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Environmental problems can significantly impact people’s lives and must be addressed.
The oil spill is one of the biggest applications of underwater wireless sensor networks
(UWSNSs) that threaten aquatic life, so it is essential to focus on it. Oil spill count has risen
in recent years because of the rise in shipping and marine transportation industries. Timely
and accurate detection of oil spills can improve the response process and get the necessary
resources to the affected areas more efficiently. This work was motivated by the fact that
oil spill detection is critical to maritime protection. Since oil spill detection is a complex
process, it faces various challenges. One of the biggest challenges is similar visual
appearance which makes it difficult to identify an oil spill and a similar oil slick in
synthetic aperture radar (SAR) imagery. Various radar images are frequently utilized for
this purpose. Despite being widely used for earth observation, SAR images have noisy
and illegible image quality, which makes classification challenging. Previously, detecting
and classifying SAR images required manual involvement, which made the process time-
consuming. Therefore, researchers focused on automating such tasks by incorporating
deep learning (DL) techniques. Numerous papers proposed the applications of DL in
various radar images for oil spill monitoring but faced multiple problems. This study aims
to thoroughly investigate oil spills and their detection techniques, utilizing DL techniques
applied to various radar images. These studies have originated in diverse nations with
distinct environments. However, compared to other types of radar images, synthetic
aperture radar (SAR) images are more effective in pinpointing the location of oil spills.
However, they are also rather complex.

1. INTRODUCTION
Within the discipline

of computer

UWSNS serve various purposes, from scientific research
to disaster prevention. They are also increasingly utilized in

networks and . . .
ocean monitoring, deep sea surveillance, and aquatic

communication systems, the study of underwater wireless
sensor networks (UWSNS) is a relatively young and rapidly
developing area of research. Due to its development in the
real world, it has emerged as one of the most prominent
research areas for scientists. The sea is a complex and
diverse environment and is an abundant source of food,
minerals, oil, and renewable energy. It is also essential to
life, weather, climate, and biogeochemical cycles [1]. Itis a
home to a wide variety of animals and plants. Small sensor
nodes located all over make up wireless sensor networks
(WSNs). Sensor nodes have components for data
processing, communication, and sensing. Node positions do
not require engineering and can be flexible. The types of
WSNs are chosen based on environmental suitability,
including terrestrial, underground, and underwater variants.

creature tracking. Underwater sensor technology is applied
in various settings, from the oil industry to aquaculture,
including instrument monitoring, pollution management,
climate sensing, natural disturbance prediction, search, and
marine life research. Research and development of new
technologies and procedures are necessary since the oil
industry still poses hazards and problems. Unwanted oil
spills, or the leakage of hydrocarbons from crude oil, are a
severe hazard [2]. They may happen unintentionally or on
purpose.

Oil transportation in tankers, pipeline breaches, oil
exploration, oil transfer onto ships, and illegal activity.
Interference with oil wellheads and vandalism are a few
examples of how it could be related [3]. Early detection of
oil spills is crucial to prevent any form of damage. Crude oil
or refined petroleum discharge into bodies of water due to

!Department of Computer Science and Engineering, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat (Haryana).
’Department of Computer Science and Engineering, School of Engineering and Technology, Central University of Haryana, Mahendergarh, 123031,

Haryana, India.
*Corresponding author: Nitin Goyal; Email: dr.nitin@cuh.ac.in.


mailto:dr.nitin@cuh.ac.in

204

L. Tyagi, D. Singh, and N. Goyal / GMSARN International Journal 20 (2026) 203-219

accidents, sabotage, or illegal disposal, causing severe
environmental catastrophes and affecting wildlife and
human populations. Oil spills vary in scale and severity,
with the amount and kind of oil, the spill's location, and
cleaning efforts impacting the environment. The rapid
spread of oil forms slicks that threaten marine life and
coastal habitats. Both minor and large oil spills occur
globally, with large spills often resulting from broken
pipelines, sinking tankers, and drilling issues, leading to
long-lasting effects on ecosystems and economies.

The tremendous adaptability of UWSNSs in a variety of
fields is depicted in Figure 1. UWSNs are essential to
environmental monitoring because they gather information
on pollution levels, water quality, and the health of marine
life. They are necessary for disaster prevention systems
because they can identify early warning indicators of
tsunamis or undersea earthquakes. UWSNs greatly
aid resource exploitation by exploring the ocean floor for
profitable minerals and assisting with oil and gas
development. They are also necessary to ensure submerged
infrastructure integrity, such as pipelines and offshore
platforms. UWSNs collect real-time data in submerged
environments, crucial in disaster management and aided

navigation. UWSNs are responsible for monitoring
environmental changes and evaluating the harm caused by
incidents such as oil spills.

Additionally, UWSNs provide localization services,
underwater mapping, and assistance to emergency
responders and maritime operators in handling challenging
underwater scenarios, all contributing to assisted navigation.
Additionally, Figure 1 illustrates the use of UWSNSs in
military (security and defence) applications such as anti-
submarine warfare, maritime border protection, and
underwater surveillance. UWSNs facilitate the real-time
monitoring of underwater activities and improve situational
awareness in naval environments. UWSNs optimize
swimming and diving techniques by monitoring the
underwater movements of athletes through the use of
sensors. This enhances performance monitoring. Real-time
competition analysis is facilitated in sports such as
underwater hockey by using UWSNs to monitor player
positions underwater, offering instructors and spectators
valuable insights. Furthermore, UWSNs prioritize the safety
of athletes and spectators by monitoring environmental
conditions, including water temperature and quality, during
aquatic events.

Applications of UWSN

Monitoring Disaster Military Assisted Navigation
\
A 1 r \
Water Quality Habitat Exploration Mines Surveillance
Submarines
1
Marine Life Reef
( )
Flood Volcano, earthquake,

and tsunami

Natural Resources

Pipelines and cables

Fig. 1. Diverse Applications of UWSNs [4].
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1.1 Motivation and Significance

Some deadly disasters, such as oil spills and their leakage,
are caused by oil transportation through ships and pipelines.
Prior and timely knowledge can save human life, the
environment, and marine life, even though it cannot be
entirely stopped. This motivates us to identify these
challenges so that proactive, efficient actions can be
implemented. The availability of modern technologies like
DL and the rapid growth of UWSNs underlined the crucial
need for awareness to rise frequently due to their
adaptability and wide range of applications in many fields.
DL models are quite helpful in automating the detection of
these problems.

1.2 Organization

This study aims to offer readers detailed insights into one of
the biggest applications of UWSN:Ss, i.e. oil spill detection.
Because DL models can handle large, complicated datasets
like multispectral, SAR, and satellite imaging. These are
increasingly employed for oil spill detection. The main
advantageous techniques are CNNs and RNNs, as well as
their variations. While RNNs perform better at sequential
data analysis and interpreting temporal trends in
meteorological and oceanic data, CNNs are better at
extracting spatial features. DL architectures' versatility
enables ongoing improvement, guaranteeing resilience and
scalability in detecting and monitoring oil spills in various

LiWSNs; Networks of sensors deployed underwater to
i colfect data about the marine environment
UWSNs , Oil Spills? ]

Oil Spilis: Releuse of oil or petrolenm produces into the

eAvironment

environmental scenarios. This improves the accuracy and
dependability of systems that detect oil spills, enabling
prompt and efficient response actions. DL has shown to be
a formidable instrument for detecting oil spills, with great
promise for early identification. The problem in the current
scenario is data scarcity about oil spills and the problem of
patterns similar to oil spills, which in turn don’t show
promising results. This paper's contributions are as follows:

1. It provides the readers with a sequential and coherent
understanding of UWSNs and oil spills and motivates
the researchers to work in this direction using DL.

2. A detailed analysis of oil spill detection using
different DL models was discussed.

3. Provide the reasoning behind the selected DL model
architecture (e.g., CNN, RNN).

4. Give the potential future visions for identifying oil

spills.

The structure of the rest of the content is as follows. This
study consists of a total of five sections. The oil spill and its
consequences are discussed in detail in section II. Related
work is provided in Section III. The datasets used by existing
models, types of images to detect oil spills, performance of
existing DL techniques, and their findings are discussed in
Section IV. In the end, Section V presents the conclusion
and future vision.

Widespread environmental destruction

Impacts of Oil Spills

negatively affects the local economy,

ecosystems, and marine life.

Mujor Incidents

Why Oil Spills are harmful?

Marco Pole oil spill(2023)
Culfuo off spill (2022)

Decpwater Horizon Oil Spill (2014}
Ausiralic Montara Drifling Qi Spill (2009)

Kolva River Spill (19%4)
Exon Valdez Ol Spill (1985)

Murine life
Impaired insulation
Ingestion hazards
Habitat destruction

Environment
Ecological disruption
Long-ierm persistence
Chemical release

Human
Contaminated seafood
Water eontanmination
Respiratory prohiems
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Fig. 2. Systematic View of Oil Spills.
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2. OIL SPILL AND ITS CONSEQUENCES

Rapid overlaying of Open-water oil spills has a detrimental
impact on the marine ecosystem and raises environmental
issues. There are numerous reasons why oil spills happen,
and there are numerous techniques to clean them up.
However, we should also work towards preventing leaks in
the future [5]. Figure 2 presents an orderly perspective on oil
spills in this work.

2.1 Oil spill and its properties

An oil spill is the uncontrolled discharge of liquid petroleum
hydrocarbons into the environment in oceans, seas, rivers, or
lakes. Tanker crashes, pipeline ruptures, well blowouts,
equipment failures, and illegal vessel discharges can cause
this leak.

Oil spills may coat surfaces, kill wildlife, alter

ecosystems, and contaminate water sources, posing
environmental and economic dangers. Government
authorities, industrial players, and environmental

organizations must coordinate complicated, costly cleanup
and repair initiatives.

DL excels at complicated data pattern recognition. It
makes use of the following characteristics to detect oil spills:

» Spectral Features: Oil spills exhibit diverse
properties in visible and infrared light. DL algorithms can
distinguish oil from water and other things using these
spectral fingerprints.

» Water Surface Texture: Oil has a smoother texture,
whereas pure water has ripples.

* DL models can analyze the shape and size of oil
slicks.

* Analyzing temporal features in satellite or aerial
pictures helps follow oil spill movement and spread.

DL models may use these characteristics to identify oil
spills more accurately and efficiently than older approaches.

Figure 3 displays the incidence of the oil spill and its
cleaning process. There is a growing hazard of oil pollution
worldwide due to the exploration, production, and use of oil
and petroleum products. Up to ten to fifteen transfers are
required to transport petroleum from the oil fields to the
customer, including tankers, pipelines, railcars, and tank
trucks. The fastest, safest, most affordable, and most reliable
way to constantly transfer oil and gas is through a submarine
pipeline [6].

Fig. 3. (a) Oil spill (b), (¢) Oil spill cleaning process [7].

2.2 Impacts of Oil Spills

Remote sensing has become vital for locating oil spills [8],
[9]. Sea surface oil spills are primary hazards to the marine
natural environment; hence, early warning systems and
efficient monitoring are required. Nevertheless, finding oil
spills is difficult due to how complicated the environment is
around us [10]. The fact that marine pollution is a long-term
problem rather than a temporary one makes it a national and
worldwide concern. The spills persist for many years and
will not go away until the proper steps are implemented to
reduce, eliminate, and avoid the risk.

Oil spills also make the seafood unsafe to eat. Oil spills
and leaks are among the most significant environmental
catastrophes. Oil is the most trafficked commodity
worldwide, and due to its chemical makeup, it is transported
mainly by water. When two ships carrying oil cargo collide,
spills like this happen. Oil spills contaminate the entire
ecosystem in addition to the sea. Because it is an unnatural
activity and a form of pollution, it directly affects the marine
ecosystem. Economically, environmentally, and socially, oil
spills impact society. The spills have occurred in volumes
ranging from several thousand tones to several lakhs.
Beaches, marine creatures, fish, and birds are all harmed by
oil spills, as seen in Figure 4 [11].

Weathering and transport are the two critical components
of oil behavior under ice conditions following an oil spill.
Weathering, which includes evaporation, emulsification,
biodegradation, dissolution, and photo-oxidation, is used to
modify oil's chemical and physical arrangement. Transport
is the term used to describe oil flow, including
encapsulation, advection, spreading, and dispersion.
Various models have been created to assess how oil behaves
when there is ice. Oil spills have been the subject of
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extensive research [12]. When this occurs, individuals must
accept responsibility and act to reduce the harmful impacts
on marine life by cleaning up the water. Oil spill clean-ups
could be costly. Additionally, removing oil from the ocean
may take plenty of time.

Fig. 4. Impact of oil spills [11].
2.3 Major Incidents

The 2023 Marco Polo oil disaster occurred off China when
the MV Felicity Ace caught fire and sunk while transporting
thousands of Porsches and Audis and hazardous chemicals.
Oil and chemicals spilled from this incident raised
environmental concerns. A Petroperii-owned underwater
pipeline rupture caused the 2022 Callao oil disaster in Peru's
El Callao area. The spill contaminated local beaches and
marine habitats, requiring cleanup and environmental
monitoring. One of the worst ecological disasters in U.S.

history was the 2010 Gulf of Mexico Deepwater Horizon Oil
Spill. It was caused by the Deepwater Horizon offshore
drilling rig explosion, which released millions of barrels of
crude oil over months. The disaster devastated marine life,
coastal towns, and the Gulf Coast economy. The Montara
Wellhead Platform blowout in 2009 caused the Montara
Drilling Oil Spill off Western Australia. Tens of thousands
of barrels of oil were released into the Timor Sea, causing
massive environmental damage and cleaning activities. A
pipeline breach in Russia released 2 million barrels of oil
into the Kolva River in 1994. The spill damaged wildlife and
ecosystems by polluting streams and the environment. In
1989, the Exxon Valdez oil ship went aground in Alaska's
Prince William Sound, releasing approximately 11 million
gallons of crude oil into the pristine seas. The spill
devastated the region's marine life, fisheries, and towns,
causing environmental devastation and legal disputes.

2.4 Why Oil spills are harmful?

Oil spills severely harm humans, the environment, and
marine life. Fish and other sea life, such as birds, are covered
with oil, which makes it harder for them to live. The oil
damages plant life and the food chain by upsetting
ecosystems. If humans consume contaminated seafood, it
can cause health issues and severely damage coastal
economies that depend on fishing and tourism.

2.5 Why oil spill detection and classification using DL?

DL's use in remote sensing picture classification has
garnered much interest. DL has a robust representational
learning capacity to enhance classification performance and
the ability to mine knowledge spontaneously [13], [14]. DL
is a potent instrument for identifying and categorizing oil
spills from remote sensing images, especially SAR images.
DL models can extract and learn complex patterns from
SAR data, effectively detecting oil spills even in difficult
situations like cloud cover or choppy seas. Its ability to
easily handle large, complex information makes it a potent
tool for oil spill detection. A DL can handle large-scale
datasets, capture the most complicated patterns and features
from raw data, hierarchical identification of patterns, non-
linearity, and adaptability. Also, DL can model complex
relationships between input attributes and output, adapting
to different surface types and environmental conditions.
Figure 5 shows the process used to study the literature. It
includes how the manuscripts were searched and found, and
only journal research articles incorporating DL techniques
were approved.
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There are two categories for object detection and
identification using CNN. Two stages are involved in the
first category: locating and recognizing the target. The first
method within this category is region-convolutional neural
network (R-CNN). To overcome its drawback, subsequent
innovations like Faster R-CNN and Fast R-CNN were
introduced [15]-[17]. The second category encompasses
one-stage detection methods. "You Only Look Once"
(YOLO) and the single shot multi-box detector (SSD) series
are well-known examples of this methodology.
Advancements in CNN designs and attention mechanisms
can enhance performance in challenging detection tasks,
particularly in detecting oil spills using large sets of SAR
images with annotations. It can then be identified and
categorized using these models on fresh SAR photos. DL
has shown to be a valuable technique for classifying and
detecting oil spills, providing a viable means of enhancing
environmental surveillance and response activities. SAR
imaging is an excellent alternative for quick oil detection
since it covers a large area, gathers data at frequent intervals,
and enables daytime and nighttime imaging in all-weather
situations. DL significantly improves segmentation
accuracy.

3. RELATED WORK

With the fewest images and maximum accuracy possible, U-
NET and DeeplabV3 neural networks in [ 18] separate the oil
spills from SAR images. Due to the benefits of automatic
extraction of features and high-precision identification, DL
neural networks have been utilized to detect oil spills in
recent years [19-20]. Due to a shortage of hardware, such as
GPUs, to train hundreds of neural networks, two precise
CNNs for oil spill segmentation have been discovered.

Decomposition algorithm and other slick detection methods
for MODIS/Terra satellite image RISAT-1 image [21].
Results are compared visually and shown only for a smaller
number of images. Number of images tested is not known.
An improved reconstruction algorithm for CP SAR data is
developed. The study says there is a correlation between the
incidence angle and the appropriate values in the statistical
model, so further exploration can increase the accuracy [22].
A standard procedure provided in the SNAP software was
used to process the SAR images, and the Lagrangian
transport model contained in the GNOME package was used
to create the numerical simulation [23]. Combining these
technologies made it able to distinguish between natural oil
slicks and their imitators.

Five free Sentinel-1A sensor photos are picked out of the
GEE collection. It is giving an accuracy of 96.37%. The
approach developed was crucial for improving the grasp of
the parameter space for oil spill detection using SAR
images. Review studies conducted up to this point have used
images collected between 2006 and 2010 and reported that
C-band radar has been heavily utilized in detecting oil spills.
Since environmental wind speed condition
measurements are essential for detecting oil spills, the
measurement was used in about 68% of the articles the
authors analyzed. From a methodology perspective, only a
few have used DL algorithms, with the majority choosing
various conventional classification, segmentation, and
statistical methods [24]. There isn't a thorough analysis of
oil spill-detecting techniques in the literature. A reasonably
accurate MDNN segmentation model was created [25] using
a database of sixteen ENVISAT-ASAR images taken over
various sea locations. Additional multispectral data is
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utilized to determine the type and thickness of oil.
Additionally, data augmentation is employed.

A fast and accurate ML method was developed to detect
hydrocarbon leaks in a Sentinel-1A satellite's SAR image
captured in the Caspian Sea [26]. The required image is fed
into a densely structured network, which separates as non-
oil spill and oil spill. Compared to the traditional CNN
approach, this dense network performs better. According to
[27], a novel network architecture based on texture
superpixel is named SSWT-UNet++. SAR images often
show several similar oil spill areas that are hard to
differentiate, and DL networks need help training properly
due to the lack of accurate oil spill data. An oil spill detection
model using MTGANs has been given in [28] to
discriminate oil spills from look-alikes in a single
framework to address the issues above. The first GAN
discriminator is redesigned into a classifier that can
distinguish between actual and synthetic oil spills. The
second GAN model's generator combines several
convolution blocks with a fully convolutional symmetric
structure.

To overcome the problems of pixel annotations and the
lack of labels generated by domain experts within HSI, a
self-supervised SSTNet is presented in this research [29] for
hyperspectral oil spill mapping. A new DL model based on
the DAM can automatically identify oil spills in a body of
water, as proposed in [30]. To emphasize only specific
significant and discriminative properties of oil spills in SAR
data, a DAM 1is integrated into a traditional UNet
segmentation network. DAM comprises two stacked
Channel Attention and Position Attention Maps in the UNet
decoder network. The research offers fresh perspectives on
how attention modules could be integrated into other DL
applications, such as speech recognition, action detection,
image-based analysis, and machine translation. Developed
and contrasted the effectiveness of machine learning models
[31] with varying degrees of complexity to identify the
source, scope, and movement of oil spills on a broad scale.
The Persian Gulf CNN's performance is superior to that of
Random Forest and SVM.

Because there is so little information on oil spill events
accessible, developing an oil spill segmentation model is
extremely difficult. Consequently, a unique data generator
based on the Seg-Net model implemented in the CGAN was
proposed in the study [34]. This approach improves the final
oil segmentation results. This paper [35] suggests creating
fake datasets of oil spills using a CGAN model, namely
Pix2Pix, as a data augmentation technique. This method can
improve data when detecting or segmenting formless items
like mildew, oil spills, cracks, and water seepage. This study
[36] has exploited the sensitivity of THz radiation to polar
molecules and the data processing power of the DL to
generate a set of hybrid experimental computations. This
type of predictive analysis provides detailed curves for the
length and depth of pollution. It can be applied to the live-

tracking of crude oil spills and the study of polluted sand
particles. CNN also Gives better results in colorization [37].

Using publicly available Sentinel-1 SAR images, the
author of this study [38] has created a DL-based object
detector to automatically identify oil pollution from both
marine accidents and intentional discharges in this region.
This paper [39] proposed an offshore oil leak detection
technique using remote sensing data based on the Monte
Carlo DQTN. As a primary feature extraction module, a
novel DeeplabV3+based network using ODGhostNetV2 is
built, and an ATA module is simultaneously included in the
encoder and decoder [44]. By doing this, the network
model's receptive fields are expanded, and the richness of
the semantic characteristics is enhanced. A DaNet DL
model was trained for identifying and categorizing oil spills
using a dataset that included patrol recordings from EOIR
cameras installed on Korean Coast Guard helicopters and
data gathered from the internet [46]. A maritime oil spill on
the surface is regularly monitored using data from remote
sensing.

The origin of the marine oil leak is then ascertained using
the deep-Q-network that utilizes offline transferred
knowledge. A two-stage DL architecture based on a wildly
imbalanced dataset for identifying oil spill occurrences is
presented in [50]. The first stage uses a unique 23-layer
CNN to classify patches according to the percentage of
pixels with oil spills. In contrast, a five-step U-Net structure
is used in the second stage to carry out semantic
segmentation. Their main drawbacks are the complex design
of the algorithms used in current SAR oil spill detection
techniques, unbalanced data sets, uncertainty in feature
selection, and comparatively lagging detection speeds. To
overcome these limitations, a unique DL model, the Faster
R-CNN, is presented in [57] for quick and efficient SAR oil
spill detection.

A unique lightweight bilateral segmentation network for
spotting oil spills on the sea surface is presented in the paper
[58]. First, a novel DL semantic-segmentation algorithm is
developed to examine the features. Next, a BiSeNetV2 is
chosen as the fundamental network design. Additionally, the
traditional network's semantic branch's GE layer is
modified, and the parameter complexity is decreased. The
types of oil involved in the accident, their respective masses,
and other pertinent facts must be disclosed. In [59], a DaNet
DL model was trained for oil spill detection and
classification using a dataset that included patrol recordings
from EOIR cameras installed on Korean Coast Guard
helicopters as well as data gathered from the internet. The
results show that the DaNet model finds an average
intersection over the union of 72.54% and an average
accuracy of 83.48% in spotting oil. Furthermore, the model's
macro-average F1-score of 83.91% lets it correctly classify
four distinct types of oil. This investigation also reveals that
the DaNet decoder achieves 6.14% more accuracy than
PsPnet.
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Table 1: Oil Spill detection from 2019 to 2024, reference, Technology used, datasets, performance analysis, and suggestions

Sr. Reference Technology Dataset Performance analysis Suggestions
No. used

1 Saeid Dehghani- | A combination | C-band The F1-score obtained High capacity to identify borders of oil
Dehcheshmeh et | of CNN and | SAR visuals from is 78.48. spills even in noisy visuals.
al. ViT Sentinel-1 satellite The largest obstacle is the low proportion
(2023) [5] of oil spill pixels compared to the image's

total pixel count.

2 Huajun Song et SSWT-UNet++ | The datasets Mean intersection over Improves the detection timeliness and
al. network utilized in the union 0.906 and accuracy.

(2023) [27] image are superpixel accuracy Capable of realizing the real-time
generated from the | 0.977. monitoring function.
nf:twork-sourced The average precision is | The results shown are quite low.
video of the 0.985. N . ioned
submerged oil o repository was mentioned.
pipeline leak.

3 Jianchao Fan et GAN Sentinel-1 Oil spills and look- Suitable for small datasets.
al. ERS-% alikes classification
(2023) [28] GE-3 accuracy can reach

97.22%.
The average precision is
86.69%.

4 Xudong Kang et | SSTN HOSD Four objective metrics h | The degree of transferability for practical ug
al. ave an average value ab | constrained.
(2023) [29] ove 90%: F1 score, Kap

pa

coefficient, Average Ac
curacy, and Overall acc
uracy.

5 Amira S. DAM-UNet The EG Obtained 94.2% overall | It is contrasted with four baselines: the
Mahmoud et al. 0il Spill accuracy. conventional UNet, PSPNet, LinkNet, and
(2023) [30] dataset consists of fully convolutional network models.

3000 SAR Further improvements can be made, for
imagery. the identification of oil spills more
accurately and efficiently.

6 Sahand Najafiza | SVM, RF, Sentinel-1 SAR CNN-95.8 % Used statistical, geometrical, and textural
degan et al. CNN models data RF-86.0 % features.

(2023) [31] SVM-78.9 %

7 Yu Li et al. CVCNN C-band SAR data The classification A few manually derived real-valued

(2023) [32] from Radarsat-2 accuracy of clean polarimetric SAR features, like co-
seawater and oil is polarized phase difference and H/A/a
97.69% overall and for | decomposition parameters, can be
crude oil and biogenic considered in conjunction with the
oil classification classification of oil spills.
accuracy is 96.33%,
which is 0.86% higher
than that of RVCNN.

8 Rodrigo N. The feature's | GEE is providing Angola (0.9960), Italy ( | Only five images of different areas were
Vasconcelos et importance is | five complimentary | 0.9506), Kuwait (0.954 | used to create more images.
al. deFermined o Sentinel-lA sensor | 7), Trinidad & Tohago ( | More focused on using independent
(2022) [33] using the Gini | images. 0.9829), and Dubai (0.9 | features of the evaluated images, still need

index. Random 344). to investigate this issue.
forest for image On average, 96%.
classification.
9 Samira Ahmed The seg-Net Sentinal-1 SAR 99.04% accuracy on Only 50 images are used for training, quite
et al. (2022) [34] | model images average, 96.59% is the less in number.
implemented in IoU index, and a
CGAN precision of 85.24%
10 | Fatemeh U-NET and SAR images from Oil spill detection Accuracy is quite low.
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Mahmoudi DeeplabV3 different sources accuracy using U-NET To increase the quantity of images, data
Ghara et al. neural like Sentinel-1, is 78.8%, which is more | augmentation is used.

(2022) [18] networks EnviSat, etc. than the Deeplabv3
network (54%).

11 | Zhan, Hongleiet | 1D CNN SEM images F1 score 97.90% 1D CNN was used to demonstrate the

al. (2022) [36] AUC .99 indicates high | effects of sand and crude oil mixtures on
consistency and THz waves.
robustness. It can be used for detecting oil spills.

12 | Yi-Jie Yang et A DL-based oil | Sentinel-1 SAR 69.10% and 68.69% AP | Not every time could the lookalikes be
al. spill ~ detector | imagery on the test and easily identified. Transfer learning can be
(2022) [38] and YOLOv4 validation sets, used to identify oil spills in different areas.

for object respectively.
detection

13 | Yuewei Wang et | A Monte Carlo- | Oil spill images of | Up to 98.97% of the The average time was 184.5 minutes,
al. (2022) [39] based DQTN Penglai region of targeted oil spill points which is quite consuming.

the Bohai Sea are accurate.
occurred on June 4,
2011

14 | Ana Claudia q-EFE-based Public dataset with | SVM and XGB Due to the sensitive nature of this type of
Souza Vidal feature 1112 SAR performed best for the | data, there are no readily available data
Negreiros et al. extraction imbalanced original sets about oil spills. Multiclass study can
(2022) [40] technique dataset be done by using g-EFE to distinguish

paired with Bac is 69.79%. between oil spills and lookalikes.
MLmodels This work can be evaluated for other
applications.

15 | Dawei Wang et | BO-DRNet. SAR images The mean accuracy is Highlights the potential use of a
al. 74.69%. polarisation
(2022) [41] Mean dice of 0.8551.

16 | KaiLietal. HOG features Utilized the DJI The recognition accurac | Weather and sea conditions have a big
(2022) [42] combined with | ROYAL 2 UAV to | yinthe context of tiny i | impact on UAV monitoring of offshore oil

an SVM gather images of nfrared oil film samples | spills.
the spill. was 91.3%. Flying UAVs in windy and very rainy
[t requires less time to tr | weather is not recommended.
am. For all weather monitoring, many UAVs
must work together.
There are fewer samples available.
17 | Nastaran Aghaei | Efficient Images from the E | Compared to the best Results can be enhanced or improved by
et al. (2022) [43] | ShuffleNet uropean satellite Se | outcomes of several making use of pre-trained networks with
ntinel- earlier techniques, the shuffle architecture.
1, showing oil spill | mean loU was
s between Septemb | improved by 7.1%.
er 28,2015, and O
ctober 31, 2017.
18 | Xiaoshuang Ma | Improved Sentinel-1 data Achieved superior The model's capabilities are built in
etal. (2022) [10] | DeepLabv3+ from the ESA data | performance, in terms difficult circumstances, such as strong and
distribution of both, overall low winds.
accuracy is 98.92% and | Boost the network's performance to
inference time is 0.19 further increase the model's ability to
sec. detect oil spills from PoISAR images.

19 | Kai Duetal. Built the CBF- | Animage takenin | For the detection of oil could train the model using a lot of data

(2022) [45] CNN using the | the Andaman Sea emulsions, the F1-Score | from oil spills and achieve successtul
CBF loss | by the CZI of the of CBF-CNN is 0.88. remote-sensing oil leak detection.
function HY-1C satellite Oil slick detection The model works well for spotting oil
results have an F1- spills in places with little sunglint.
Score 0f 0.96-0.97.

20 | NVA de Moura | Semantic Sentinel- 1B With the Efficient-net- The majority of errors happen around the

et al. (2022) [46] | segmentation images B3 backbone, U- boundaries of the oil spill, and they get
architectures net's results were some worse in long, narrow features.
with four what improved
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backbones Consequently, for supervised DL tasks,
image annotation is crucial.

21 | Zahra Ghorbani | Segmentation Nafta dataset Detection of an oil spill | Detection accuracy and IOU can be
etal. (2021) [47] | is done using in an image with an enhanced.

the Mask R- accuracy of 92%.

CNN and Segmentation with an
PSPNet models MIoU of 49% (Mask R-
after the CNN) and 68%

VGG16 model (PSPNet).

for detection.

22 | Xinzhe Wang et | CNN AlexNet GF-3 and On average, the AlexNet is slow but provides better
al. (2021) [48] Model Radarsat-2 SAR accuracy is 97.03. accuracy than OTSU, FCM, and SVM.

images

23 | Seyd Teymo or Multi-scale Images from the Less than 5% of false al | Patch size affects performance.

Seydi et al. multidimension | Gulf of Mexico arms and miss detection
(2021) [49] al residual | captured by s occurred, while accura
kernel CNN the Landsat-5 cy exceeded 95%.
satellite.

24 | Mohamed A two-stage | Sentinel-1 satellite | A maximum of 40 traini | When dealing with a multiclass problem
Shaban et al. DL framework | distributed by ESA | ng epochs can be emplo | that includes additional targets like ships
(2021) [50] yed, with a learning rate | and lookalikes, it is useless.

0f 0.00005. Unsupervised learning has been studied
The precision achieved | and may be used to classify oil spill pixels
was 84%. more effectively.

Further, accuracy could be enhanced.

25 | Thomas De Kerf | An FCN | The dataset was The accuracy achieved More sophisticated RGB preprocessing
et al. (2020) [51] | network and a | constructed by is 89% methods could be wused for better

mobile feature | automatically outcomes.
extractor ¥abe1ing RGB Primarily used to find minor oil spills that
1mages the port authority would miss.
The results shown are for a smaller
number of images.

26 | Dongmei Song CNN Full polarimetric Approximately 98% Research on feature-level fusion and
et al. (2020) [52] SAR data from accuracy and loss of decision-level fusion can be done for

RADARSAT-2 0.05%. various datasets to increase accuracy.
Other models like FCN can be considered.

27 | Shamsudee n Mask-Region- | COCO Dataset The accuracy rate for Necessary to avoid overfitting and
Temitope based Mask R- look-alike and oil spill fluctuations in training and validation
Yekeen et al. CNN detection is 96.6%. losses by using a sizable oil spill data set
(2020) [53] for model training.

28 | Hui Huang et al. | Faster R-CNN | Spectral dataset On average giving an The suggested method's quickness and
(2020) [54] accuracy of 92.886%. precision can be improved by

incorporating more images.

29 | Ramoni Reus pre-trained ImageNet Dataset Best case accuracy is Lack of images labeled.

Barro; CNN 91% Increasing the dataset size, then it is going

Negreiros et al. (resnet34) to enhance the accuracy.

(2020) [55] Classification of images only not
detection.

30 Zeyu Jiao et al. | Deep CNN, Dataset acquired Comparing the cost of To enhance the model's functionality,
(2019) [56] Otsu algorithm | by UAVs oil spill detection to the | more aerial photos of oil spills must be

conventional manual
inspection process and
reducing it by 57.2%.
Detects and evaluates
oil spills automatically
and accurately.

gathered over an extended period.

Use of pre-trained networks to build a
DCNN model that could outperform the
existing one.

To support patrolling at night, need to
make use of some infrared devices on
AUV.
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The framework presented in [60] has a spectral model
that figures out the type of oil and how much there is, as well
as a 2-step DL model (F1-score =0.88) that uses the spectral,
spatial, and geometrical properties of optical images to find
out if oil is present or not.

For semantic segmentation of SAR pictures, this study

[61] applies and contrasts three algorithms: PSPNET,
DeepLapV3, and FCN with U-Net. The findings showed
that U-Net and FCN can identify and classify areas affected
by oil spills, with U-Net showing somewhat better IoU
scores and a 95% accuracy rate. For previously encountered
SAR pictures, the DL models generalize effectively.
This research [62] provides a concise overview of the
categorization of contemporary methods used to identify oil
spills, as well as the use of machine learning techniques to
address this issue. Only a few studies have been taken into
consideration.

Figure 6 shows the articles used in this study, year-wise,
from 2019 to 2024. Various DL models (Standard CNN or
pretrained) were used to detect oil spills. More research took
place in 2022.

Number of articles

g 10
S s
6
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» i
o . mm

2019 2020 2021 2022 2023 2024
Year

Fig. 6. Distribution of Research Articles by Publication Year.

4. DATASET, RESULTS, AND DISCUSSION
4.1 Dataset

Various kinds of images have the potential to be utilized for
identifying oil leaks. These are shown in Figure 7. A brief
overview of the many categories of optical photography
describes images captured using visible light. This most
popular category of images includes a large number of
satellite images. Infrared pictures use longer wavelengths of
invisible light than visible light. They come in particularly
handy while trying to see through fog or at night. Radar uses
radio waves to produce images. Radar can produce
photographs of the Earth's surface, even though clouds.
Synthetic aperture radar, or SAR, is a type of radar that can
produce high-resolution pictures. LIDAR (light detection
and ranging) uses light pulses to produce imagery. LIDAR's
applications include the creation of three-dimensional
terrain maps. Images that are hyperspectral or multispectral
collect information from several electromagnetic spectrum
bands. This data can identify the many materials that make

up the Earth's surface. Images from the air are captured from
aircraft or other aerial vehicles. Specialized cameras are
used to capture underwater imagery.

SAR imagery is the most suitable type of image for DL-
based oil spill identification and categorization. Because
SAR imagery can see through clouds and darkness, it is
especially well adapted for this kind of work and allows oil
spill monitoring even under challenging situations.
Moreover, SAR images may be acquired under all
circumstances, and DL algorithms can successfully analyse
the unique texture of these images to detect oil spills.

e Oil spills may now be continuously monitored,
regardless of the weather.

e The texture of SAR images is distinct from that of
water and other natural characteristics. DL algorithms can
identify oil spills by properly analyzing this material.

e Up to one meter of spatial resolution in SAR photos
allows for detecting even tiny oil spills.

Apart from SAR imaging, optical and hyperspectral
imagery are other forms of remote sensing imagery that can
be employed for oil spill identification and categorization.

Other phenomena include sea ice, wind shadows, and
organic surfactants on the water's surface that produce
similar-looking dark patches in SAR data. This can lead to
false positives in SAR-based oil slick identification,
enhancing the precision of oil slick detection using SAR
[63].
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Fig. 7: Kinds of images that can be utilized to find oil spills.

Notable CNN designs are widely used in various
computer vision applications, including VGGNet, ResNet,
LeNet-5, AlexNet, and InceptionVI. These architectures
have demonstrated significant processing power in optical
and medical image processing and invited researchers to
investigate the models in various fields of study. As such,
the merging and incorporation of models in SAR
applications is limited, creating opportunities for further
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research. These datasets, which cover many platforms and
sensors, provide a variety of viewpoints on oil spills in
varied environments.

Table 2: Datasets utilised for 2019-2024 research

e Sentinel-1 and Sentinel-1B: These
constellations offer C-band SAR images
with wide coverage and frequent
revisits, ideal for large-scale monitoring.

e ERS-2, EnviSat, Radarsat-2: These
historical datasets provide valuable
long-term insights into spill behavior
and environmental changes.

e GF-3: This Chinese satellite offers
high-resolution C-band SAR data for
regional studies.

Satellite Data

e Landsat-5: Optical imagery from this
satellite can complement SAR data for
contextual information.

e EG-0il Spill dataset: This curated
collection features images captured by 2

UAYV Data UAVs, offering close-up views of spills.

e Network-sourced videos: Extracting
images from videos of submerged leaks.

e HOSD: This public dataset contains
SAR images of various environmental
events, including oil spills.

e Penglai oil spill images: This regional
dataset.

e COCO, Spectral, and ImageNet
datasets: These general-purpose
datasets can be leveraged for pre-
training or transfer learning tasks related
to oil spill detection.

Public Datasets

This wide variety of datasets from satellites, UAVs, and
other sensor types opens the door to creating reliable and
broadly applicable oil spill detection systems. UAVs have
become quite famous in agriculture, UWSNSs, and other
industries [64]. Researchers may develop solutions that
work well in various settings and circumstances by
integrating the advantages of each dataset, eventually
leading to safer and cleaner oceans.

4.2 Results

This section also discusses the results achieved by DL
models employed from 2019-2024. Various measures were
used to measure the accuracy of the DL models. Figure 8
depicts the performance of various DL models used in 2020
for oil spill detection. Among all, CNN is showing 98%
accuracy but at the expense of limited data.
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Fig. 8. Performance achieved by DL models in 2020 in terms of
Accuracy.

The performance of several DL models employed in 2021
for oil spill detection is displayed in Figure 9. CNN,
Alexnet is the most accurate of all. It performs quite well but
at a slower pace.
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Fig. 9. Performance achieved by DL models in 2021 in terms of
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Fig. 10. Performance achieved by DL models in 2022 in terms
of Accuracy.

The result of different DL networks used for the
identification of oil spills in 2022 is displayed in Figure 10.
Improved Deeplabv3 has the highest accuracy rate of all, at
98%, but needs to strengthen the network, to increase the
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model's effectiveness in detecting oil spills using PoISAR
images.

Figure 11 shows the effectiveness of multiple DL model
s for detecting oil leaks in 2023. Out of all, SSWT UNET++
is exhibiting excellent performance. The average precision
is .985, the superpixel accuracy is .977, and the MIoU is .906
at 98%. It enhances the precision and timeliness of
detections and can carry out real-time monitoring functions.
But the displayed findings are quite less. This is carried out
with the use of datasets whose images are produced from
network-sourced footage of an oil pipeline breach
underwater.
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Fig. 11. Performance achieved by DL models in 2023 in terms
of Accuracy.

4.3 Discussion

Various DL models have been seen for the same purpose.
Each has its problems, still, there is a need to work on the
problem of data scarcity, efficiency, and actual and look-
alike oil spill detection. Data shortage can hinder DL oil spill
detection.

Few Annotated Data: Oil spill detection data is limited.
High-performing DL models require a lot of labeled data,
which oil spills may not have.

Pre-training and Domain Adaptation: We could pre-train
the model on medical photos and then fine-tune it on oil spill
images. This method uses transfer learning to reduce
scarcity [65].

Researchers investigate dataset amplification methods to
improve model performance. Horizontal and vertical flips
and random rotations are non-learning picture
transformations.  These methods increase  model
generalization and data availability [66].

Oil spill detection using DL architectures like V-Net is
promising despite data scarcity. These models abstract,
forecast, and generalize data by employing multiple hidden
layers.

Addressing data scarcity is essential for achieving
reliable oil spill detection using DL models. Scientists
persist in investigating novel methodologies to surmount
this obstacle and enhance environmental surveillance [50,
67].

4.3.1 DL Techniques Barriers

DL is an effective technology for detecting oil spills, but it
encounters several obstacles:

e Data scarcity is a significant challenge when it
comes to training DL models, particularly for oil spill
detection. Obtaining a sufficient amount of high-quality
images of oil spills, especially under different environmental
circumstances, might be somewhat limiting.

e False Positives: Oil spills may exhibit visual
similarities to other phenomena such as shadows or algae
blooms DL algorithms may encounter difficulty in
distinguishing them from real spills.

e Cost of Computation: DL model training can be
computationally costly, using a large amount of computing
power and resources. For businesses with a limited
computing infrastructure, this might be a challenge.

e Explainability: DL models can occasionally be like
"black boxes," with little explanation provided for the
predictions they produce. In essential applications where
comprehending the reasons behind a detection is crucial,
such as oil leak detection, this lack of explainability might
be problematic.

e Variations in the Real World: DL models that were
trained on certain datasets may not be able to adapt
adequately to real-world scenarios involving various types
of weather, bodies of water, and oil spills. When used in the
field, this may result in errors.

4.3.2 Advantages of DL Networks for Detecting Oil Spills

DL neural networks have emerged as a powerful tool for oil
spill detection in recent years, offering several advantages:

o Automated feature extraction: Without the
requirement for human feature engineering, DL algorithms
can automatically discover and extract pertinent features
from SAR images. In comparison to conventional
techniques, this may result in more reliable and precise
detection.

e High detection precision: New research has shown
that DL models can identify oil spills with astounding
accuracy rates, more than 90% in some scenarios. The
efficiency of attempts to respond to an oil spill can be greatly
increased using this.

e Versatility: DL models can be modified to tackle a
range of issues in finding oil spills, including the need to
distinguish oil spills from their lookalikes and deal with
noisy SAR data.

e The reviewed studies showcase various promising
advancements in DL-based oil spill detection

e Multi-channel data fusion: Combining SAR images
with additional information like wind field maps can
improve feature extraction and accuracy.
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e Attention mechanisms: Integrating attention
modules into DL models can help focus on relevant features
of oil spills for better detection.

e Domain-specific
performance.

designs for improved

e Solutions for data limitations using GANs and CBF
loss functions.

o Need for further study to address unresolved issues
even with current developments.

e Need for efficient, lightweight network
architectures for real-time oil spill detection on UAVs.

e Combination of environmental data analysis and
DL algorithms for environmental impact assessment.

e Continuous improvement: Exploring newer DL
architectures and techniques can increase the accuracy,
robustness, and generalizability of several models for
detecting oil spills.

The ultimate goal of this study is to encourage readers to
contribute towards a cleaner and safer future for our oceans.

5. CONCLUSION AND FUTURE VISION

DL offers exciting solutions for automatic oil spill detection
in SAR images. This ability is essential for protecting the
environment and responding promptly to oil spills
threatening aquatic life and ecosystems. Although SAR
pictures offer better detection than other forms of radar, their
intrinsic complexity demands more complicated models.
This paper emphasizes the necessity for models that can
reliably and effectively identify and segment oil spills based
on shape and texture parameters. It also shows the research
advancements in DL-based oil spill recognition from 2019
to 2024. Further developments in DL algorithms and the
addition of domain expertise could greatly enhance the
accuracy and practicality of oil leak detection. The evaluated
studies suggest several intriguing directions for future
research on oil spill detection. We are addressing issues such
as data imbalance and shortage, improving model
architectures and feature extraction, boosting the ability to
differentiate between real and fake oil spills, addressing
environmental concerns, and implementing real-time
monitoring and response. The included literature review is
quite insightful. Future improvements and proactive
contributions to this vital field of study can guarantee our
seas' safety and cleanliness. This study aims to thoroughly
investigate oil spills and develop techniques for detecting
them using DL on various radar images. These studies are
from a variety of nations with diverse environments.
However, SAR images can detect oil spills more accurately
than other types of radar scanning. However, they're also
rather complex.

UWSNs
WSNs
SAR
DL

ML
ESA
RNNs
R-CNN
YOLO
SSD
ViT
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UAVs
IoU

AP
HOSD
CNN
CVCNN

Mask R-
CNN
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Seg-Net
DQTN
XGB
q-EFE
HOG
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Cz1
HY-1C

CBF loss
function

CBF-CNN

SSWT-
UNet++

THz
BiSeNetV2
MDNN
GE

GAN
MTGANs
HSI
SSTNet
DAM
ATA
FCN
CGAN
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Underwater Wireless Sensor Networks
Wireless Sensor Networks

Synthetic Aperture Radar

Deep Learning

Machine Learning

European Space Agency

Recurrent Neural Networks
Region-Convolutional Neural Network
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Vision Transformers
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Complex Valued Convolutional Neural
Network
Mask-Region-based Convolutional Neural
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