotal yet inherently challenging 

task within the domain of meteorology.  The accurate 

prediction of the rainfall increases the output produced in 

agricultural field, ensure proper food and water supply, 

providing it to a healthy population. Anticipating rainfall 

can help avoid flooding, save human lives and property. The 

shortage of rainfall adversely affects the aquatic ecosystem, 

water supply quality, and agricultural productivity. Hence, 

forecasting is essential for understanding the state of the 

atmosphere. Predictive analytics emerges as a cutting-edge 

analytical approach for conducting such predictions and 

anticipating future events based on historical datasets. It 

plays a crucial role in prompting various human activities, 

including the generation of power, production related to 

agriculture, tourism, and forestry [1]. The prediction of 

meteorological phenomena is intricate, primarily attributed 

to the challenge of obtaining accurate data, with instances 

where data collection is either impossible or may yield 

inaccurate information from highly sensitive sensors [2]. 

Therefore, predictions are made using probabilistic models 

[3]. Lately, there has been a widespread adoption of machine 

learning and deep learning algorithms for modelling 

phenomena that involve substantial and diverse datasets. 

Many factors are responsible for this trend. Firstly, machine 

learning algorithms demonstrate proficiency in handling 

large volumes of data [4]. Secondly, they exhibit the 

capability to unveil patterns of behaviour or implicit 

relationships within processed data that may not be directly 

apparent [5]. For identifying patterns in past weather data, 

machine learning algorithms like Random Forests, Support 

Vector Machines (SVM), and Gradient Boosting work well. 

However, deep learning algorithms are adept at modelling 

transitory dependencies in sequence data, especially 

Recurrent Neural Networks (RNNs) and Long Short-Term 

Memory networks (LSTMs). As a result, these algorithms 

are excellent at processing big datasets, identifying intricate 

patterns, and forecasting future events based on past patterns. 

This paper's goal is to perform an exploratory evaluation 

with an emphasis on modelling rainfall prediction using 

machine learning and deep learning algorithms. It explores 

the challenges associated with conventional methods and 

highlights the potential of data-driven approaches in 

enhancing prediction accuracy. The utilization of various 

climatic parameters, such as speed of the wind, temperature, 

atmospheric pressure, and humidity, in combination with 

historical rainfall data, forms the basis for training these 

models. 
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2. RELATED WORKS  

The literary survey encompassed a wide array of intriguing 

techniques aimed at conducting weather forecasts using 

various machine learning and deep learning algorithms. This 

paper presents study of multiple algorithms used in past by 

various other authors. Recent research has brought attention 

to the prevailing weather conditions can perhaps affect 

various things like increase in air pollution [6], solar 

radiations [7] and several additional factors. The research 

and literary survey have been made for the rainfall 

prediction model that widely affects or is a major reason 

behind many catastrophic disasters like flood [8], drought 

[9], landslide [10], rise in local mean sea level [11] and so 

on.  Although a substantial part of historical forecasting 

methods relies on differential equations and physics-based 

simulations, recent studies show the advancements that have 

introduced alternative approaches from machine learning 

and deep learning. These methods primarily leverage 

machine learning techniques such as Bayesian network or 

Naïve Bayes [12], SVM [13], decision trees [14], K-nearest 

neighbor [15], ANN while CNN included [16], RNN [17], 

and further advancements in these neural networks using 

long-short term memory (LSTM) algorithms. In paper [18], 

the authors combined 5 machine learning (ML) algorithms 

Decision trees, KNN, Random Forest, SVM, and AdaBoost) 

together and used a hybrid approach of Principal Component 

Analysis (PCA) with the stochastic machine learning (ML) 

algorithms.  In the recent studies it has been seen that authors 

tend more towards the deep learning model rather than 

stochastic and mathematical machine learning models. The 

parameters such as precipitation, humidity, wind speed at 

different times, sunshine, cloud characteristics and direction 

have been used for rainfall prediction and weather 

forecasting. Authors used Artificial Neural Network (ANN) 

algorithm to enhance accuracy by taking into account the 

mentioned parameters and factors to predict weather 

fluctuations [19]. In paper [20], the authors studied and 

implemented various methodologies such as gradient 

boosting, polynomial regression, recurrent neural network 

neural and prophet models to the intricate process of weather 

forecasting. The comprehensive comparative analysis 

entailed the utilization of various techniques such as ANN, 

Auto Regression, RNN with the LSTM model to capture 

non-linear relationships among weather variables and 

patterns within the dataset. In paper [21], In order to create 

a sophisticated and statistically sound model for predicting 

univariate weather variables, the authors employed LSTM. 

Using a single-layer Long Short-Term Memory (LSTM) 

model and a multi-layer-LSTM model, the authors 

investigated the impact of intermediate weather variables on 

prediction accuracy using data from an Indonesian airport 

area. In paper [22], The weather translation, which changes 

an image's weather condition from one category to another, 

was created by the authors using Generative Adversarial 

Networks (GAN). For this a large-scale weather image 

dataset was used which comprised of 5 weather categories.  

An attention module was integrated to concentrate the image 

translation process on the region of interest, effectively 

minimizing superfluous alterations or artifacts. The authors 

used LSTM to optimize the accuracy of model forecasting 

by using multiple meteorological factors. The authors 

employed a real-time dataset covering eight meteorological 

parameters from the European Centre for Medium-Range 

Weather Forecasting (ECMWF).  The relationships between 

meteorological elements and the predicted rainfall were 

identified through the use of feature extraction and 

continuous debugging throughout the LSTM model's 

training, allowing for precise modifications to the model's 

rainfall forecasts. [23]. 

The author mentioned the various models and their 

algorithms in terms of progress of research with description. 

See Table 1. 

 

 

Table 1. Summary of Machine Learning based approaches for weather prediction 

Models Year Author Dataset Result Description 

ANN 2012 Kumar Abhishek, 

et. al. 

Data available from the 

station Toronto Lester B. 

Pearson Int’l A, Ontario, 

Canada 

MSE=1.52 According to the findings, the model 

performs better overall when there are 

more neurons per layer because this lowers 

Mean Squared Error (MSE) [24]. 

 

2015 Mislana, et. al. Rainfall dataset from 

BMKG Tenggarong 

Station and Universitas 

Mulawarman 

MSE=0.00096

31 

The study's findings suggest that the 

Artificial Neural Network (ANN) model 

can function as a powerful prediction 

algorithm with a high degree of predicted 

accuracy [25]. 
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KNN 2008 Zahoor Jan, et. al. National Climatic Data 

Center (NCDC) 

Accuracy=96.

66% 

In the experiment, it was observed that for 

a smaller dataset size of 40,000, the range 

of k values from 5 to 10 yielded accurate 

results. However, for a larger dataset size 

of 80,000, the accurate results were 

obtained within the range of k values from 

35 to 40 [26]. 

2013 Jian Hu, et. al. Nanjing city and the 

Dahuofang reservoir basin. 

RMSE=327.7 

MAE=247.3 

 

This work presents a nonparametric model 

that replicates relevant statistical aspects of 

the observed time series to forecast yearly 

average rainfall [27]. 

2017 Mingming, et. al. Rainfall dataset Beijing Accuracy=48.

37% 

When working with precipitation datasets 

that have irregular distributions, the KNN 

algorithm's resilience to different 

neighborhood size selections is 

particularly clear [28]. 

Naïve 

Bayes 

2019 Li Tiancheng, et. 

al.  

China Meteorological 

Data Network 

Accuracy=76.

9% 

Experimental results demonstrated that the 

Naive Bayesian algorithm-based 

sandstorm prediction model outperformed 

other approaches in terms of prediction 

accuracy [29]. 

2019 Wei Chen, Yang 

Li , Weifeng Xue, 

et. al.  

Jiangxi Province 

Meteorological Bureau 

Accuracy=83.

5% 

 

The results showed that Naïve Bayes, 

along with all other models, demonstrated 

favorable outcomes.[30] 

2020 A U Azmi,  et. al. BMKG Banyuwangi 

Meteorological Station 

Accuracy=95.

91% 

The test outcomes indicate a relatively 

high accuracy in classifying rainfall 

categories [31]. 

RNN 2021 Han, J. M., et. al. Harvard Gund Hall data 

(Jan to May) 

MSE= 0.3969 Validation of the model showed how 

important it is to use localized weather 

data in building performance simulations.  

The GRU, one of the RNN models, 

performed better than the regular models 

[32]. 

LSTM 2019 Pradeep Hewage, 

Ardhendu  et.al. 

Surface Weather Data 

Global Forecast System 

0.25’ dataset 

MSE: 0.0168 

Accuracy: 

79% 

For the Snow and Soil Moisture (SMOIS) 

variables, the Weather Research and 

Forecasting (WRF) model produces the 

best results [33]. 

2020 Shweta Mittal, 

et.al. 

Integrated Global 

Radiosonde Archive 

(IGRA) dataset  

MAE : 0.04 To evaluate their impact on the accuracy 

of the network, the number of hidden 

layers was increased to three. A network 

with two hidden layers was found to attain 

acceptable accuracy with less learning 

time. Additionally, experimental findings 

indicate that the Adam optimizer 

outperforms SGD and RMSProp 

optimizers, delivering superior results 

[34]. 

Encoder - 

Decoder 

2021 Kumar, R., et.al. 

 

Real-time data from sensor 

locations 

at the farm 

Accuracy = 

85.97 

Utilizing DeepMC for micro-climate 

predictions enables cost-effective 

forecasting using accessible IoT sensors. 

This empowers partner farmers to optimize 

chemical applications, ensuring timely and 

effective usage [35]. 

Multiple 

models 

2021 Schultz, M. G., 

Betancourt, C., 

Gong, B., Kleinert, 

F., Langguth, et.al. 

Three datasets including 

meteorological time series 

dataset 

--- Considering the ambition to substitute 

computationally intensive NWP models 

with DL algorithms, it's crucial to reassess 

weather forecasting goals and articulate 
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 precise criteria for alternative methods 

[36]. 

LSTM + 

Attention 

model 

2018 Yirui Wu, et.al. Flood dataset of Changhua 

River  

Accuracy:67.5

9% 

Experiments on the Changhua dataset 

show that the suggested approach 

outperforms a number of comparison 

approaches, demonstrating the potency of 

the context-aware attention model 

presented in this work [37]. 

 2022 Suleman, M. A. R., 

& Shridevi 

Real meteorological data 

of weather 

station at Saskatoon John 

G. Diefenbaker Intl. 

Airport 

MSE = 0.0871 Accurate predictions are made even when 

input sequences abruptly shift because the 

spatial feature attention method quantifies 

the mutual influence of input features on 

the target feature [38]. 

Transform

er 

 

2022 Chattopadhyay, A., 

Mustafa,  et.al. 

ECMWF Reanalysis 5 

(ERA5) dataset 

RMSE (m2 

s2) at 3d = 

294 

The relative spatial correlations of the 

features in the spatiotemporal data are 

encoded by integrating a deep spatial 

transformer into the network architecture's 

latent space [39]. 

2022 Alerskans, E., 

Nyborg, J., et.al. 

GFS dataset with 

resolution of 0.25 

RMSE (C) = 

1.50 

Even though the Transformer post-

processing model was trained using data 

from less than two years ago, it shows 

encouraging results [40]. 

CNN + 

Attention 

+ LSTM 

2023 Hou, X., et. al. GHI dataset for solar 

radiance  

CNN-A-

LSTM 

RMSE= 0.076 

To increase the accuracy of solar 

irradiance forecast and accomplish the 

objective of better power system optimal 

dispatching and management, an enhanced 

CNN-A-LSTM and attention mechanism 

are suggested. 

 GBT, SVM, ANN, DNN, LSTM, CNN-

DNN, and CNN-LSTM models are 

contrasted with the suggested model [41]. 

Deep 

LSTM 

2023 Ilias C, Georgios 

T., et.al. 

Nisorys rainfall dataset 

since 2017 

Accuracy = 

96.45%  

The suggested machine learning pipeline 

initiates the deep LSTM regressor's 

execution solely upon the classifier's 

prediction of a rainfall event. This 

approach reduces computational demands 

while enabling the utilization of a dataset 

exclusively comprised of rainfall events 

during the regressor's training phase. 

Consequently, this method enhances 

forecasting performance [42]. 

2023 Sunkavalli Akash, 

Sarikonda S, et.al. 

Weather dataset over 

Delhi between 1996 and 

2017. 

-- The types of different machine learning 

methods were discussed to find the best 

model [43]. 

Generative 

Adversaria

l networks 

 

2023 Sigg, C., et. al. dataset with Sentinel-2 

photos that correspond to 

climatic and topographic 

factors. 

Accuracy = 

59% 

Propose a method for visualizing weather 

forecasts using photographic images, a 

complex task requiring realism and 

alignment with predictions. Seamless 

transitions from observed to forecasted 

conditions and visual consistency between 

consecutive images are crucial. Leveraging 

conditional generative adversarial 

networks (cGANs) enables synthesis of 

realistic visualizations [44]. 
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3. METHODOLOGY 

Rainfall prediction using traditional artificial intelligence 

relies on predefined rules and explicit programming. It 

works like step-by-step instructions, guiding the AI system 

to solve problems or perform tasks. Traditional AI systems, 

however, struggle with adapting to new or unexpected 

situations and handling complexity, as they rely heavily on 

predefined rules and explicit programming. Initial weather 

forecasting methods were constrained by their dependence 

on static rules and lacked flexibility. This approach was 

limited in handling complex, unpredictable weather patterns. 

Traditional programming laid the groundwork for AI in 

weather forecasting. It provided a systematic approach to 

interpreting meteorological data, setting the stage for more 

dynamic solutions.   

Rainfall prediction using Machine Learning (ML) uses 

algorithms to analyze historical data and predict future 

patterns. ML models in weather forecasting consider factors 

like temperature, wind speed, and precipitation, leading to 

improved accuracy, faster response times, and more 

efficient forecasting operations. ML algorithms can 

automate aspects of the forecasting process, thereby 

enhancing efficiency and accuracy. As weather phenomena 

became more erratic the need for a more adaptable and 

accurate forecasting method became apparent. Machine 

Learning algorithms, applied in institutions like ECMWF, 

began to analyse historical weather data, enhancing 

prediction accuracy and responsiveness. This was a 

significant step towards more reliable and efficient weather 

forecasting.  

Unlike traditional programming or even basic machine 

learning algorithms that require feature engineering or 

explicit instructions, deep learning systems automatically 

identify and learn the relevant features from the data itself.  

Text, music, and image data are examples of unstructured 

data that this works particularly well with.  Using data 

instead of mathematical formulas, deep learning creates 

weather forecasting systems.  It uses historical weather data 

to learn the cause-and-effect links that govern Earth's 

weather evolution. Deep learning offers more accurate 

forecasts in less time than traditional systems, making it 

essential for mitigating the consequences of severe weather 

conditions. Deep Learning technologies, exemplified by 

models like Google DeepMind’s GraphCast, were able to 

process vast amounts of historical data, uncovering complex 

weather patterns with greater precision and speed.  

In the context of climate science and   related fields, 

Large Language Models (LLMs) offer unique advantages. 

They can process and summarize large volumes of scientific 

literature, making it easier for researchers and policymakers 

to stay informed. LLMs can also assist in drafting reports, 

simplifying complex scientific information for public 

communication, and even generating predictive narratives 

based on climate data. Large Language Models offered a 

solution by processing and generating human-like text. They 

played a vital role in making climate data more accessible 

and understandable, thus enhancing the overall utility of 

weather forecasts.  

One significant advancement in artificial intelligence is 

the capacity of generative AI to synthesis and create new 

material from learned data.  Generative artificial intelligence 

is based on the ability to process and integrate vast volumes 

of data, often millions of data points, and generate concise, 

logical, and often original ideas or content.  This is achieved 

through the use of sophisticated machine learning 

techniques including Generative Adversarial Networks 

(GANs), autoencoders, and transformer models. These 

techniques enable the AI to learn from a dataset and then 

generate new data instances that are similar but not identical 

to the original data. For weather forecasting, Generative AI 

brings a transformative approach. Traditional models in 

meteorology rely on analyzing historical data to predict 

future conditions. Generative AI, however, synthesizes this 

data to provide not just predictions but also actionable 

insights and comprehensive summaries. This ability makes 

it particularly valuable for businesses and organizations that 

require quick, accurate interpretations of complex data to 

make informed decisions. Generative AI’s uniqueness lies 

in its capability to create outputs that are both informative 

and easy to assimilate, bridging the gap between complex 

data analysis and practical, everyday decision-making. This 

makes it an invaluable tool in fields where data is abundant, 

but clarity and conciseness are essential. The evolving 

climate demanded not just accurate forecasts but also 

actionable insights for better decision-making.  

Prediction Techniques 

Here, this paper presents some machine learning and 

deep learning based techniques used for rainfall prediction. 

Naive Bayes:  The Naive Bayes classifier works on 

Bayes’ theorem, which is used to determine that whether an 

event will occur or not when another event has already 

occurred. In a classification, the objective of the task is to 

assign the input to a single predefined category [45]. The 

Naive Bayes classifier operates by computing the 

probabilities that are associated with the input belonging to 

each category and subsequently selecting the category that 

has the highest probability as the predicted output. The term 

"naive" comes from the assumption that, given the class 

label, the qualities used to describe the input are 

conditionally independent of one another.  According to this, 

the presence or absence of one attribute has no bearing on 

the presence or absence of another. [46]. Although, this 

presumption may not be applicable to all the cases, but it 

eases the computation and often performs effectively, even 

when dealing with attributes that are correlated. 

Decision Tree: It utilizes tree architecture to represent 

the relationship among variables [47]. It facilitates the 

partitioning of data into two or more interconnected sets 

based on important factors. Initially, the entropy of each 
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attribute is computed, and subsequently, the data is 

partitioned based on predictors that exhibit the highest 

information gain or minimal entropy [48]. Building a model 

that forecasts the value of the target variable is the primary 

goal.  With each leaf node denoting a distinct class label and 

the inside nodes representing attributes, the decision tree 

employs a tree structure to solve the given problem. [49]. 

K-Nearest Neighbours: The K-Nearest Neighbours 

(KNN) predict the label or category of a given data point by 

taking into account the labels of its nearest neighbours in the 

attribute space. KNN assumes that data points with similar 

attributes tend to have similar labels [50]. The KNN method 

typically uses a constant k value and runs several 

experiments with various k values to produce the best 

prediction results.  The method works by gradually 

enlarging the area surrounding test sample point y until k 

training sample points are covered. [51]. Pprimary 

challenges with KNN is its heightened susceptibility to 

hyper parameter configurations, including factors such as 

the selection of the number of nearest neighbours (k), the 

choice of distance function, and the type of weighting 

function used. The neighbours are selected from the dataset 

and their classes or object property estimates are known [52].  

Extreme Gradient Boosting: Extreme Gradient 

Boosting (Xgboost) is used in regression, classification, 

ranking, and prediction activities [53]. It represents an 

enhanced iteration of the gradient boosting algorithm, with 

a primary objective of improving model efficiency and 

accuracy by reducing the computation time required for 

gradient calculations [54]. The capacity of Xgboost to 

efficiently handle big datasets, attain high accuracy, and 

handle missing values has led to its rise in popularity. Since 

decision tree are weak learner, are methodically integrated 

into the model during the process in which each successive 

tree is trained to address errors made by its predecessors. 

Thus, Xgboost constructs a collection of decision trees, with 

each tree dedicated to capturing patterns in the data that may 

have been overlooked by the preceding trees [55]. 

Long Short-Term Memory: One kind of recurrent 

neural network (RNN) that works well for sequence 

prediction tasks, such as time series forecasting, is called an 

LSTM. [56]. Because LSTM can detect long-range 

dependencies, it performs more accurately than 

conventional RNNs. Unlike traditional RNNs, LSTM's 

recurrent hidden layer includes unique units known as 

memory blocks. [57]. Within these memory blocks, there are 

memory cells that feature self-connections, serving to 

preserve the transistor network state. Additionally, 

specialized multiplicative units, referred to as gates are 

included to regulate the flow of information. LSTM 

effectively addresses the issue of error backflow, ensuring 

that the algorithm utilizes only the relevant error feedback 

for making more accurate predictions [58]. LSTM can be 

applied effectively to rainfall prediction problem. 

Recurrent Neural Networks: it suffers from the 

limitation of short-term memory. Consequently, when 

making predictions with extensive data, RNN has various 

variations designed to provide solutions. Thus, it commonly 

encounters the vanishing gradient problem, in which the 

information gradually tends to fade depending on the 

activation function. The non-linearity term is frequently 

insufficient for preserving long-term memory [59]. To 

address this issue, a Long Short-Term Memory network has 

been used. LSTMs play a crucial role in retaining issues that 

are capable of being back-propagated through both time and 

layers. This preservation of issues enables RNN algorithm 

to enhance learning efficiency over numerous time-steps 

[60]. Therefore, the model can capture temporal patterns of 

rainfall data that include both short-term and long-term 

dependencies thanks to the integration of RNNs and LSTMs. 

The sequential nature of RNNs enables the network to 

process the time series data, while the LSTM architecture 

helps mitigate the vanishing gradient problem, allowing for 

better retention of relevant information over extended 

sequences [61]. 

4. PROPOSED APPROACH 

4.1 Data Set Description 

In this comprehensive dataset, an extensive collection of 

daily weather observations spanning approximately a 

decade across various locations in Australia is meticulously 

documented. The focal point of interest is the target variable 

"Rain Tomorrow," which serves as the key element for 

predictive modeling. The objective is to forecast whether it 

will rain on the subsequent day, with binary outcomes 

indicating either a positive affirmation ("Yes") or a negative 

one ("No"). Specifically, the affirmative response is 

assigned when the recorded rainfall for a given day 

surpasses or equals 1mm. This dataset offers a rich and 

diverse repository of meteorological information, such as 

temperature of the place, humidity, speed of the wind, and 

atmospheric pressure of a particular location, providing an 

invaluable resource for the development and evaluation of 

classification models aimed at predicting rainfall patterns in 

Australia.  

4.1.1 Data Collection  

The data was obtained from Kaggle 

(https://www.kaggle.com/datasets/jsphyg/weather-dataset-

rattle-package), making it a valuable resource for academics, 

analysts, and enthusiasts.  The collection consists of daily 

weather observations for about 10 years.  These 

observations were made in a variety of Australian places; 

therefore, the dataset is rich and varied for study.  The 

collection contains 23 features, each of which captures a 

different aspect of the weather.  The dataset, which has 

145460 rows, is divided into 20% for testing and 80% for 

training. These features include temperature, wind speed, 
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humidity, wind direction and atmospheric pressure. The 

temporal nature of the data allows for time series analysis, 

making it particularly relevant for modeling using 

techniques like LSTM (Long Short-Term Memory) 

Encoder-Decoder. 

4.1.2 Data pre-processing and data analysis: 

In preparing the Rain in Australia dataset for analysis, 

several essential preprocessing steps are undertaken. 

Initially, missing values are addressed by employing 

techniques like imputation or removal, depending on the 

extent of missing data. Additionally, categorical variables, 

such as “Rain Today”, underwent encoding to facilitate their 

use in machine learning models. Standardization or 

normalization is applied to ensure consistent feature scaling, 

a crucial aspect, especially for models like LSTM Encoder-

Decoder, which benefit from uniform scales. Outliers, if 

present, are identified and treated using robust techniques to 

prevent their undue influence on model performance. Given 

the dataset's temporal nature, temporal aggregation is 

performed, creating sequences of observations to capture 

time-dependent trends effectively. Lastly, a prudent train-

test split is implemented to configure the performance of the 

model on that data which has not been trained, ensuring 

unbiased assessments. 

During the data training phase for the LSTM Encoder-

Decoder model on the Rain in Australia dataset, the pre-

processed data underwent careful preparation for model 

learning. This involved structuring the entire data into input 

sequences and its corresponding target values, essential for 

training a time series prediction model. The LSTM 

architecture is configured with suitable parameters, 

including the number of LSTM units, activation functions, 

and input dimensions. Model compilation is done using the 

Adam optimizer and the Binary cross-entropy loss function.  

The data was split into 80% for training set, and 20% of the 

dataset for testing.  To avoid over-fitting, early termination 

criteria were included to the training process, which started 

over several epochs.  To guarantee ideal generalization, the 

model's performance was continuously tracked on a 

validation subset. Through this training process, the LSTM 

Encoder-Decoder learned temporal patterns and 

dependencies within the data, ultimately enhancing its 

capability to predict rainfall occurrences effectively. 

The testing of the model is performed on the left out 20% 

of the dataset. The testing phase of the dataset using LSTM 

(Long Short-Term Memory) Encoder-Decoder involves 

evaluating the performance of the trained model in 

predicting “Rain Tomorrow”. After preprocessing the data, 

splitting it into training sets and testing sets, and training the 

LSTM Encoder Decoder model, the testing phase is crucial 

for the assessment of the model's generalization to unseen 

data. The testing process involves feeding the model with 

sequences of input features from the testing set and 

comparing the predicted “Rain Tomorrow” values with the 

true labels.  Here the is done on 10 number of epochs, 

sequence length is 10, LSTM units are 100 number, batch 

size are 128 number and learning rate is 0.7. The 23 number 

of features are used for rainfall prediction these are:  Date, 

Location, MinTemp, MaxTemp, Rainfall, Evaporation, 

Sunshine, WindGustDir, WindGustSpeed, WindDir9am, 

WindDir3pm, WindSpeed9am, WindSpeed3pm, 

Humidity9am, Humidity3pm, Pressure9am, Pressure3pm, 

Cloud9am, Cloud3pm, Temp9am, Temp3pm, RainToday 

and RainTomorrow. The efficacy of the model is assessed 

using performance indicators like accuracy, precision, and 

the Matthews Correlation Coefficient (MCC). 

4.2 Model architecture 

In the LSTM Encoder-Decoder model architecture for 

rainfall prediction, the LSTM Layer records the temporal 

dependencies and encodes the information into a fixed-size 

context vector, while the Encoder's Input Layer processes 

the time series data of previous rainfall observations.  In 

order to return the complete sequence for every time step, it 

sets the number of layers and LSTM units according to the 

problem's complexity and return sequences to true. Then in 

Intermediate Context Vector the Repeat Vector Layer 

repeats the encoded sequence to match the length of the 

decoder input sequence, this helps in providing the context 

vector for each time step of the decoder. After this in the 

Decoder the LSTM Layers decodes the context vector into a 

sequence of future rainfall predictions. It configures the 

amount of LSTM units and the number of layers similarly to 

the encoder and return sequences set to true to output a 

sequence for each time step [62] (See Fig.1). 
 

 
Fig. 1. LSTM Encoder-Decoder Model Architecture. 
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Fig. 2. LSTM Architecture. 

 

In an LSTM cell, input, output, and forget gates are 

coupled. (See Fig.2). Which data should be deleted 

from the cell state is determined by the forget gate. It 

receives as inputs the current input and the prior cell 

state and outputs a forgetting factor. Input Gate picks 

the fresh information kept in the cell state. It uses the 

previous cell state and the current input to determine 

likely new values that could be added to the cell state.  

What information should be shown as the output is 

decided by the output gate. To provide the output for 

the current time step, it takes into account the current 

input and the updated cell state. 

In an LSTM cell, a cell state ct is employed to retain 

information from previous time steps. This 

information is regulated by the: Forget gate unit ft 

which is responsible for carrying some of the portion 

of past information that is to be retained from ct−1, Input 

gate unit it which incorporates the quantity of new 

information c’t and Output gate unit ot which triggers 

the activation of the new cell state ct to generate the 

hidden state ht. In each time step the following 

calculations occur: 

ft = σ(Ufxt + Wfht−1 + bf )                            (1) 

it = σ(Uixt + Wiht−1 + bi)                              (2) 

ot = σ(Uoxt + Woht−1 + bo)                           (3) 

c’t = φ(Ucxt + Wcht−1 + bc)                          (4) 

ct = ft ʘ ct−1 + it ʘ c’t                                                      (5) 

ht = ot ʘ Φ (ct)                                            (6) 

where, ʘ represents the element wise vector product, σ 

denotes the sigmoid function, Φ represents an 

activation function. 
Here, in Output Layer the Dense Layer produces the final 

rainfall prediction for each time step. Further the model is 

trained on the historical rainfall data, adjusting hyper 

parameters as needed. Then this trained model is used to 

predict future rainfall based on new input sequences [63]. 

The LSTM Encoder-Decoder structure is particularly 

beneficial in handling the sequence-to-sequence nature of 

rainfall prediction. It allows the model to consider historical 

rainfall patterns, learn temporal dependencies, and make 

accurate predictions for future time steps [64] (See Fig. 3). 

LSTMs have the advantage of being able to capture long-

term dependencies, which makes them ideal for time series 

data tasks like rainfall prediction.  The difficulties posed by 

different input and output sequence lengths in rainfall 

forecasting are successfully addressed by this architecture. 

[65] (See Fig.4-8). In figure 4, one cans see as the time steps 

are increasing, the corresponding rainfall start showing a 

fixed kind of pattern. Figure 5 describes the correlation 

between the actual and predicted rainfall, as a color changes 

from blue to red indicates the low correlation to high 

correlation. Figure 6 explains, as the frequency becomes 

low, prediction error becomes high. Figure 7 explains that a 

will fit models have small residuals for all data points. 

Figure 8 explains that the variance is regularly distributed. 

4.3 Performance Evaluation Metrics 

Performance metrics are essential tools used to evaluate the 

accuracy and efficacy of predictive models. These metrics 

furnish quantitative measures for evaluating the model's 

predictive capabilities. The research presents the 

performance metrics specifically for the LSTM encoder-

decoder model. For evaluating the performance of the 

model, the various parameters are involved in this model 
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such as Accuracy, RMSE (root mean squared error), MSE 

(mean squared error), Precision and MCC (Matthews 

correlation coefficient). These parameters give the models 

predictive capability: 

Mean Squared Error: A loss function called MSE 

(Mean Squared Error) is applied to regression issues.  Its 

function in this situation is to calculate the average squared 

difference. between the predicted values (yb) and the actual 

values (ya) in the dataset. 

MSE = 
1

𝑛
∑ (𝑦𝑎 − 𝑦𝑏)2𝑛

𝑖=1
  (7) 

In this formula, n represents the total number of samples, 

ya denotes the observed (actual) value of ith sample and yb 

signifies the predicted value for the ith sample. 

Root Mean Squared Error:  The square root of Mean 

Squared Error is known as RMSE.  It calculates the 

residuals' standard deviation. 

Accuracy: Accuracy is a measure that represents the 

proportion of accurately predicted instances to the total 

number of instances in the dataset. It is frequently used for 

evaluating performance in classification problems. 

Accuracy = 
Number of correct predictions

Total number of predictions
 (8) 

 

 

Fig. 3. LSTM Encoder-Decoder Model. 

 

 
Fig. 4. Time Series Plot for rainfall. 

 

Fig. 5. Correlation matrix for actual and predicted rainfall. 

 

 

Fig. 6. Histogram between the frequency and the predicted 

error for the given dataset. 

 

 
Fig. 7. Residual Plot. 

 
Precision: By calculating the proportion of accurately 

predicted positive observations to all predicted positives, 

precision evaluates the accuracy of positive predictions.A 

high value of precision indicates a lower rate of false 

positives. 

Precision = 
True Positives

True Positives+False Positives
 (9) 
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Fig. 8. Histogram plotted between Frequency and Residuals. 

 

Matthews Correlation Coefficient (MCC):  By taking 

into account both true and false positives as well as 

negatives, MCC acts as a balanced metric. Its utility is 

especially pronounced when handling imbalanced datasets. 

5. RESULTS AND COMPARATIVE ANALYSIS 

The LSTM encoder and decoder model's flawless 

integration has produced rainfall pattern predictions with 

previously unheard-of accuracy, setting a new benchmark 

for forecasting precision.  In order to assess the proficiency 

and precision of the model's predictions, quantitative metrics 

are chosen and applied in the context of the LSTM Encoder-

Decoder model for rainfall prediction.  Three assessment 

measures are used in this research to evaluate the LSTM-ED 

model's efficacy. The recurrent structure of the LSTM-ED 

model is complex.  Using an optimizer such as Adam, which 

is well-known for its first-order training properties, reduces 

the complexity of the training procedure and makes model 

training easier overall.  The ReLU (Rectified Linear Unit) 

activation function was essential to our modeling strategy 

for maximizing our neural network's performance and 

training effectiveness.  This paper offered a non-linearity 

that allowed the network to comprehend intricate patterns 

and correlations within the data by using ReLU as the 

activation function in this model neural network design. The 

key characteristic of ReLU is its ability to output the input 

directly if it is positive, and zero otherwise. This introduces 

a desirable sparsity in the network, promoting faster 

convergence during training. The LSTM encoder and 

decoder model employed in our study demonstrated 

exceptional accuracy, particularly at a critical juncture 

during the training process: at epochs with a value of 100 

and for larger values of epochs it started to decrease and then 

became constant. 

For comparative analysis, this paper involved working in 

the various models and comparing their Accuracy, Precision 

and MCC values. The study involved, statistical as well as 

neural network models such as Naïve Bayes, SVM, Decision 

Tree, KNN, Xgboost, ANN, CNN, RNN, DNN, LSTM, 

LSTM+RNN, and the proposed model combining LSTM 

with the encoder and decoder (LSTM-ED). Here, it is found 

that the LSTM-ED model achieves an Accuracy= 92.13%, 

Precision 0.7282 and MCC 0.6545 the prediction of rainfall 

on the given dataset (See Table 2). 

Here, in this paper presents the evaluation temporal 

patterns, comparing predictions with actual values, 

assessing variable importance, conducting threshold 

analyses. The model worked with the binary cross entropy 

and the ADAM optimizer function, apt for classification 

task. The model has been regularized and validated using 

early stopping.  

 
Table 2. Comparative analysis of different models for rainfall 

prediction 

Methods Accuracy 

(in %) 

Precision MCC 

SVM 83.5354 0.7438 0.4089 

KNN 78.9858 0.5351 0.3434 

Decision Tree 77.6143 0.4814 0.3524 

Naïve Bayes 72.9883 0.4319 0.3881 

ANN 84.3672 0.6645 0.5263 

Xgboost 85.2734 0.7317 0.5448 

RNN 82.7329 0.7707 0.3477 

CNN 77.9321 0.5241 0.3989 

LSTM 77.5926 0.6338 0.3478 

LSTM Encoder-

Decoder 

92.13812 0.7282 0.6545 

 

DNN 85.7763 0.7506 0.5494 

RNN+LSTM 86.08 0.6578 0.3456 

 

On performing the evaluation and running the model on 

the different values of the epochs for determining the best 

accuracy score of the model, the values are taken starting 

from epochs=50 (Accuracy=92.1270%), then gradually 

decreased and the best accuracy is achieved at epochs=10 

(Accuracy=92.13812%) i.e., it reached its maximum and 

then started decreasing as further epochs are increased for 

instance at epochs=150 the accuracy started decreasing. (See 

Table 3.).  

 

Table 3. Accuracy for different number epochs with patience 

= 3 

Epochs 10 20 50 

 Accuracy  92.1381  92.1276 92.1270 

 

Here, the EarlyStopping callback is used to validate the 

model after every epoch. Its hyperparameters include 
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monitor='val_loss, which monitors the validation loss and 

stops training if the validation loss does not improve after a 

predetermined number of epochs (patience=5). When 

restore_best_weights=True is selected, the model weights 

are returned to the lowest validation loss. (See Fig. 9.). 

 

 
Fig. 9. Validation loss and Training loss with increase in value 

of epochs. 

 

The learning rate is crucial for achieving accurate and 

efficient training in the LSTM-ED model, and thus the used 

hyper parameter is involved in finding the best accuracy for 

the given model. The accuracy of the LSTM-ED has been 

evaluated for different values of the learning rate starting 

from learning rate = 0.1 to 0.9. On performing the 

evaluation, it is found that the highest Accuracy 92.13%) is 

achieved at learning rate= 0.7 (See Table 4.) (See Fig. 10.). 

 

Table 4. Calculation of accuracy for changing values of 

learning rate 

Learning Rate Accuracy 

0.1 90.6497 

0.2 86.5012 

0.3 84.6319 

0.4 81.4861 

0.5 86.0479 

0.6 86.2002 

0.7 92.13812 

0.8 89.656 

0.9 87.6389 

 

The dataset included various parameters such as the wind 

speed at different timings, temperature, humidity at different 

timings, precipitation, sunshine, and so on. While evaluating 

the model, in order to find the optimized accuracy, the 

combination out of these given parameters has been used 

and the model was implemented on these combinations. The 

best result was concluded when parameters including 

rainfall, sunshine, maximum temperature, minimum 

temperature and evaporation were used as selected features. 

Due to their high correlation with the optimal results, the 

authors applied a principal component analysis using the 

combination of these features in the proposed model. 

 

 
Fig. 10.  The impact of learning rate on Training loss. 

 

Here, it is find that that the best accuracy for the proposed 

model has been evaluated to be 92.138% on 10 number of 

epochs and learning rate is 0.7 with early stopping callback 

used for validation. 

The goal of training was to minimize the loss . Monitor 

(quantitity to be measured ,defaults to “value_loss”) and 

min_data (minimum changes in the measured quantity to 

consisred as improvement )were  used as early stopping 

callback parameters. 

6. CONCLUSION  

In order to accurately analyze and predict rainfall using 

meteorological data, this paper has employed a variety of 

machine learning and deep learning techniques.  The 

application of the suggested LSTM encoder-decoder model 

for rainfall prediction has been discovered to represent a 

noteworthy development in weather forecasting.  Here, the 

suggested LSTM Encoder-Decoder method has proved 

successful.  92.13% accuracy.  Here, a comparative 

examination using machine learning demonstrates that the 

suggested method outperforms alternative methods for 

rainfall prediction. The proposed approach maintained its 

accuracy across additional epochs, showcasing a decrease in 

loss, root mean square error (RMSE), and learning rate. The 

capacity of the proposed models to analyze complex 

temporal patterns in meteorological data has displayed 

encouraging outcomes in reliably forecasting rainfall 

patterns over extended periods. Thus, the model's capability 

to glean insights from historical data and generate 

dependable predictions contributes to better preparedness 

for extreme weather events, aiding in effective risk 

management, agriculture planning, water resource 
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management, and disaster mitigation strategies. This 

research can be further extended to predict multivariate 

predictions with transfer learning, and can be integrated with 

several ensemble models to achieve higher forecasting 

efficiency. 
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