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A B S T R A C T 

Environmental problems can significantly impact people’s lives and must be addressed. 

The oil spill is one of the biggest applications of underwater wireless sensor networks 

(UWSNs) that threaten aquatic life, so it is essential to focus on it. Oil spill count has risen 

in recent years because of the rise in shipping and marine transportation industries. Timely 

and accurate detection of oil spills can improve the response process and get the necessary 

resources to the affected areas more efficiently. This work was motivated by the fact that 

oil spill detection is critical to maritime protection. Since oil spill detection is a complex 

process, it faces various challenges. One of the biggest challenges is similar visual 

appearance which makes it difficult to identify an oil spill and a similar oil slick in 

synthetic aperture radar (SAR) imagery. Various radar images are frequently utilized for 

this purpose. Despite being widely used for earth observation, SAR images have noisy 

and illegible image quality, which makes classification challenging. Previously, detecting 

and classifying SAR images required manual involvement, which made the process time-

consuming. Therefore, researchers focused on automating such tasks by incorporating 

deep learning (DL) techniques. Numerous papers proposed the applications of DL in 

various radar images for oil spill monitoring but faced multiple problems. This study aims 

to thoroughly investigate oil spills and their detection techniques, utilizing DL techniques 

applied to various radar images. These studies have originated in diverse nations with 

distinct environments. However, compared to other types of radar images, synthetic 

aperture radar (SAR) images are more effective in pinpointing the location of oil spills. 

However, they are also rather complex. 

 

1. INTRODUCTION 

Within the discipline of computer networks and 

communication systems, the study of underwater wireless 

sensor networks (UWSNs) is a relatively young and rapidly 

developing area of research. Due to its development in the 

real world, it has emerged as one of the most prominent 

research areas for scientists. The sea is a complex and 

diverse environment and is an abundant source of food, 

minerals, oil, and renewable energy. It is also essential to 

life, weather, climate, and biogeochemical cycles [1]. It is a 

home to a wide variety of animals and plants. Small sensor 

nodes located all over make up wireless sensor networks 

(WSNs). Sensor nodes have components for data 

processing, communication, and sensing. Node positions do 

not require engineering and can be flexible. The types of 

WSNs are chosen based on environmental suitability, 

including terrestrial, underground, and underwater variants.  

UWSNs serve various purposes, from scientific research 

to disaster prevention. They are also increasingly utilized in 

ocean monitoring, deep sea surveillance, and aquatic 

creature tracking. Underwater sensor technology is applied 

in various settings, from the oil industry to aquaculture, 

including instrument monitoring, pollution management, 

climate sensing, natural disturbance prediction, search, and 

marine life research. Research and development of new 

technologies and procedures are necessary since the oil 

industry still poses hazards and problems. Unwanted oil 

spills, or the leakage of hydrocarbons from crude oil, are a 

severe hazard [2]. They may happen unintentionally or on 

purpose. 

Oil transportation in tankers, pipeline breaches, oil 

exploration, oil transfer onto ships, and illegal activity. 

Interference with oil wellheads and vandalism are a few 

examples of how it could be related [3]. Early detection of 

oil spills is crucial to prevent any form of damage. Crude oil 

or refined petroleum discharge into bodies of water due to 
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accidents, sabotage, or illegal disposal, causing severe 

environmental catastrophes and affecting wildlife and 

human populations. Oil spills vary in scale and severity, 

with the amount and kind of oil, the spill's location, and 

cleaning efforts impacting the environment. The rapid 

spread of oil forms slicks that threaten marine life and 

coastal habitats. Both minor and large oil spills occur 

globally, with large spills often resulting from broken 

pipelines, sinking tankers, and drilling issues, leading to 

long-lasting effects on ecosystems and economies.  

The tremendous adaptability of UWSNs in a variety of 

fields is depicted in Figure 1. UWSNs are essential to 

environmental monitoring because they gather information 

on pollution levels, water quality, and the health of marine 

life. They are necessary for disaster prevention systems 

because they can identify early warning indicators of 

tsunamis or undersea earthquakes. UWSNs greatly 

aid resource exploitation by exploring the ocean floor for 

profitable minerals and assisting with oil and gas 

development. They are also necessary to ensure submerged 

infrastructure integrity, such as pipelines and offshore 

platforms. UWSNs collect real-time data in submerged 

environments, crucial in disaster management and aided 

navigation. UWSNs are responsible for monitoring 

environmental changes and evaluating the harm caused by 

incidents such as oil spills. 

Additionally, UWSNs provide localization services, 

underwater mapping, and assistance to emergency 

responders and maritime operators in handling challenging 

underwater scenarios, all contributing to assisted navigation. 

Additionally, Figure 1 illustrates the use of UWSNs in 

military (security and defence) applications such as anti-

submarine warfare, maritime border protection, and 

underwater surveillance. UWSNs facilitate the real-time 

monitoring of underwater activities and improve situational 

awareness in naval environments. UWSNs optimize 

swimming and diving techniques by monitoring the 

underwater movements of athletes through the use of 

sensors. This enhances performance monitoring. Real-time 

competition analysis is facilitated in sports such as 

underwater hockey by using UWSNs to monitor player 

positions underwater, offering instructors and spectators 

valuable insights. Furthermore, UWSNs prioritize the safety 

of athletes and spectators by monitoring environmental 

conditions, including water temperature and quality, during 

aquatic events. 

 

 

 

Fig. 1. Diverse Applications of UWSNs [4]. 
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1.1 Motivation and Significance 

Some deadly disasters, such as oil spills and their leakage, 

are caused by oil transportation through ships and pipelines. 

Prior and timely knowledge can save human life, the 

environment, and marine life, even though it cannot be 

entirely stopped. This motivates us to identify these 

challenges so that proactive, efficient actions can be 

implemented. The availability of modern technologies like 

DL and the rapid growth of UWSNs underlined the crucial 

need for awareness to rise frequently due to their 

adaptability and wide range of applications in many fields. 

DL models are quite helpful in automating the detection of 

these problems. 

1.2 Organization 

This study aims to offer readers detailed insights into one of 

the biggest applications of UWSNs, i.e. oil spill detection. 

Because DL models can handle large, complicated datasets 

like multispectral, SAR, and satellite imaging. These are 

increasingly employed for oil spill detection. The main 

advantageous techniques are CNNs and RNNs, as well as 

their variations. While RNNs perform better at sequential 

data analysis and interpreting temporal trends in 

meteorological and oceanic data, CNNs are better at 

extracting spatial features. DL architectures' versatility 

enables ongoing improvement, guaranteeing resilience and 

scalability in detecting and monitoring oil spills in various 

environmental scenarios. This improves the accuracy and 

dependability of systems that detect oil spills, enabling 

prompt and efficient response actions. DL has shown to be 

a formidable instrument for detecting oil spills, with great 

promise for early identification. The problem in the current 

scenario is data scarcity about oil spills and the problem of 

patterns similar to oil spills, which in turn don’t show 

promising results. This paper's contributions are as follows: 

1. It provides the readers with a sequential and coherent 

understanding of UWSNs and oil spills and motivates 

the researchers to work in this direction using DL. 

2. A detailed analysis of oil spill detection using 

different DL models was discussed. 

3. Provide the reasoning behind the selected DL model 

architecture (e.g., CNN, RNN).  

4. Give the potential future visions for identifying oil 

spills. 

The structure of the rest of the content is as follows. This 

study consists of a total of five sections. The oil spill and its 

consequences are discussed in detail in section II. Related 

work is provided in Section III. The datasets used by existing 

models, types of images to detect oil spills, performance of 

existing DL techniques, and their findings are discussed in 

Section IV. In the end, Section V presents the conclusion 

and future vision. 

 

 

 
Fig. 2. Systematic View of Oil Spills. 
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2. OIL SPILL AND ITS CONSEQUENCES 

Rapid overlaying of Open-water oil spills has a detrimental 

impact on the marine ecosystem and raises environmental 

issues. There are numerous reasons why oil spills happen, 

and there are numerous techniques to clean them up. 

However, we should also work towards preventing leaks in 

the future [5]. Figure 2 presents an orderly perspective on oil 

spills in this work. 

2.1 Oil spill and its properties 

An oil spill is the uncontrolled discharge of liquid petroleum 

hydrocarbons into the environment in oceans, seas, rivers, or 

lakes. Tanker crashes, pipeline ruptures, well blowouts, 

equipment failures, and illegal vessel discharges can cause 

this leak. 

Oil spills may coat surfaces, kill wildlife, alter 

ecosystems, and contaminate water sources, posing 

environmental and economic dangers. Government 

authorities, industrial players, and environmental 

organizations must coordinate complicated, costly cleanup 

and repair initiatives. 

DL excels at complicated data pattern recognition. It 

makes use of the following characteristics to detect oil spills: 

• Spectral Features: Oil spills exhibit diverse 

properties in visible and infrared light. DL algorithms can 

distinguish oil from water and other things using these 

spectral fingerprints. 

• Water Surface Texture: Oil has a smoother texture, 

whereas pure water has ripples. 

• DL models can analyze the shape and size of oil 

slicks. 

• Analyzing temporal features in satellite or aerial 

pictures helps follow oil spill movement and spread. 

DL models may use these characteristics to identify oil 

spills more accurately and efficiently than older approaches. 

Figure 3 displays the incidence of the oil spill and its 

cleaning process. There is a growing hazard of oil pollution 

worldwide due to the exploration, production, and use of oil 

and petroleum products. Up to ten to fifteen transfers are 

required to transport petroleum from the oil fields to the 

customer, including tankers, pipelines, railcars, and tank 

trucks. The fastest, safest, most affordable, and most reliable 

way to constantly transfer oil and gas is through a submarine 

pipeline [6]. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 3. (a) Oil spill (b), (c) Oil spill cleaning process [7]. 

 

2.2 Impacts of Oil Spills 

Remote sensing has become vital for locating oil spills [8], 

[9]. Sea surface oil spills are primary hazards to the marine 

natural environment; hence, early warning systems and 

efficient monitoring are required. Nevertheless, finding oil 

spills is difficult due to how complicated the environment is 

around us [10].  The fact that marine pollution is a long-term 

problem rather than a temporary one makes it a national and 

worldwide concern. The spills persist for many years and 

will not go away until the proper steps are implemented to 

reduce, eliminate, and avoid the risk. 

Oil spills also make the seafood unsafe to eat. Oil spills 

and leaks are among the most significant environmental 

catastrophes. Oil is the most trafficked commodity 

worldwide, and due to its chemical makeup, it is transported 

mainly by water. When two ships carrying oil cargo collide, 

spills like this happen. Oil spills contaminate the entire 

ecosystem in addition to the sea. Because it is an unnatural 

activity and a form of pollution, it directly affects the marine 

ecosystem. Economically, environmentally, and socially, oil 

spills impact society. The spills have occurred in volumes 

ranging from several thousand tones to several lakhs. 

Beaches, marine creatures, fish, and birds are all harmed by 

oil spills, as seen in Figure 4 [11]. 

Weathering and transport are the two critical components 

of oil behavior under ice conditions following an oil spill. 

Weathering, which includes evaporation, emulsification, 

biodegradation, dissolution, and photo-oxidation, is used to 

modify oil's chemical and physical arrangement. Transport 

is the term used to describe oil flow, including 

encapsulation, advection, spreading, and dispersion. 

Various models have been created to assess how oil behaves 

when there is ice. Oil spills have been the subject of 
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extensive research [12]. When this occurs, individuals must 

accept responsibility and act to reduce the harmful impacts 

on marine life by cleaning up the water. Oil spill clean-ups 

could be costly. Additionally, removing oil from the ocean 

may take plenty of time. 

 

 

 

 
Fig. 4. Impact of oil spills [11]. 

2.3 Major Incidents 

The 2023 Marco Polo oil disaster occurred off China when 

the MV Felicity Ace caught fire and sunk while transporting 

thousands of Porsches and Audis and hazardous chemicals. 

Oil and chemicals spilled from this incident raised 

environmental concerns. A Petroperú-owned underwater 

pipeline rupture caused the 2022 Callao oil disaster in Peru's 

El Callao area. The spill contaminated local beaches and 

marine habitats, requiring cleanup and environmental 

monitoring. One of the worst ecological disasters in U.S. 

history was the 2010 Gulf of Mexico Deepwater Horizon Oil 

Spill. It was caused by the Deepwater Horizon offshore 

drilling rig explosion, which released millions of barrels of 

crude oil over months. The disaster devastated marine life, 

coastal towns, and the Gulf Coast economy. The Montara 

Wellhead Platform blowout in 2009 caused the Montara 

Drilling Oil Spill off Western Australia. Tens of thousands 

of barrels of oil were released into the Timor Sea, causing 

massive environmental damage and cleaning activities. A 

pipeline breach in Russia released 2 million barrels of oil 

into the Kolva River in 1994. The spill damaged wildlife and 

ecosystems by polluting streams and the environment. In 

1989, the Exxon Valdez oil ship went aground in Alaska's 

Prince William Sound, releasing approximately 11 million 

gallons of crude oil into the pristine seas. The spill 

devastated the region's marine life, fisheries, and towns, 

causing environmental devastation and legal disputes. 

2.4 Why Oil spills are harmful? 

Oil spills severely harm humans, the environment, and 

marine life. Fish and other sea life, such as birds, are covered 

with oil, which makes it harder for them to live. The oil 

damages plant life and the food chain by upsetting 

ecosystems. If humans consume contaminated seafood, it 

can cause health issues and severely damage coastal 

economies that depend on fishing and tourism. 

2.5 Why oil spill detection and classification using DL? 

DL's use in remote sensing picture classification has 

garnered much interest. DL has a robust representational 

learning capacity to enhance classification performance and 

the ability to mine knowledge spontaneously [13], [14]. DL 

is a potent instrument for identifying and categorizing oil 

spills from remote sensing images, especially SAR images. 

DL models can extract and learn complex patterns from 

SAR data, effectively detecting oil spills even in difficult 

situations like cloud cover or choppy seas. Its ability to 

easily handle large, complex information makes it a potent 

tool for oil spill detection. A DL can handle large-scale 

datasets, capture the most complicated patterns and features 

from raw data, hierarchical identification of patterns, non-

linearity, and adaptability. Also, DL can model complex 

relationships between input attributes and output, adapting 

to different surface types and environmental conditions. 

Figure 5 shows the process used to study the literature. It 

includes how the manuscripts were searched and found, and 

only journal research articles incorporating DL techniques 

were approved. 
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Fig. 5. Review process 

 

There are two categories for object detection and 

identification using CNN. Two stages are involved in the 

first category: locating and recognizing the target. The first 

method within this category is region-convolutional neural 

network (R-CNN). To overcome its drawback, subsequent 

innovations like Faster R-CNN and Fast R-CNN were 

introduced [15]-[17]. The second category encompasses 

one-stage detection methods. "You Only Look Once" 

(YOLO) and the single shot multi-box detector (SSD) series 

are well-known examples of this methodology. 

Advancements in CNN designs and attention mechanisms 

can enhance performance in challenging detection tasks, 

particularly in detecting oil spills using large sets of SAR 

images with annotations. It can then be identified and 

categorized using these models on fresh SAR photos. DL 

has shown to be a valuable technique for classifying and 

detecting oil spills, providing a viable means of enhancing 

environmental surveillance and response activities. SAR 

imaging is an excellent alternative for quick oil detection 

since it covers a large area, gathers data at frequent intervals, 

and enables daytime and nighttime imaging in all-weather 

situations. DL significantly improves segmentation 

accuracy. 

3. RELATED WORK 

With the fewest images and maximum accuracy possible, U-

NET and DeeplabV3 neural networks in [18] separate the oil 

spills from SAR images. Due to the benefits of automatic 

extraction of features and high-precision identification, DL 

neural networks have been utilized to detect oil spills in 

recent years [19-20]. Due to a shortage of hardware, such as 

GPUs, to train hundreds of neural networks, two precise 

CNNs for oil spill segmentation have been discovered.  

Decomposition algorithm and other slick detection methods 

for MODIS/Terra satellite image RISAT-1 image [21]. 

Results are compared visually and shown only for a smaller 

number of images. Number of images tested is not known. 

An improved reconstruction algorithm for CP SAR data is 

developed. The study says there is a correlation between the 

incidence angle and the appropriate values in the statistical 

model, so further exploration can increase the accuracy [22]. 

A standard procedure provided in the SNAP software was 

used to process the SAR images, and the Lagrangian 

transport model contained in the GNOME package was used 

to create the numerical simulation [23]. Combining these 

technologies made it able to distinguish between natural oil 

slicks and their imitators.  

Five free Sentinel-1A sensor photos are picked out of the 

GEE collection.  It is giving an accuracy of 96.37%.  The 

approach developed was crucial for improving the grasp of 

the parameter space for oil spill detection using SAR 

images. Review studies conducted up to this point have used 

images collected between 2006 and 2010 and reported that 

C-band radar has been heavily utilized in detecting oil spills. 

Since environmental wind speed condition 

measurements are essential for detecting oil spills, the 

measurement was used in about 68% of the articles the 

authors analyzed. From a methodology perspective, only a 

few have used DL algorithms, with the majority choosing 

various conventional classification, segmentation, and 

statistical methods [24]. There isn't a thorough analysis of 

oil spill-detecting techniques in the literature. A reasonably 

accurate MDNN segmentation model was created [25] using 

a database of sixteen ENVISAT-ASAR images taken over 

various sea locations. Additional multispectral data is 
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utilized to determine the type and thickness of oil. 

Additionally, data augmentation is employed. 

A fast and accurate ML method was developed to detect 

hydrocarbon leaks in a Sentinel-1A satellite's SAR image 

captured in the Caspian Sea [26]. The required image is fed 

into a densely structured network, which separates as non-

oil spill and oil spill. Compared to the traditional CNN 

approach, this dense network performs better. According to 

[27], a novel network architecture based on texture 

superpixel is named SSWT-UNet++. SAR images often 

show several similar oil spill areas that are hard to 

differentiate, and DL networks need help training properly 

due to the lack of accurate oil spill data. An oil spill detection 

model using MTGANs has been given in [28] to 

discriminate oil spills from look-alikes in a single 

framework to address the issues above. The first GAN 

discriminator is redesigned into a classifier that can 

distinguish between actual and synthetic oil spills. The 

second GAN model's generator combines several 

convolution blocks with a fully convolutional symmetric 

structure.  

To overcome the problems of pixel annotations and the 

lack of labels generated by domain experts within HSI, a 

self-supervised SSTNet is presented in this research [29] for 

hyperspectral oil spill mapping.  A new DL model based on 

the DAM can automatically identify oil spills in a body of 

water, as proposed in [30]. To emphasize only specific 

significant and discriminative properties of oil spills in SAR 

data, a DAM is integrated into a traditional UNet 

segmentation network. DAM comprises two stacked 

Channel Attention and Position Attention Maps in the UNet 

decoder network. The research offers fresh perspectives on 

how attention modules could be integrated into other DL 

applications, such as speech recognition, action detection, 

image-based analysis, and machine translation. Developed 

and contrasted the effectiveness of machine learning models 

[31] with varying degrees of complexity to identify the 

source, scope, and movement of oil spills on a broad scale. 

The Persian Gulf CNN's performance is superior to that of 

Random Forest and SVM. 

Because there is so little information on oil spill events 

accessible, developing an oil spill segmentation model is 

extremely difficult. Consequently, a unique data generator 

based on the Seg-Net model implemented in the CGAN was 

proposed in the study [34]. This approach improves the final 

oil segmentation results. This paper [35] suggests creating 

fake datasets of oil spills using a CGAN model, namely 

Pix2Pix, as a data augmentation technique. This method can 

improve data when detecting or segmenting formless items 

like mildew, oil spills, cracks, and water seepage. This study 

[36] has exploited the sensitivity of THz radiation to polar 

molecules and the data processing power of the DL to 

generate a set of hybrid experimental computations. This 

type of predictive analysis provides detailed curves for the 

length and depth of pollution. It can be applied to the live-

tracking of crude oil spills and the study of polluted sand 

particles. CNN also Gives better results in colorization [37].  

Using publicly available Sentinel-1 SAR images, the 

author of this study [38] has created a DL-based object 

detector to automatically identify oil pollution from both 

marine accidents and intentional discharges in this region. 

This paper [39] proposed an offshore oil leak detection 

technique using remote sensing data based on the Monte 

Carlo DQTN. As a primary feature extraction module, a 

novel DeeplabV3+based network using ODGhostNetV2 is 

built, and an ATA module is simultaneously included in the 

encoder and decoder [44]. By doing this, the network 

model's receptive fields are expanded, and the richness of 

the semantic characteristics is enhanced.  A DaNet DL 

model was trained for identifying and categorizing oil spills 

using a dataset that included patrol recordings from EOIR 

cameras installed on Korean Coast Guard helicopters and 

data gathered from the internet [46]. A maritime oil spill on 

the surface is regularly monitored using data from remote 

sensing.  

The origin of the marine oil leak is then ascertained using 

the deep-Q-network that utilizes offline transferred 

knowledge. A two-stage DL architecture based on a wildly 

imbalanced dataset for identifying oil spill occurrences is 

presented in [50]. The first stage uses a unique 23-layer 

CNN to classify patches according to the percentage of 

pixels with oil spills. In contrast, a five-step U-Net structure 

is used in the second stage to carry out semantic 

segmentation. Their main drawbacks are the complex design 

of the algorithms used in current SAR oil spill detection 

techniques, unbalanced data sets, uncertainty in feature 

selection, and comparatively lagging detection speeds. To 

overcome these limitations, a unique DL model, the Faster 

R-CNN, is presented in [57] for quick and efficient SAR oil 

spill detection. 

 A unique lightweight bilateral segmentation network for 

spotting oil spills on the sea surface is presented in the paper 

[58]. First, a novel DL semantic-segmentation algorithm is 

developed to examine the features. Next, a BiSeNetV2 is 

chosen as the fundamental network design. Additionally, the 

traditional network's semantic branch's GE layer is 

modified, and the parameter complexity is decreased. The 

types of oil involved in the accident, their respective masses, 

and other pertinent facts must be disclosed. In [59], a DaNet 

DL model was trained for oil spill detection and 

classification using a dataset that included patrol recordings 

from EOIR cameras installed on Korean Coast Guard 

helicopters as well as data gathered from the internet. The 

results show that the DaNet model finds an average 

intersection over the union of 72.54% and an average 

accuracy of 83.48% in spotting oil. Furthermore, the model's 

macro-average F1-score of 83.91% lets it correctly classify 

four distinct types of oil. This investigation also reveals that 

the DaNet decoder achieves 6.14% more accuracy than 

PsPnet. 
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Table 1: Oil Spill detection from 2019 to 2024, reference, Technology used, datasets, performance analysis, and suggestions 

Sr. 

No. 

Reference Technology 

used 

Dataset Performance analysis Suggestions 

1 Saeid Dehghani-

Dehcheshmeh et 

al.  

(2023) [5] 

A combination 

of CNN and 

ViT 

C-band  

SAR visuals from 

Sentinel-1 satellite 

The F1-score obtained 

is 78.48. 

 

High capacity to identify borders of oil 

spills even in noisy visuals. 

The largest obstacle is the low proportion 

of oil spill pixels compared to the image's 

total pixel count. 

2 Huajun Song et 

al. 

(2023) [27] 

SSWT-UNet++ 

network  

 

The datasets 

utilized in the 

image are 

generated from the 

network-sourced 

video of the 

submerged oil 

pipeline leak. 

Mean intersection over 

union 0.906 and 

superpixel accuracy 

0.977. 

The average precision is 

0.985. 

Improves the detection timeliness and 

accuracy. 

Capable of realizing the real-time 

monitoring function. 

The results shown are quite low. 

No repository was mentioned. 

3 Jianchao Fan et 

al. 

(2023) [28] 

GAN Sentinel-1 

ERS-½ 

GF-3 

 

Oil spills and look-

alikes classification 

accuracy can reach 

97.22%. 

The average precision is 

86.69%. 

Suitable for small datasets. 

4 Xudong Kang et 

al.  

(2023) [29] 

SSTN HOSD Four objective metrics h

ave an average value ab

ove 90%: F1 score, Kap

pa 

coefficient, Average Ac

curacy, and Overall acc

uracy. 

The degree of transferability for practical uses is 

constrained. 

5 Amira S. 

Mahmoud et al. 

(2023) [30]  

DAM-UNet The EG  

Oil Spill 

dataset consists of 

3000 SAR 

imagery.  

Obtained 94.2% overall 

accuracy. 

It is contrasted with four baselines: the 

conventional UNet, PSPNet, LinkNet, and 

fully convolutional network models.   

Further improvements can be made, for 

the identification of oil spills more 

accurately and efficiently. 

6 Sahand Najafiza

degan et al. 

(2023) [31] 

SVM, RF, 

CNN models 

Sentinel-1 SAR 

data 

CNN-95.8 % 

RF-86.0 % 

SVM-78.9 % 

Used statistical, geometrical, and textural 

features. 

7 Yu Li et al. 

(2023) [32] 

CVCNN C-band SAR data 

from Radarsat-2 

The classification 

accuracy of clean 

seawater and oil is 

97.69% overall and for 

crude oil and biogenic 

oil classification 

accuracy is 96.33%, 

which is 0.86% higher 

than that of RVCNN. 

A few manually derived real-valued 

polarimetric SAR features, like co-

polarized phase difference and H/A/α 

decomposition parameters, can be 

considered in conjunction with the 

classification of oil spills. 

8 Rodrigo N. 

Vasconcelos et 

al. 

(2022) [33] 

The feature's 

importance is 

determined 

using the Gini 

index. Random 

forest for image 

classification. 

GEE is providing 

five complimentary 

Sentinel-1A sensor 

images. 

Angola (0.9960), Italy (

0.9506), Kuwait (0.954

7), Trinidad & Tobago (

0.9829), and Dubai (0.9

344). 

On average, 96%. 

Only five images of different areas were 

used to create more images. 

More focused on using independent 

features of the evaluated images, still need 

to investigate this issue. 

9 Samira Ahmed 

et al. (2022) [34] 

The seg-Net 

model 

implemented in 

CGAN 

Sentinal-1 SAR 

images 

99.04% accuracy on 

average, 96.59% is the 

IoU index, and a 

precision of 85.24% 

Only 50 images are used for training, quite 

less in number.   

 

10 Fatemeh U-NET and SAR images from Oil spill detection Accuracy is quite low. 
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Mahmoudi 

Ghara et al. 

(2022)  [18] 

DeeplabV3 

neural 

networks 

different sources 

like Sentinel-1, 

EnviSat, etc. 

accuracy using U-NET 

is 78.8%, which is more 

than the Deeplabv3 

network (54%).    

To increase the quantity of images, data 

augmentation is used. 

11 Zhan, Honglei et 

al. (2022)  [36] 

1D CNN SEM images F1 score 97.90% 

AUC .99 indicates high 

consistency and 

robustness. 

1D CNN was used to demonstrate the 

effects of sand and crude oil mixtures on 

THz waves. 

It can be used for detecting oil spills. 

12 Yi-Jie Yang et 

al. 

(2022) [38] 

A DL-based oil 

spill detector 

and YOLOv4 

for object 

detection 

Sentinel-1 SAR 

imagery 

69.10% and 68.69% AP 

on the test and 

validation sets, 

respectively. 

Not every time could the lookalikes be 

easily identified. Transfer learning can be 

used to identify oil spills in different areas. 

13 Yuewei Wang et 

al. (2022) [39] 

A Monte Carlo-

based DQTN 

Oil spill images of 

Penglai region of 

the Bohai Sea 

occurred on June 4, 

2011 

Up to 98.97% of the 

targeted oil spill points 

are accurate. 

 

The average time was 184.5 minutes, 

which is quite consuming. 

14 Ana Cláudia 

Souza Vidal 

Negreiros et al. 

(2022) [40] 

q-EFE-based 

feature 

extraction 

technique 

paired with 

MLmodels 

Public dataset with 

1112 SAR 

SVM and XGB 

performed best for   the 

imbalanced original 

dataset 

Bac is 69.79%. 

Due to the sensitive nature of this type of 

data, there are no readily available data 

sets about oil spills.  Multiclass study can 

be done by using q-EFE to distinguish 

between oil spills and lookalikes. 

This work can be evaluated for other 

applications. 

15 Dawei Wang et 

al. 

(2022) [41] 

BO-DRNet. SAR images  The mean accuracy is 

74.69%. 

 Mean dice of 0.8551. 

Highlights the potential use of a 

polarisation 

 

16 Kai Li et al. 

(2022) [42] 

HOG features 

combined with 

an SVM 

 

Utilized the DJI 

ROYAL 2 UAV to 

gather images of 

the spill. 

The recognition accurac

y in the context of tiny i

nfrared oil film samples

 was 91.3%. 

It requires less time to tr

ain. 

Weather and sea conditions have a big 

impact on UAV monitoring of offshore oil 

spills. 

Flying UAVs in windy and very rainy 

weather is not recommended. 

For all weather monitoring, many UAVs 

must work together. 

There are fewer samples available. 

17 Nastaran Aghaei 

et al. (2022) [43] 

Efficient 

ShuffleNet 

Images from the E

uropean satellite Se

ntinel-

1, showing oil spill

s between Septemb

er 28, 2015, and O

ctober 31, 2017. 

Compared to the best 

outcomes of several 

earlier techniques, the 

mean IoU was 

improved by 7.1%. 

Results can be enhanced or improved by 

making use of pre-trained networks with 

shuffle architecture. 

18 Xiaoshuang Ma 

et al. (2022) [10] 

Improved 

DeepLabv3+  

Sentinel-1 data 

from the ESA data 

distribution  

 

Achieved superior 

performance, in terms 

of both, overall 

accuracy is 98.92% and 

inference time is 0.19 

sec. 

The model's capabilities are built in 

difficult circumstances, such as strong and 

low winds. 

Boost the network's performance to 

further increase the model's ability to 

detect oil spills from PolSAR images. 

19 Kai Du et al. 

(2022) [45] 

Built the CBF-

CNN using the 

CBF loss 

function 

An image taken in 

the Andaman Sea 

by the CZI of the 

HY-1C satellite 

For the detection of oil 

emulsions, the F1-Score 

of CBF-CNN is 0.88. 

Oil slick detection 

results have an F1-

Score of 0.96–0.97. 

could train the model using a lot of data 

from oil spills and achieve successful 

remote-sensing oil leak detection. 

The model works well for spotting oil 

spills in places with little sunglint. 

20 NVA de Moura 

et al. (2022) [46] 

Semantic 

segmentation 

architectures 

with four  

Sentinel- 1B 

images 

With the Efficient-net-

B3 backbone, U-

net's results were some

what improved 

The majority of errors happen around the 

boundaries of the oil spill, and they get 

worse in long, narrow features. 
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backbones Consequently, for supervised DL tasks, 

image annotation is crucial. 

21 Zahra Ghorbani 

et al. (2021) [47] 

Segmentation 

is done using 

the Mask R–

CNN and 

PSPNet models 

after the 

VGG16 model 

for detection. 

Nafta dataset Detection of an oil spill 

in an image with an 

accuracy of 92%. 

Segmentation with an 

MIoU of 49% (Mask R-

CNN) and 68% 

(PSPNet). 

Detection accuracy and IOU can be 

enhanced. 

22 Xinzhe Wang et 

al. (2021) [48] 

CNN AlexNet 

Model 

GF-3 and 

Radarsat-2 SAR 

images 

On average, the 

accuracy is 97.03. 

AlexNet is slow but provides better 

accuracy than OTSU, FCM, and SVM.  

23 Seyd Teymo or 

Seydi et al. 

(2021) [49] 

Multi-scale 

multidimension

al residual 

kernel CNN 

Images from the 

Gulf of Mexico 

captured by 

the Landsat-5 

satellite. 

Less than 5% of false al

arms and miss detection

s occurred, while accura

cy exceeded 95%. 

Patch size affects performance. 

 

24 Mohamed 

Shaban et al. 

(2021) [50] 

A two-stage 

DL framework 

Sentinel-1 satellite 

distributed by ESA  

A maximum of 40 traini

ng epochs can be emplo

yed, with a learning rate

 of 0.00005. 

The precision achieved 

was 84%. 

 

When dealing with a multiclass problem 

that includes additional targets like ships 

and lookalikes, it is useless. 

Unsupervised learning has been studied 

and may be used to classify oil spill pixels 

more effectively. 

Further, accuracy could be enhanced. 

25 Thomas De Kerf 

et al. (2020) [51]  

An FCN 

network and a 

mobile feature 

extractor 

The dataset was 

constructed by 

automatically 

labeling RGB 

images 

The accuracy achieved 

is 89% 

More sophisticated RGB preprocessing 

methods could be used for better 

outcomes. 

Primarily used to find minor oil spills that 

the port authority would miss. 

The results shown are for a smaller 

number of images. 

26 Dongmei Song 

et al. (2020) [52] 

CNN Full polarimetric 

SAR data from 

RADARSAT-2 

Approximately 98% 

accuracy and loss of 

0.05%. 

Research on feature-level fusion and 

decision-level fusion can be done for 

various datasets to increase accuracy. 

Other models like FCN can be considered. 

27 Shamsudee n 

Temitope 

Yekeen et al. 

(2020) [53] 

Mask-Region-

based Mask R-

CNN 

COCO Dataset The accuracy rate for 

look-alike and oil spill 

detection is 96.6%. 

Necessary to avoid overfitting and 

fluctuations in training and validation 

losses by using a sizable oil spill data set 

for model training. 

28 Hui Huang et al. 

(2020) [54] 

Faster R-CNN Spectral dataset On average giving an 

accuracy of 92.886%. 

The suggested method's quickness and 

precision can be improved by 

incorporating more images. 

29 Ramoni Reus 

Barros 

Negreiros et al. 

(2020) [55] 

pre-trained 

CNN 

(resnet34) 

ImageNet Dataset Best case accuracy is 

91% 

Lack of images labeled. 

Increasing the dataset size, then it is going 

to enhance the accuracy. 

Classification of images only not 

detection. 

30  Zeyu Jiao et al. 

(2019) [56] 

Deep CNN,  

Otsu algorithm 

Dataset acquired  

by UAVs 

Comparing the cost of 

oil spill detection to the 

conventional manual 

inspection process and 

reducing it by 57.2%. 

Detects and evaluates 

oil spills automatically 

and accurately. 

To enhance the model's functionality, 

more aerial photos of oil spills must be 

gathered over an extended period.  

Use of pre-trained networks to build a 

DCNN model that could outperform the 

existing one. 

To support patrolling at night, need to 

make use of some infrared devices on 

AUV. 
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The framework presented in [60] has a spectral model 

that figures out the type of oil and how much there is, as well 

as a 2-step DL model (F1-score =0.88) that uses the spectral, 

spatial, and geometrical properties of optical images to find 

out if oil is present or not. 

For semantic segmentation of SAR pictures, this study 

[61] applies and contrasts three algorithms: PSPNET, 

DeepLapV3, and FCN with U-Net. The findings showed 

that U-Net and FCN can identify and classify areas affected 

by oil spills, with U-Net showing somewhat better IoU 

scores and a 95% accuracy rate. For previously encountered 

SAR pictures, the DL models generalize effectively. 

This research [62] provides a concise overview of the 

categorization of contemporary methods used to identify oil 

spills, as well as the use of machine learning techniques to 

address this issue. Only a few studies have been taken into 

consideration. 

Figure 6 shows the articles used in this study, year-wise, 

from 2019 to 2024. Various DL models (Standard CNN or 

pretrained) were used to detect oil spills. More research took 

place in 2022. 

 
Fig. 6. Distribution of Research Articles by Publication Year. 

4. DATASET, RESULTS, AND DISCUSSION 

4.1 Dataset  

Various kinds of images have the potential to be utilized for 

identifying oil leaks. These are shown in Figure 7. A brief 

overview of the many categories of optical photography 

describes images captured using visible light. This most 

popular category of images includes a large number of 

satellite images. Infrared pictures use longer wavelengths of 

invisible light than visible light. They come in particularly 

handy while trying to see through fog or at night. Radar uses 

radio waves to produce images. Radar can produce 

photographs of the Earth's surface, even though clouds. 

Synthetic aperture radar, or SAR, is a type of radar that can 

produce high-resolution pictures. LIDAR (light detection 

and ranging) uses light pulses to produce imagery. LIDAR's 

applications include the creation of three-dimensional 

terrain maps. Images that are hyperspectral or multispectral 

collect information from several electromagnetic spectrum 

bands. This data can identify the many materials that make 

up the Earth's surface. Images from the air are captured from 

aircraft or other aerial vehicles. Specialized cameras are 

used to capture underwater imagery. 

SAR imagery is the most suitable type of image for DL-

based oil spill identification and categorization. Because 

SAR imagery can see through clouds and darkness, it is 

especially well adapted for this kind of work and allows oil 

spill monitoring even under challenging situations. 

Moreover, SAR images may be acquired under all 

circumstances, and DL algorithms can successfully analyse 

the unique texture of these images to detect oil spills. 

• Oil spills may now be continuously monitored, 

regardless of the weather. 

• The texture of SAR images is distinct from that of 

water and other natural characteristics. DL algorithms can 

identify oil spills by properly analyzing this material. 

• Up to one meter of spatial resolution in SAR photos 

allows for detecting even tiny oil spills. 

Apart from SAR imaging, optical and hyperspectral 

imagery are other forms of remote sensing imagery that can 

be employed for oil spill identification and categorization. 

Other phenomena include sea ice, wind shadows, and 

organic surfactants on the water's surface that produce 

similar-looking dark patches in SAR data. This can lead to 

false positives in SAR-based oil slick identification, 

enhancing the precision of oil slick detection using SAR 

[63]. 

 
Fig. 7: Kinds of images that can be utilized to find oil spills. 

 

Notable CNN designs are widely used in various 

computer vision applications, including VGGNet, ResNet, 

LeNet-5, AlexNet, and InceptionVI. These architectures 

have demonstrated significant processing power in optical 

and medical image processing and invited researchers to 

investigate the models in various fields of study. As such, 

the merging and incorporation of models in SAR 

applications is limited, creating opportunities for further 
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research. These datasets, which cover many platforms and 

sensors, provide a variety of viewpoints on oil spills in 

varied environments. 

 

Table 2: Datasets utilised for 2019–2024 research 

Satellite Data 

 

• Sentinel-1 and Sentinel-1B: These 

constellations offer C-band SAR images 

with wide coverage and frequent 

revisits, ideal for large-scale monitoring. 

• ERS-2, EnviSat, Radarsat-2: These 

historical datasets provide valuable 

long-term insights into spill behavior 

and environmental changes. 

• GF-3: This Chinese satellite offers 

high-resolution C-band SAR data for 

regional studies. 

• Landsat-5: Optical imagery from this 

satellite can complement SAR data for 

contextual information. 

UAV Data 

• EG-Oil Spill dataset: This curated 

collection features images captured by 2 

UAVs, offering close-up views of spills. 

• Network-sourced videos: Extracting 

images from videos of submerged leaks.  

Public Datasets 

 

• HOSD: This public dataset contains 

SAR images of various environmental 

events, including oil spills. 

• Penglai oil spill images: This regional 

dataset.  

• COCO, Spectral, and ImageNet 

datasets: These general-purpose 

datasets can be leveraged for pre-

training or transfer learning tasks related 

to oil spill detection. 

 

This wide variety of datasets from satellites, UAVs, and 

other sensor types opens the door to creating reliable and 

broadly applicable oil spill detection systems. UAVs have 

become quite famous in agriculture, UWSNs, and other 

industries [64]. Researchers may develop solutions that 

work well in various settings and circumstances by 

integrating the advantages of each dataset, eventually 

leading to safer and cleaner oceans. 

4.2 Results 

This section also discusses the results achieved by DL 

models employed from 2019-2024. Various measures were 

used to measure the accuracy of the DL models. Figure 8 

depicts the performance of various DL models used in 2020 

for oil spill detection. Among all, CNN is showing 98% 

accuracy but at the expense of limited data. 

 

 
Fig. 8. Performance achieved by DL models in 2020 in terms of 

Accuracy. 

The performance of several DL models employed in 2021 

for oil spill detection is displayed in Figure 9. CNN, 

Alexnet is the most accurate of all. It performs quite well but 

at a slower pace. 

 

 
Fig. 9. Performance achieved by DL models in 2021 in terms of 

Accuracy. 

 

 
Fig. 10. Performance achieved by DL models in 2022 in terms 

of Accuracy. 

The result of different DL networks used for the 

identification of oil spills in 2022 is displayed in Figure 10. 

Improved Deeplabv3 has the highest accuracy rate of all, at 

98%, but needs to strengthen the network, to increase the 
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model's effectiveness in detecting oil spills using PolSAR 

images. 

Figure 11 shows the effectiveness of multiple DL model

s for detecting oil leaks in 2023. Out of all, SSWT UNET++ 

is exhibiting excellent performance. The average precision 

is .985, the superpixel accuracy is .977, and the MIoU is .906 

at 98%. It enhances the precision and timeliness of 

detections and can carry out real-time monitoring functions. 

But the displayed findings are quite less. This is carried out 

with the use of datasets whose images are produced from 

network-sourced footage of an oil pipeline breach 

underwater. 

 

 

Fig. 11. Performance achieved by DL models in 2023 in terms 

of Accuracy. 

4.3 Discussion 

Various DL models have been seen for the same purpose. 

Each has its problems, still, there is a need to work on the 

problem of data scarcity, efficiency, and actual and look-

alike oil spill detection. Data shortage can hinder DL oil spill 

detection. 

Few Annotated Data: Oil spill detection data is limited. 

High-performing DL models require a lot of labeled data, 

which oil spills may not have. 

Pre-training and Domain Adaptation: We could pre-train 

the model on medical photos and then fine-tune it on oil spill 

images. This method uses transfer learning to reduce 

scarcity [65]. 

Researchers investigate dataset amplification methods to 

improve model performance. Horizontal and vertical flips 

and random rotations are non-learning picture 

transformations. These methods increase model 

generalization and data availability [66]. 

Oil spill detection using DL architectures like V-Net is 

promising despite data scarcity. These models abstract, 

forecast, and generalize data by employing multiple hidden 

layers. 

 Addressing data scarcity is essential for achieving 

reliable oil spill detection using DL models. Scientists 

persist in investigating novel methodologies to surmount 

this obstacle and enhance environmental surveillance [50, 

67]. 

4.3.1 DL Techniques Barriers 

DL is an effective technology for detecting oil spills, but it 

encounters several obstacles: 

• Data scarcity is a significant challenge when it 

comes to training DL models, particularly for oil spill 

detection. Obtaining a sufficient amount of high-quality 

images of oil spills, especially under different environmental 

circumstances, might be somewhat limiting. 

• False Positives: Oil spills may exhibit visual 

similarities to other phenomena such as shadows or algae 

blooms DL algorithms may encounter difficulty in 

distinguishing them from real spills. 

• Cost of Computation: DL model training can be 

computationally costly, using a large amount of computing 

power and resources. For businesses with a limited 

computing infrastructure, this might be a challenge. 

• Explainability: DL models can occasionally be like 

"black boxes," with little explanation provided for the 

predictions they produce. In essential applications where 

comprehending the reasons behind a detection is crucial, 

such as oil leak detection, this lack of explainability might 

be problematic. 

• Variations in the Real World: DL models that were 

trained on certain datasets may not be able to adapt 

adequately to real-world scenarios involving various types 

of weather, bodies of water, and oil spills. When used in the 

field, this may result in errors. 

4.3.2 Advantages of DL Networks for Detecting Oil Spills 

DL neural networks have emerged as a powerful tool for oil 

spill detection in recent years, offering several advantages: 

• Automated feature extraction: Without the 

requirement for human feature engineering, DL algorithms 

can automatically discover and extract pertinent features 

from SAR images. In comparison to conventional 

techniques, this may result in more reliable and precise 

detection. 

• High detection precision: New research has shown 

that DL models can identify oil spills with astounding 

accuracy rates, more than 90% in some scenarios. The 

efficiency of attempts to respond to an oil spill can be greatly 

increased using this. 

• Versatility: DL models can be modified to tackle a 

range of issues in finding oil spills, including the need to 

distinguish oil spills from their lookalikes and deal with 

noisy SAR data. 

• The reviewed studies showcase various promising 

advancements in DL-based oil spill detection 

• Multi-channel data fusion: Combining SAR images 

with additional information like wind field maps can 

improve feature extraction and accuracy. 
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• Attention mechanisms: Integrating attention 

modules into DL models can help focus on relevant features 

of oil spills for better detection. 

• Domain-specific designs for improved 

performance. 

• Solutions for data limitations using GANs and CBF 

loss functions. 

• Need for further study to address unresolved issues 

even with current developments. 

• Need for efficient, lightweight network 

architectures for real-time oil spill detection on UAVs. 

• Combination of environmental data analysis and 

DL algorithms for environmental impact assessment. 

• Continuous improvement: Exploring newer DL 

architectures and techniques can increase the accuracy, 

robustness, and generalizability of several models for 

detecting oil spills. 

The ultimate goal of this study is to encourage readers to 

contribute towards a cleaner and safer future for our oceans. 

5. CONCLUSION AND FUTURE VISION 

DL offers exciting solutions for automatic oil spill detection 

in SAR images. This ability is essential for protecting the 

environment and responding promptly to oil spills 

threatening aquatic life and ecosystems. Although SAR 

pictures offer better detection than other forms of radar, their 

intrinsic complexity demands more complicated models. 

This paper emphasizes the necessity for models that can 

reliably and effectively identify and segment oil spills based 

on shape and texture parameters. It also shows the research 

advancements in DL-based oil spill recognition from 2019 

to 2024. Further developments in DL algorithms and the 

addition of domain expertise could greatly enhance the 

accuracy and practicality of oil leak detection. The evaluated 

studies suggest several intriguing directions for future 

research on oil spill detection. We are addressing issues such 

as data imbalance and shortage, improving model 

architectures and feature extraction, boosting the ability to 

differentiate between real and fake oil spills, addressing 

environmental concerns, and implementing real-time 

monitoring and response. The included literature review is 

quite insightful. Future improvements and proactive 

contributions to this vital field of study can guarantee our 

seas' safety and cleanliness. This study aims to thoroughly 

investigate oil spills and develop techniques for detecting 

them using DL on various radar images. These studies are 

from a variety of nations with diverse environments. 

However, SAR images can detect oil spills more accurately 

than other types of radar scanning. However, they're also 

rather complex. 

ABBREVIATIONS 

UWSNs  Underwater Wireless Sensor Networks 

WSNs Wireless Sensor Networks  

SAR Synthetic Aperture Radar 

DL Deep Learning 

ML Machine Learning 

ESA European Space Agency 

RNNs Recurrent Neural Networks 

R-CNN Region-Convolutional Neural Network 

YOLO You Only Look Once 

SSD Single Shot Multi-Box Detector 

ViT Vision Transformers 

MioU Mean Intersection Over Union 

UAVs Unmanned Aerial Vehicle 

IoU Intersection over Union 

AP Average Precision 

HOSD Hyperspectral Oil Spill Database   

CNN Convolutional Neural Network 

CVCNN Complex Valued Convolutional Neural 

Network 

Mask R-

CNN 

Mask-Region-based Convolutional Neural 

Network 

GEE Google Earth Engine  

Seg-Net Segmentation Network   

DQTN Deep Q-Transfer-Learning Network 

XGB Extreme Gradient Boosting 

q-EFE q-Exponential distribution 

HOG Histogram Of Gradient  

SVM Support Vector Machine 

ESA European Space Agency 

CZI Coastal Zone Imager 

HY-1C Haiyang-1C 

CBF loss 

function 

Class-Balanced F loss function 

CBF-CNN Class-Balanced F loss function -Convolutional 

Neural Networks 

SSWT-

UNet++  

Suitable Superpixel With Texture network  

THz Terahertz 

BiSeNetV2 Bilateral Segmentation Network 

MDNN Multi-Channel Deep Neural Network 

GE Gather-and-Expansion 

GAN Generative Adversarial Network 

MTGANs Multitask Generative Adversarial Networks  

HSI Hyperspectral Image  

SSTNet Spectral–Spatial Transformer Network 

DAM Dual Attention Model 

ATA Adaptive Triplet Attention 

FCN Fully Convolutional Networks 

CGAN Conditional-GAN 

RF Random Forest 
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