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This work proposes the implementation of battery energy storage system (BESS)
management for voltage regulation in the active distribution network (ADN). The primary
goal is to minimize the overall voltage deviation of all buses in the power system.
Adaptive droop control is employed to regulate BESS and optimize the efficiency of
battery operation. In order to enhance the performance of the battery energy storage
system, the study employs particle swarm optimization (PSO) to identify the most
effective control parameters. To validate the efficacy of the proposed methodology, its
performance is examined utilizing an IEEE 33-bus distribution system by testing scenarios
both with and without renewable energy sources such as photovoltaic panels and wind
turbines. The results demonstrate that the approach extensively decreases the voltage
deviation in three scenarios, including with/without BESS. The optimization of BESS
management can effectively confine the voltage within the established range of 0.95 —
1.05 and minimize the voltage deviation of all buses to a minimum of 0.0385 p.u.
Consequently, this leads to an enhancement in the voltage profile, power quality, and
system dependability.

1. INTRODUCTION

Voltage stability in the electrical system is extremely
important and must be prioritized. In modern distribution
network (DN), renewable energy is currently increasing
rapidly, due to the increase in photovoltaic (PV) and wind
power. Therefore, many DNs have been transformed into
active distribution network (ADNs). The main issue with
renewable energy is the discontinuity of the energy that can
be generated [1]. These are the challenges that make ADN
voltage control more difficult. One of the key indices for
voltage stability is voltage deviation (VD). It measures the
difference of voltage value from the nominal value. If it
exceeds the specified standard, it may have an impact on
system efficiency or even cause damage to electrical
equipment [2-4]. As a result, many tools have been
developed over time to help maintain voltage stability,
including transformer load tap changes, shunt capacitor
banks, and STATCOM [5]. These tools help to enhance the
stability of the electrical system. For example, Sarithumu et
al. [6] developed a strategy to regulate voltage in networks
with a high level of renewable energy penetration, making
the use of traditional tools or methods ineffective, Thus, a
technique utilizing on-load tap changer voltage regulation
was devised for voltage control. According to Abedini et al.
[7], shunt capacitor banks can give a good solution for
voltage profile problems in power systems by delivering

reactive power to the system, but they still have the problem
of transient signals, which might impact sensitive devices.
According to Gurav and Mittal [8], STATCOM can supply
fast reactive power, but it is not always effective due to the
trial-and-error control strategy in controller configuration.
Similarly, Xu and Li [9] claimed that classical STATCOM
control should not be used in engineering or the real world,
despite the fact that it has the advantage of providing fast
reactive power.

As mentioned, most conventional devices still have
several limitations compared to battery energy storage
system (BESS), such as fast response, which can bring more
benefits than just voltage regulation. As a result, the usage
of BESS is intriguing and has great promise for controlling
voltage in power systems and resolving VD issues [10].
BESS has several operating functions, for example, energy
arbitrage that provides lowering electricity cost, peak
shaving for reducing the peak demand, and even store the
excess energy for utilizing in the shortage period [11]. In
addition, BESS can also regulate the system frequency and
voltage [12]. However, for batteries to function optimally,
they must be properly managed or controlled. Several
research studies have explored battery management
strategies. Mohammed et al. [13] focus on improving the
sizing of a stand-alone hybrid energy system that consists of
three components: PV, diesel generator, and BESS. Saini
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and Gidwani [14] use BESS as an alternative load for
charging and discharging. The objective is to minimize
yearly energy losses, alleviate reverse power flow, and
resolve overvoltage challenges in an IEEE 69-bus system
integrated with PV. Tamrakar et al. [15] suggest employing
BESS to replace outdated equipment like on-load tap
changer capacitor banks. To improve system dependability,
Zhang et al. [16] presents a multi-agent system-based
control approach for energy storage and PV inverters. Alam
et al. [17] presents a novel charge and discharge control
scheme that takes into account the status of the charging
current. Considering the impact of solar cells in the system
in terms of energy efficiency, the storage is utilized to catch
the extra energy produced by PV during the PV peak and
store it for peak load support. Tandon et al. [18] discovered
the optimal allocation of BESS to increase system
performance while taking into account load volatility,
renewable energy sources, and network constraints.
Alzahrani et al. [19] used BESS in a system with high PV
deployment to explore system loss and power quality issues,
employing a genetic algorithm-based placement
methodology. Wang et al. [20] proposed employing BESS
to address voltage instability issues in low-voltage grids
with high rooftop PV penetration, considering the state of
charge (SoC). Rouzbehi et al. [21] proposed a generalized
voltage droop (GVD) control approach to address the
voltage rise issue. GVD operates in three modes: fixed
voltage control, fixed active power control, and traditional
voltage droop control (VDC), all of which can be changed
using the GVD characteristic of a voltage regulation
inverter. Zeraati et al. [22] employed BESS to handle
various voltage difficulties, such as voltage rise, and
presented a collaboration between a local droop-based
control approach for battery installation size and a
distributed control system to manage SoC performance to
prevent battery saturation. Chen et al. [23] suggested a fuzzy
logic-based adaptive droop controller to alter the droop
coefficient, resulting in a compromise between DC. Jamreon
and Sirisukprasert [24] presented a voltage control
technique integrating battery energy storage with SoC
management. The battery control employs adaptive droop
control as a power supply controller, as well as self-learning
particle swarm optimization (PSO) to optimize the
operational performance of BESS. Jamroen et al. [25]
proposed an adaptive droop-based method that takes into
account the SoC system to manage the functioning of BESS
in a low voltage (LV) system. The objective is to mitigate
voltage rise caused by high solar penetration by enhancing
voltage regulation and power-sharing efficiency using fuzzy
logic.

The literature research revealed that the current
instability of renewable energy poses a variety of issues.
This study presents a solution to mitigate the impact of
renewable energy on VD in ADN. The optimum BESS
management is achieved by adopting a VDC approach that

employs BESS to charge and discharge energy to the
system. The adaptive droop control approach was chosen for
BESS management because it allows the droop coefficient
to be chosen as desired and appropriate, as well as taking
into account the SoC level. In addition, the PSO is used to
get the most appropriate droop coefficient value for battery
control. The IEEE 33-bus test system was chosen as a test
system because it is a distribution system with voltage levels
lower than the standard criterion, making it acceptable for
testing.

The following sections of this paper are organized as
follows: Section 2 presents a mathematical analysis of BESS
management. Section 3 provides an explanation of the
voltage regulation technique developed with the PSO
algorithm. Section 4 details the simulation analysis and
results, while Section 5 concisely summarizes the
conclusion.

2. BESS WITH ADAPTIVE VOLTAGE DROOP
CONTROL

The BESS configuration is shown in Fig. 1, which includes
the following main elements: a battery for storing energy, a
battery energy management system for controlling BESS
operation, and a power converter for energy conversion.
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Fig. 1. BESS configuration

In this study, we focus on the battery and its energy
management system. This study presents a method for
controlling battery operations to resolve the VD issue. The
battery can either provide or receive active power from the
grid. When the BESS supplies active power to the grid, the
voltage level rises, whereas when it absorbs active power
from the grid, the voltage level drops. Thus, the BESS’s
operation can affect the voltage when the active power
changes. Therefore, effective BESS operation relies heavily
on battery energy management. According to a review, Fig.
2 shows that the VDC has three modes: (1) Mode 1 (Fixed
Voltage): Keeps the voltage at a predetermined level and
allows the battery power to adjust as needed, (2) Mode 2
(Fixed Power): Keeps the battery’s power output constant,
(3) Mode 3 (Droop Control): Uses a droop coefficient to
determine how much power the battery delivers or consumes
depending on the grid voltage.



T. Phimtakhob and K. Chayakulkeeree / GMSARN International Journal 20 (2026) 237-245 239

This study uses the droop control method (Mode 3) to
regulate battery operation because it can adjust the droop
coefficient, allowing the voltage level to be freely regulated
[24], [26]. Fig. 3 illustrates the operating concept as follows:

* 1: If the bus voltage of the battery exceeds the maximum
voltage (Vua), the battery will charge the maximum power
into the system.

« 2: If the bus voltage value of the battery is less than the
maximum voltage (V) but larger than the maximum

voltage thresholds (Vﬂ:“a" ), the battery will charge power
based on VD, which is governed by the droop coefficient.

* 3: If the battery's bus voltage value falls within the range
of the minimum voltage thresholds ( V™" ) and the
maximum voltage thresholds ( yo ) or the deadband range,
the battery will not charge or discharge at all.

* 4: If the bus voltage value of the battery is larger than

the minimum voltage (¥, ) but less than the minimum

voltage thresholds (Vt;nin ), the battery will discharge the

power based on VD, which is governed by the droop
coefficient.

 5: If the battery's bus voltage value is less than the
minimum voltage (Vuin), it will discharge the maximum
power back.

It can be represented mathematically as an equation given
below:

—Foes ity >pm
Kpps ccsocy NV £V <V, <P
PBES =40 if Vur:min < V; < V[]Tax W
Kses acsocyNV  IE V™ <V, <V
B;rgx if V. < 7 min
M @

Since the battery may be saturated, it cannot be utilized
further, causing the system to have a VD value that exceeds
the required limit. As a result of the investigation, the SoC
level was examined, as shown in the equation below.
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Fig. 2. VDC strategies.

When evaluating k droop? it is discovered that this value is

SoC , and n As

a result, while examining (1), (3), and (4), it can be
represented in Fig. 4 and 5. From Fig. 4, it has been
discovered that as the SoC of the battery increase, the

kBES’ 4 value gradually increases, the kBES’C value

gradually decrease. This is because adaptive droop
management is intended to protect the battery's
functionality, which increases the SoC range, resulting in
less charging and discharging. On the other hand, a low SoC
level in the battery causes it to charge more and discharge

related to the determination of K, K

min ’
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less. The aforementioned relationship leads to the design of
Kinax, Kmin and n values, demonstrating that K. and K., will
have a relationship with the desired power output, and » will
be the factor determining the battery's power distribution,
which is related to SoC, as shown in Fig. 5.

V(p.u)
4

» P(MW)

A

v

Fig. 3. Adaptive VDC strategy.

3. PSO BESED VOLTAGE DEVIATION
IMPROVEMENT

PSO is a well-known metaheuristic method that mimics bird
group’s foraging activity. It accomplishes this by altering
the locations of particles in search space, directing them
toward the best solution discovered, similar to birds
following the individual closest to a food source until the
food is reached. Consequently, PSO is adept at determining
optimal settings by iteratively updating particle positions.
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Fig. 4. The Relationship between SoC and kggs with the SoC is
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Fig. 5. The Relationship between SoC and r with the SoC is
within the range of SoCui» and SoCumax.

Each parameter or particle updates its position iteratively
until reaching the optimal value. The highest-performing
value identified within the swarm is termed the global best,
or gBest , while the best value found by an individual particle

is known as the personal best, or pBest, [27]. This study

uses PSO to change the adjustment exponent and calculate
the droop efficient value, which is connected to battery
operation, leading to the most efficient procedure based on
the defined objective function.

This study aims to minimize the system's total voltage
deviation (TVD) through the objective function. By
reducing the TVD, the stability of the power system can be
greatly enhanced. The objective function employed in this
study is shown in the following equation.

N
minimize TVD = Z(|V, 4 ®
i=1
and the constraints are defined as follows:

N
PE" =P = [VV(G, cosf, +B,sinf,)]=0  (9)
Jj=1

N
£ — O — Z[HK (G, sin6, — B, cos6,)]=0 (10)
=

V. <V.<V (11)
SoC,., <SoC < SoC, . (12)
I)BES,min S I)BES S })BES,max (1 3)
Koms i < ks 4 < Kags 4 (14)
Kis o < Kopps . < Kpis, (15)

The working equation of PSO is as follows:

1+1
V.

i

=wv + ¢ (pBest] —x)+c,r,(gBest' —x!) (16)
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X=X+ (17)

i

where, x, is the population of particles that represent the

and k

adjust exponent of pEse

BES.a which are p, and p_,

respectively. The proposed PSO-based VD improvement
computational procedure is illustrated in Fig. 6.

4. RESULTS AND DISCUSSION

The test was conducted on the IEEE 33-bus system, which
includes one generator bus and 32 load buses, where bus 1
is designated as the slack bus. The system's voltage
restrictions range from 0.9 to 1.1 p.u. The system contains
3.715 MW of real power load and 2.3 MVar of reactive
power load. The substation's nominal voltage is configured
at 13.8 kV, with the transformer at bus 1 having a capacity
of 3 MW. [28], [29]. In the simulation, the experiment is
conducted as a single fixed-load test.

Table 1 also provides the study’s parameters, which were
evaluated and adjusted as needed, mostly through trial and
error. The battery size was selected by using trial-and-error
to adjust parameters, so they suit the operation of the IEEE
33-bus power system under both non-renewable and
renewable energy conditions. From these trials, it was found
that a 2 MWh size is appropriate for this system. The
variable n specifies how quickly the battery can charge or
discharge. A larger n allows faster charging or discharging
when the BESS SoC is near its maximum or minimum,
whereas a smaller n slows charging or discharging when the
BESS SoC is near the nominal level. Therefore, we
conducted trials to adjust these ranges, as illustrated in Fig
5.

The test is divided into three scenarios, as follows:

e Case I: base case,

e Case II: modified IEEE 33-bus with PV and wind
power penetration, and

¢ Case III: modified IEEE 33-bus with PV and wind
power penetration and BESS with optimal VDC.

The system with renewable energy and BESS is shown
on Fig. 7.

4.1 IEEE 33-bus base case

An initial test was conducted on an IEEE 33-bus distribution
system. The voltage of each bus in the system ranges from
0.9038 p.u. to 1.0000 p.u., and the TVD is 1.8047 p.u., This
significant deviation indicates that the bus voltages are not
within the typical standard range of 0.95 p.u. to 1.05 p.u. The
bus  with  the value is Bus 18
Consequently, the lower-voltage bus should be prioritized to
prevent power system instability, which could potentially
lead to blackouts.

lowest

Obtain network data

v

Initialize each PSO particle i ( n,, n,)

v

and P,

BES

Solve load flow and compute objective function (TVD)

v

obtain pBest; and gBest

v

Update PSO particle by (16) and (17)

A 4

Obtain &

droop

of BESS

Max iteration

Fig. 6. The PSO based BESS optimal VDC computation
procedure.

Table 1. Specification of the BESS

Parameter Specification
Range of the adjust exponent (14, nc) -100 to 100
The maximum power of battery ( P ) 2 MW
The maximum droop coefficient (K __ ) 250
The minimum droop coefficient (K, ) 0.1
Nominal Voltage (V) 1.00 p.u.
Battery capacity (E) 2 MWh
The maximum voltage (Vimax) 1.10 p.u.
The minimum voltage (Vimin) 0.90 p.u.
Maximum state of charge (S0Cuax) 0.8 p.u.
Minimum state of charge (SoCinin) 0.2 p.u.

4.2 Modified IEEE 33-bus with PV and wind power
penetration

In this study, PV and wind power, as renewable energy
sources, were integrated into an IEEE 33-bus distribution
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network. Two 1 MW wind turbine generators were installed
at buses 18 and 24. Additionally, three 1| MW PV systems
were deployed at buses 5, 21, and 31, while four 500 kW PV
systems were positioned at buses 8, 12, 28, and 33 [30]. As
a result of these renewable energy installations, the system’s
real power increased to 10.715 MW. It was observed that the
system voltage ranged from 1.0000 p.u. to 1.0534 p.u. and
that TVD was 0.6879 p.u. These findings indicate that high
levels of renewable energy penetration impact the power
system, causing over voltages and significant voltage
fluctuations that negatively affect the electrical network.
Therefore, appropriate energy management strategies
should be implemented.

4.3 Modified IEEE 33-bus with PV and wind power
penetration and BESS with optimal VDC

In case III, the proposed method incorporates a battery into
the system and employs PSO to optimize the system to
obtain the best value that minimizes TVD. The PSO
parameters are configured as follows W ranges from 0.1 to
1.1, both ¢; and ¢; are set to 1.49 and the maximum iterations
is 100, which was selected through multiple trial runs. It was
observed that the values generally start to converge around
iterations 20-50, so this value was set accordingly. A 2 MWh
battery has been installed on buses 18, 21, 24, and 32. The
results show that the voltage levels on all buses in the system
are within the prescribed range, with TVD being 0.0385 p.u.
This adjustment was made using the variables presented in
Table 2, specifically the values of the adjust exponent (n),
droop coefficient (kaoop) and regulating power (Pzes) for
each battery. The sign of Pggs for each value indicates
whether the battery is charging or discharging. Specifically,
a negative sign denotes that the BESS is charging, whereas
a positive sign signifies that it is discharging.
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Fig. 7. The modified IEEE 33-bus with PV and wind power
penetration and BESS.

Figure 8 illustrates the voltage profile for all three
scenarios, showing that the proposed method maintains the
voltage profile within the specified range through efficient
battery charging and discharging. Table 3. depicts the 3

scenarios of TVD, indicating that the proposed method
alsoproduces the best results by reducing VD compared to
case | and 2. Furthermore, Fig. 9 shows the convergence plot
of the proposed PSO-based BESS optimal VDC. it is clear
that the value of the objective function progressively
converges toward the optimal solution. Fig. 10 presents the
results of 30 trials conducted using the proposed method that
have the average value is 0.0409, standard deviation value
1s 0.0052, maximum value is 0.0524 and minimum value is
0.0385. The low standard deviation of the objective function
values indicates that they are closely clustered, suggesting
that the results obtained from PSO algorithm are reliable.
The runtime of the proposed method was evaluated over 30
runs on a computer equipped with an AMD Ryzen 5 6600H
CPU (3.30 GHz up to 4.50 GHz) and 16 GB of RAM. On
average, the method took 774.45 seconds to complete, with
a standard deviation of 178.33 seconds. The minimum
runtime observed was 591.81 seconds, while the maximum
reached 1490.75 seconds. Thus, although the PSO method
typically requires about 774.45 seconds, it can occasionally
take as long as 1490.75 seconds, likely due to unfavorable
random initializations delaying convergence. These results
are illustrated in Figure 11.

Table 2. Adjust exponent, Droop coefficient and BEES
regulating power of BESS

Bus with PsEs

Battery n kdroop

Installed (MW)
18 9.7258 12.3498 -0.6591
21 13.6507 67.4965 -0.6139
24 10.2878 16.0991 -0.0627
32 10.7010 19.5058 -0.5282

Table 3. Adjust exponent, Droop coefficient and BEES
regulating power of BESS

Scenarios TVD (p.u.)

IEEE 33-bus base case 1.8047
Modified IEEE 33-bus with PV and wind

. 0.6879
power penetration
Modified IEEE 33-bus with PV and wind
power penetration and BESS with optimal 0.0385
VDC.

5. CONCLUSION

This paper introduces a voltage regulation approach
utilizing BESS management, tested on an IEEE 33-bus
power distribution system. The primary goal is to determine
the power value that will minimize TVD. The BESS
management employed in this work is VDC, which is
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responsible for optimizing battery performance and
responding to changes in electrical loads. In addition, the
PSO approach is employed to determine the settings for
BESS control. The results of this study indicate that the
proposed method significantly reduces VD, resulting in a
more stable power supply. Reducing voltage variation is
critical for sustaining power quality and reliability across the
power system.
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Fig. 8. Comparative Voltage Profile of modified IEEE 33-bus
system.
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Fig. 9. the convergence plot of the proposed PSO-based BESS
optimal VDC.
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ABBREVIATIONS

The electrical power that a battery charges or
discharges

The maximum power that the battery can
supply.
The droop coefticient

The droop coefticient controls energy charge.

The droop coefficient controls energy
discharge.

voltage deviation
Bus voltage
Nominal voltage

Total voltage deviation
The maximum voltage thresholds

The minimum voltage

The maximum voltage

The maximum droop coefficient
The minimum droop coefficient
The adjust exponent

The adjust exponent for kses.q
The adjust exponent for kags,c
state of charge at the current step
state of charge at the previous step
Battery capacity

Number of buses

State of charge

Minimum state of charge

Maximum state of charge
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Porsmin The minimum power that the battery can
supply

Prrsmar The maximum power that the battery can
supply

pBest, The best value of each particle i

gBest The best value of all particles

t The iteration

Vv, The velocity for a particle i

crand c2 Constant numbers

rrand r2 Random parameters

w Inertial weight

Xi The population of particles i

PE Active power generated at bus &

Pl Active power consumed by the load at bus

Gy
By

gen

Reactive power generated at bus &

load Reactive power consumed by the load at bus

k
Conductance between bus & and j

Susceptance between bus £ and j

Phase angle difference between bus & and j
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